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Abstract
Ovarian clear cell carcinoma (OCCC) is a histological subtype of epithelial ovarian cancer and exhibits dismal prognosis due
to chemoresistance. Moreover, only few effective therapeutic options exist for patients with recurrent OCCC, and an
understanding of its molecular characteristics is essential for the development of novel therapeutic approaches. In the present
study, we investigated unique MicroRNAs (miRNA) profiles in recurrent/metastatic OCCC and the role of miRNAs in
cisplatin resistance. Comprehensive miRNA sequencing revealed that expression of several miRNAs, including miR-508-
3p, miR-509-3p, miR-509-3-5p, and miR-514a-3p was remarkably less in recurrent cancer tissues when compared with that
in paired primary cancer tissues. These miRNAs are located in the chrXq27.3 region on the genome. Moreover, its
expression was negative in omental metastases in two patients with advanced OCCC. In vitro analyses revealed that
overexpression of miR-509-3p and miR-509-3-5p reversed cisplatin resistance and yes-associated protein 1 (YAP1) was
partially responsible for the resistance. Immunohistochemistry revealed that YAP1 expression was inversely correlated with
the chrXq27.3 miRNA cluster expression. In conclusion, these findings suggest that alteration of the chrXq27.3 miRNA
cluster could play a critical role in chemoresistance and miRNAs in the cluster and their target genes can be potential
therapeutic targets.

Introduction

Epithelial ovarian cancer (EOC) remains one of the leading
causes of cancer death among females worldwide, being

responsible for an estimated 151,900 deaths in 2012 [1].
High-grade serous carcinoma (HGSOC) is the most com-
mon type of EOC, and ovarian clear cell carcinoma (OCCC)
is more commonly diagnosed in Asian countries [2, 3].
OCCC is known to exhibit greater chemoresistance than
HGSOC [2, 3]. In general, patients with EOC undergo
cytoreductive surgery combined with platinum-containing
chemotherapy, but some patients eventually develop
platinum-resistant disease [3]. Few effective therapeutic
options exist for patients with platinum-resistant EOC [3].
Therefore, it is important to know the molecular char-
acteristics of recurrent EOC, and novel therapeutic
approaches for recurrent EOC are highly demanded. How-
ever, these efforts are hindered by the difficulty in obtaining
recurrent cancer tissues because surgery is not a standard
approach for patients with recurrent EOC.

MicroRNAs (miRNAs), small noncoding RNA mole-
cules consisting of ~22 nucleotides, regulate gene expres-
sion posttranscriptionally and play multiple roles in various
processes including cancer progression and drug resistance
[4–10]. MiRNA clusters contain a set of two or more
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miRNA-encoding genes, and 159 miRNA clusters have
been reported in the human genome [11]. In addition, many
miRNA genes are located inside or close to fragile sites,
including one miRNA cluster located in the chrXq27.3
region [5, 8, 12]. The region is the key spot for fragile X
syndrome, the most common form of hereditary intellectual
disability, but the association between the miRNA cluster
and fragile X syndrome remains unknown [12, 13]. In
addition, all 22 miRNA genes in the chrXq27.3 cluster are
oriented in the same transcriptional direction, and there are
no annotated protein-coding genes interrupting the miRNA
genes in the cluster [12]. Hence, these miRNAs are con-
sidered to be under the control of a common regulatory unit
and co-expressed [7, 14]. Recently, several reports descri-
bed the roles of miRNAs belonging to the cluster in various
cancers [15–19]. In EOC, several reports indicated an
association between the status of the miRNA cluster and
clinical outcomes [20–22]. However, these reports mostly
included patients with HGSOC, whereas few patients with
OCCC were enrolled. Especially, tissue samples of recur-
rent OCCC are rare, and therefore, the function of the
cluster in recurrent OCCC remains unknown.

In the present study, we identified remarkably decreased
expression of chrXq27.3 miRNA cluster in recurrent and
metastatic OCCC. Subsequently, in vitro analyses demon-
strated that miR-509-3p and miR-509-3-5p, two members
of the chrXq27.3 cluster, are associated with cisplatin
resistance via yes-associated protein 1 (YAP1) and the
Hippo signaling pathway.

Results

Identification of the miRNA profiles of recurrent
OCCC

First, comprehensive miRNA sequencing was performed
using formalin-fixed, paraffin-embedded (FFPE) tissues.
We included 20 patients with stage I OCCC, and a summary
of the patients’ characteristics is shown in Table 1. Cases
1–10 experienced recurrence, and cases 1, 3–5, and 8
underwent secondary surgery. The progression-free survival
(PFS) times of the five aforementioned patients were 19.6,
47.9, 17.9, 9.9, and 17.8 months, respectively, and local
recurrence was only observed in case 5. Conversely, cases
11–20 have remained cancer-free since the initial treatment.

Heatmap and principal component analysis revealed that
miRNA profiles of recurrent cancer in cases 1, 3, and 4 were
similar profile (Fig. 1A, B). Moreover, similar miRNA
profiles were also found for the primary and recurrent
cancers of case 8 and the primary cancer of case 18.
However, the recurrent cancer profile of case 5 was similar
to that of the paired primary cancer. Then, comparing paired

primary and recurrent cancers from case 1, 3, and 4, we
identified commonly dysregulated miRNAs, and according
to the heatmap analysis, ten miRNAs downregulated in
patients with recurrent cancer were clustered in the same
group (Fig. 1A). Moreover, seven of the miRNAs are
located in the chrXq27.3 region (Fig. 1C). Furthermore,
miR-509-3p, miR-514a-3p, miR-136-3p, miR-202-5p, miR-
509-3-5p, and miR-508-3p were significantly down-
regulated in recurrent cancers compared with their expres-
sion in primary cancers (*p < 0.05 and **p < 0.01; Fig. 1D).
Thus, we focused on four miRNAs in the cluster: miR-508-
3p, miR-509-3p, miR-509-3-5p, and miR-514a-3p. Then,
the results were validated using quantitative polymerase
chain reaction (qPCR), and all four miRNAs were sig-
nificantly downregulated in recurrent cancers compared
with their expression in primary cancers (*p < 0.05 and **p
< 0.01; Fig. 1E). Repeatedly, all recurrent cancers, exclud-
ing that in case 5, exhibited no expression of those four
miRNAs (Fig. 1F).

Expression of the chrXq27.3 miRNA cluster in
advanced OCCC and patient-derived xenograft
(PDX) models

To validate the results of FFPE samples, we analyzed the
miRNA profiles of five fresh-frozen OCCC tissues. As
shown in Table 1, cases 21–23 had stage I OCCC, and cases
24 and 25 had stage III OCCC. Case 24 received neoad-
juvant chemotherapy followed by interval debulking sur-
gery, and bilateral ovarian and omental metastases were
resected. Case 25 underwent exploratory laparotomy and
ovarian, peritoneal, and omental metastases were resected.
The heatmap analysis revealed that the miRNAs in the
chrXq27.3 cluster were clustered into the same group and
downregulated in metastatic OCCC (Fig. 2A). This result
was also validated by qPCR analysis, which revealed that
the four miRNAs in the cluster were significantly down-
regulated in omental metastases compared with their
expression in other tissues in cases 24 and 25 (p < 0.05 in all
miRNAs in both cases, Fig. 2B).

Then, we established three PDX models from cases
21–23, and qPCR analysis demonstrated that after
implanting tumors in mice, the expression of the four
miRNAs decreased dramatically (Fig. 2C).

The function of chrXq27.3 miRNA cluster in cisplatin
resistance

The expression of the chrXq27.3 miRNA cluster was
downregulated in several EOC cell lines, whereas the
expression of the endogenous miRNAs miR-25-3p and
miR-93-5p was retained [23] (Fig. 3A). Thus, we evaluated
the cisplatin sensitivity using miRNA-transfected ES-2 cells
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because patients with OCCC exhibit chemoresistance (Fig.
3B). miRNA mimics for miR-508-3p, miR-509-3p, miR-
509-3-5p, and miR-514a-3p were successfully transfected,
and the negative control (NC) mimic had no effect on the
expression of the miRNAs (Fig. 3C). However, there were
no obvious differences in cisplatin sensitivity among the
miRNA-transfected cells (Fig. 3D). Based on the data from

clinical samples of primary tumors, we transfected all four
miRNAs concurrently, and this co-transfection resulted in
significantly decreased cell viability in the presence of 2.5,
5, and 10 μM cisplatin (p < 0.05, p < 0.01, and p < 0.01,
respectively, Fig. 3C, D). The 50% inhibitory concentration
(IC50) of cisplatin in cells transfected with four miRNAs
was 24.1% of that in cells transfected with the NC mimic.
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Fig. 1 The miRNA profiles of recurrent and primary OCCC
samples. A The hierarchical clustering and heatmap and B principal
component analysis of the miRNA profiles of FFPE tissues from 20
patients with primary cancer (cases 1–20), including five recurrent
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mean with standard errors of the mean. N.S. not significant; *p < 0.05
and **p < 0.01.
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To further evaluate this reversal of cisplatin resistance, we
transfected cells with different combinations of the miR-
NAs, and co-transfection of miR-509-3p and miR-509-3-5p
was linked to significantly decreased cell viability in the
presence of 2.5, 5, and 10 μM cisplatin (p < 0.05, p < 0.01,

and p < 0.01, respectively, Fig. 3E, F). Similarly, the IC50
in cells co-transfected with miR-509-3p and miR-509-3-5p
decreased to 27.6% of the value in cells transfected with the
NC mimic. This result was also confirmed through an
apoptosis assay, and the rate of cisplatin-induced apoptosis
was significantly increased by the co-transfection of miR-
509-3p and miR-509-3-5p (early and late apoptosis, p <
0.05 and p < 0.001, respectively, Fig. 3G). Additionally,
clonogenic assay showed that the combination of the
miRNAs significantly suppressed cell survival during long-
term cisplatin exposure (Fig. 3H).

To validate the impact of the two miRNAs, we per-
formed experiments using A2780cis cell line. As expected,
co-transfection of miR-509-3p and miR-509-3-5p sig-
nificantly decreased cell viability in the presence of 5, 10,
20, and 40 μM cisplatin (p < 0.05, p < 0.01, p < 0.05, and
p < 0.01, respectively, Supplementary Fig. 1A, B). More-
over, the co-transfection significantly increased the rate of
apoptotic cells (early and late apoptosis, p < 0.01 and p <
0.05, respectively, Supplementary Fig. 1C).

Identification of the target genes of miR-509-3p and
miR-509-3-5p

To identify the target genes of miR-509-3p and miR-509-
3-5p, we performed mRNA sequencing using ES-2 cells.
Compared with transfection of the NC mimic, co-
transfection of miR-509-3p and miR-509-3-5p sig-
nificantly decreased and increased the expression of 153
and 158 genes, respectively (Fig. 4A). Functional anno-
tation of the dysregulated genes revealed four significantly
dysregulated Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways, including Hippo signaling pathway
(p= 0.019, Fig. 4B). Then, the putative targets of miR-
509-3p and miR-509-3-5p were explored using four
algorithms: TargetScanHuman7.2, DIANA-microT-CDS,
miRWalk3.0, and miRanda. The genes selected in at least
three databases were considered putative targets. In total,
260 genes were targeted by miR-509-3p, and 853 genes
were targeted by miR-509-3-5p (Fig. 4C). In addition,
genes identified using both mRNA sequencing and target
predictions were evaluated, including 30 downregulated
and 5 upregulated genes (Fig. 4D). Of these genes, we
focused on YAP1, a gene involved in the Hippo signaling
pathway that was highly expressed in NC mimic-
transfected cells (Fig. 4B, D and Supplementary Table
S1). TargetScanHuman7.2 revealed that YAP1 has two
binding sites for miR-509-3p in its 3′-untranslated regions
(Fig. 4E). YAP1 is not regard as the putative target of miR-
509-3-5p even though miRWalk3.0 identified a binding
site for miR-509-3-5p in its cording region (1371–1411).
In addition, miR-509-3-5p contributed to the dysregulation
of the Hippo signaling pathway by targeting tyrosine
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3-monooxygenase/tryptophan 5-monooxygenase activa-
tion protein gamma (YWHAG, also known as 14-3-
3gamma; Fig. 4B, D)

Then, the result of gene expression was validated by
qPCR and Western blotting. Co-transfection of miR-509-3p
and miR-509-3-5p decreased YAP1 expression at both
transcript and protein levels, whereas transfection of miR-
509-3p or miR-509-3-5p alone did not alter YAP1 expres-
sion (Fig. 4F and Supplementary Fig. 1D).

The impact of YAP1 on cisplatin sensitivity

To evaluate the effect of YAP1 on cisplatin sensitivity in
OCCC, we performed a gene silencing assay using small-
interfering RNAs (siRNAs) or an inhibitor targeting YAP1.
Two siRNAs for YAP1 (siYAP1) decreased the expression
of YAP1 and significantly decreased cell viability in the
presence of 2.5, 5, and 10 μM cisplatin (siCtrl vs. siYAP1
No.1, p < 0.01, p < 0.05, and p < 0.01, respectively, and
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siCtrl vs. siYAP1 No.2, p < 0.05 for all concentrations, Fig.
5A, B and Supplementary Fig. 1E). Furthermore, the rates
of early and late apoptotic cells were significantly increased
by siYAP1 No.1 in ES-2 cells (p < 0.05 and p < 0.01,
respectively, Fig. 5C). Moreover, 1 μM verteporfin, a YAP1
inhibitor, significantly decreased cell viability irrespective
of the cisplatin concentration (1.25, 2.5, 5, 10, and 20 μM
cisplatin, p < 0.01, p < 0.001, p < 0.001, p < 0.05, and p <
0.001, respectively, Fig. 5D).

Then, we established stable YAP1 overexpressed ES-2
cells (FLAG-YAP1). When compared with mock trans-
fected cells (FLAG), the FLAG-YAP1 cells highly
expressed YAP1 even after transfecting the two miRNAs
(Fig. 5E). However, in FLAG-YAP1 cells, co-transfection
of miR-509-3p and miR-509-3-5p significantly decreased
cell viability in the presence of 2.5, 5, and 10 μM cisplatin
(p < 0.01, p < 0.001, and p < 0.001, respectively, Fig. 5F). In
addition, clonogenic assay showed that the two miRNAs
significantly decreased the number of colonies in FLAG-
YAP1 cells (p < 0.001), although FLAG-YAP1 cells
showed significantly high colony forming ability than
FLAG cells (p < 0.001, Fig. 5G). Therefore, YAP1 over-
expression could not completely rescue the effect of the
miRNAs. To identify the detailed status of YAP1 protein in
the cells, additional Western blotting analysis was per-
formed. The expression of YAP1 protein was remarkably
high in both cytoplasm and nucleus in the FLAG-YAP1
cells although Ser127-phosphorylated YAP1 (p-YAP1) also
demonstrated a remarkable increase (Fig. 5H).

Clinical relevance of YAP1 in OCCC

Finally, to confirm the interaction between the chrXq27.3
miRNA cluster and YAP1, we performed immunohis-
tochemistry of YAP1 using samples from cases 1, 3–5, and
8. As described previously, the expression of the cluster
became negative in recurrent cancer in cases 1, 3, and 4. In
these cases, YAP1 expression was obviously stronger in
recurrent cancer than in primary cancer (Figs. 1F and 6A).
Moreover, YAP1 expression in case 8 was strong in both
primary and recurrent lesion, which was consistent with the
decreased expression of the cluster (Figs. 1F and 6A).
However, YAP1 expression in case 5 was also strong
despite the positive expression of the cluster (Figs. 1F and
6A). In addition, in all cases, the percentage of YAP1-
positive cells tended to be higher in recurrent cancer than in
primary cancer (Fig. 6B).

Discussion

There are 22 miRNAs located in the chrXq27.3 miRNA
cluster, but its detailed functions in EOC remain unclear

[9, 10, 12]. In this study, we revealed the status of the
chrXq27.3 miRNA cluster in OCCC and its function in
cisplatin sensitivity (Fig. 7)

First, we uncovered that expression of the chrXq27.3
miRNA cluster was almost negative in recurrent and
omental metastatic OCCC. Exceptionally, only one recur-
rent cancer (case 5) retained expression of this cluster.
Given clinical information such as short PFS and the
intraoperative findings of case 5, we considered the recur-
rent cancer to be a residual lesion of the primary cancer, and
hence, they featured extremely similar miRNA profiles. In
IHC, despite the high expression of the miRNAs, YAP1
expression was not suppressed in case 5. Therefore, the
chrXq27.3 cluster independent regulation of YAP1 may be
observed in about 20% of OCCC. Moreover, increased
YAP1 expression may be suitable for survival because the
percentage of YAP1-positive cells increased after recur-
rence in all cases.

Previous reports demonstrated that low expression of
miRNAs in the chrXq27.3 cluster was associated with poor
survival, and miRNA expression in the cluster was lower in
recurrent cancer than in primary HGSOC [20–22]. How-
ever, reflecting histological differences, the expression of
the cluster was overexpressed in primary OCCC when
compared with HGSOC [24]. Therefore, the miRNAs may
be associated with chemoresistance of recurrent cancer
rather than OCCC-specific chemoresistance.

One of the interesting findings of this study is the profile
of the chXq27.3 miRNA cluster in preclinical models. The
advantage of the PDX model is that its characteristics are
similar to those of the original tumor [25, 26]. However, we
revealed the absence of chrXq27.3 miRNA cluster expres-
sion in PDX models, and thus, the PDX models may not be
able to recapitulate the expression of these miRNAs. We
assumed that cancer cells lacking this cluster have high
tolerance to stress, and they could survive in mice. How-
ever, it is difficult to evaluate whether the PDX tumors
acquired chemoresistance because there are no suitable
control tumors expressing these miRNAs. In addition,
consistent with previous reports, the expression of the
miRNAs in the cluster was also negative in several EOC
cell lines [22, 27]. Thus, downregulation of the cluster
might be suitable for surviving in stressful culture dishes.
Reportedly, miR-508-3p expression is negatively correlated
with stemness and epithelial-mesenchymal transition-asso-
ciated gene expression [18, 28]. However, the transcrip-
tional regulation of the cluster under stressful conditions has
not been elucidated. Therefore, the mechanisms of down-
regulation of the cluster in these preclinical models need
further evaluation.

To evaluate the function of the miRNAs, single-stranded
miRNA mimics were used in this study. Similar to the
effects of typical double-stranded miRNA mimics, single-
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stranded miRNA mimics can also silence the expression of
target genes [29, 30]. One advantage of single-stranded
miRNA mimics is the reduction of potential off-target
effects caused by the passenger strand of duplex RNA
[30, 31]. The direct interaction between miR-509-3p and

YAP1 was experimentally validated [22, 27]. However, we
revealed that miR-509-3p and miR-509-3-5p coordinately
regulated YAP1 expression in ES-2 cells. Considering a
feature of miRNA clusters that members of the cluster have
the same targets or target different genes belonging to
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Fig. 5 The effect of YAP1 on cisplatin resistance in vitro.
A Transfection efficacy of two siRNAs for YAP1 (siYAP1 No.1 and
No.2). B Cisplatin sensitivity of siYAP1-transfected ES-2 cells mea-
sured using MTS assay. The viability of treated cells was compared
with that of cells transfected with negative control siRNA (siCtrl)
using Student’s t test. C Apoptosis assay of transfected cells treated
with 7.5 µM cisplatin. The percentage of apoptotic cells was compared
using Student’s t test. D Cisplatin sensitivity of YAP1 inhibitor-treated
ES-2 cells measured using MTS assay. The viability of treated cells
was compared with that of cells treated with DMSO using Student’s t
test. E Expression of miRNAs and YAP1 in YAP1 overexpressed ES-

2 cells (FLAG-YAP1) and mock transfected cells (FLAG). The cells
were further transfected with combination of miR-509-3p and miR-
509-3-5p. F Cisplatin sensitivity of FLAG-YAP1 cells measured using
MTS assay. The viability of the two miRNAs transfected cells was
compared with that of NC transfected cells using Student’s t test.
G Representative images and bar graph of clonogenic assay. The
transfected cells were treated with 1 µM cisplatin for 8 days, and the
number of colonies was compare using Student’s t test. H The
expression of phospho-YAP (Ser127) in the cytoplasm and nucleus of
FLAG-YAP1 cells. Error bars represent standard errors of the mean.
*p < 0.05, **p < 0.01, and ***p < 0.001.
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specific pathways, this phenomenon suggested a new
coordinate function of this cluster [11, 14]. About the role
of miR-509-3-5p, there are several hypotheses. First, miR-
509-3-5p can also directory regulate YAP1 expression by
targeting its coding region because the miRNA targets
situated in the coding region can be functional [6, 7].
Therefore, the expression of YAP1 may be more strongly
suppressed by being targeted by two miRNAs. Second, the
target genes of miR-509-3-5p may be important for reg-
ulation of YAP1. Otherwise, YAP1 expression was regu-
lated by an unknown mechanism of the miRNAs. Overall,
the coordinated regulation of YAP1 by the two miRNAs
was a novel finding.

Platinum analogs are widely used and effective treatment
for cancer [32]. However, cancer eventually acquires pla-
tinum resistance through multiple mechanisms [9, 26, 32].
According to previous reports, miR-509-3p expression is
downregulated in cisplatin-resistant EOC, and miR-509-3p
enhances cisplatin sensitivity in several EOC cell lines
through various targets [33–35]. Conversely, the association
between miR-509-3-5p and cisplatin resistance is
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Fig. 6 The expression of YAP1 in clinical samples. A Representative images of immunohistochemistry of YAP1. Scale bars show 50 μm. B The
percentage of YAP1-positive cells.
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Fig. 7 Graphical abstract. The expression of miRNAs in the
chrXq27.3 miRNA cluster, which were abundant in primary ovarian
clear cell carcinoma (OCCC), decreased in recurrent/metastatic
OCCC. Moreover, their expression was also negative in several
patient-derived xenograft (PDX) models and cell lines. In ES-2 cells,
miR-509-3p and miR-509-3-5p reversed cisplatin resistance by coor-
dinately regulating the expression of YAP1.
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incompletely understood, but miR-509-3-5p expression
sensitized lung cancer cells to cisplatin in vitro [19].
Therefore, both miR-509-3p and miR-509-3-5p functions
tumor suppressor.

Our study indicated that YAP1 is a key regulator of
cisplatin sensitivity in OCCC. The Hippo signaling pathway
regulates the activities of YAP1, which is involved in
numerous cell-autonomous functions such as proliferation,
stem cell properties, metabolism, and metastasis [36–38]. In
addition, YAP1 promotes resistance to chemotherapy, tar-
geted therapy, and hormone therapy through the upregula-
tion of several pro-survival and antiapoptotic genes, and
they also influence responses to immunotherapy by mod-
ulating the tumor immune microenvironment [37, 38]. In
lung and ovarian cancer cells, YAP1 downregulation
enhanced cisplatin sensitivity [36, 39]. Moreover, YAP1
expression was higher in metastasized tumors than in pri-
mary tumors in patients with EOC, and its higher expres-
sion was correlated with poor prognosis [40]. Therefore,
downregulation of YAP1 enhanced cisplatin sensitivity.
However, YAP1 overexpression could not rescue the effects
of miR-509-3p and miR-509-3-5p, and one of the reasons
for this may be the increased expression of p-YAP1 protein
in FLAG-YAP1 cells. Reportedly, p-YAP protein is
recognized by 14-3-3 protein and is sequestered within the
cytoplasm, and therefore, our model may not fully enhance
YAP1 [38]. Otherwise, modulation of the Hippo signaling
pathway by other target genes may be enough to enhance
cisplatin sensitivity.

There were several limitations in this study. First, we
only evaluated a few patients with recurrent/metastatic
OCCC. This is because patients with recurrent EOC rarely
undergo surgery, and therefore, the status of the cluster
should be evaluated in large-scale study. Second, the
mechanism underling the decreased expression of the
cluster in recurrent cancer remains unknown. A previous
report showed that miR-506-3p, which is also a member of
the cluster, was downregulated due to hypermethylation of
its promoter region in pancreatic cancer [41]. Therefore, the
expression of other miRNAs in the cluster may be regulated
by the same mechanism. Moreover, we hypothesized that
cancer cells in the primary site lacking the cluster could
metastasize, survive, and eventually relapse. Single-cell
sequencing may contribute to the elucidation of the
mechanism. Third, the functions of the chrXq27.3 miRNA
cluster are too numerous and complex to evaluate in a single
study. Thus, we focused only on the roles of miR-509-3p
and miR-509-3-5p in cisplatin resistance. Other functions of
the cluster are worth evaluating, and we have planned stu-
dies in this aim.

In conclusion, we revealed that miR-508-3p, miR-509-
3p, miR-509-3-5p, and miR-514a-3p were remarkably
downregulated in recurrent and metastatic OCCC. In vitro

analyses revealed that co-transfection of miR-509-3p and
miR-509-3-5p enhanced cisplatin-induced apoptosis and
induced the dysregulation of the Hippo signaling pathway,
including YAP1 downregulation. This study revealed
the involvement of the chrXq27.3 miRNA cluster in cis-
platin sensitivity. We believe that the chrXq27.3 miRNA
cluster has further important roles in cancer progression,
making it a potential therapeutic target in OCCC.

Materials and methods

Patients

We retrospectively reviewed the medical records of patients
with stage I OCCC who were treated at Nagoya University
Hospital (Aichi, Japan) between 2005 and 2016. We iden-
tified ten patients who had experienced recurrence (cases
1–10) and ten age-matched patients who had never
experienced recurrence (cases 11–20). Five patients under-
went debulking surgery after recurrence, and we used their
FFPE samples of cancer and normal ovary. Moreover, we
used the recent fresh-frozen surgical samples of five patients
with OCCC, including three patients with stage I cancer
(cases 21–23) and two patients with stage III cancer (cases
24–25). All cases were histologically confirmed to
be OCCC.

We established PDX mouse models using tissues from
cases 21–23. Fresh surgical tissue was sectioned into
~3 mm3 pieces and implanted subcutaneously into a 5-
week-old female NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ mouse
(Charles River Laboratories Japan, Kanagawa, Japan). The
generation harboring the patient-derived material was
termed F1, with subsequent generations numbered con-
secutively (e.g., F2–F4).

This study protocol was approved by the Ethics Com-
mittee of our institute (Approval Nos. 2015-0237, 2017-
0053, and 2017-0497). We obtained written informed
consent from all patients.

RNA extraction and miRNA sequencing

Total RNA was extracted from eight 5-µm-thick sections of
FFPE samples using an miRNeasy FFPE Kit (Qiagen,
Hilden, Germany) and from fresh-frozen samples using an
miRNeasy Mini Kit (Qiagen). The total RNA concentration
was measured using a NanoDrop spectrophotometer
(Thermo Fisher Scientific, Waltham, MA).

Comprehensive miRNA sequencing was performed
according to the method described in our previous report
[42]. Briefly, data analysis was performed using the CLC
Genomics Workbench version 9.5.3 program (Qiagen),
RStudio (RStudio, Boston, MA), and R software (ver.
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3.5.0). To visualize a heatmap, miRNAs with low-
normalized expression (<500 reads) were excluded. The
raw data are shown in Supplementary Tables S2–S4.

qPCR

For miRNAs, TaqMan Advanced miRNA cDNA Synthesis
Kit, TaqMan Fast Advanced Master Mix, and TaqMan
Advanced miRNA Assays (Assay IDs 478961_mir,
478964_mir, 478963_mir, and 479397_mir; Thermo Fisher
Scientific) were used. For mRNA, a ReverTra Ace qPCR
RT Kit (Toyobo, Osaka, Japan) and TB Green Premix Ex
Taq (Takara Bio, Shiga, Japan) were used. Specific primers
were synthesized by Hokkaido System Science (Hokkaido,
Japan), and the primer sequences were described in Sup-
plementary Fig. 2A. Then, qPCR was performed using
Mx3000P (Agilent Technologies, Santa Clara, CA), and the
detailed thermal profile was described in Supplementary
Fig. 2B. Each experiment was performed triplicate and
repeated at least three times.

Cell lines

ES-2, TOV-21G, and SKOV3 cells were purchased from
the ATCC (Manassas, VA), and A2780 and A2780cis cells
were purchased from the ECACC (Porton Down, UK).
These cell lines were maintained in RPMI (Nacalai Tesque,
Kyoto, Japan) containing 10% fetal bovine serum (Sigma-
Aldrich, St. Louis, MO), penicillin, and streptomycin (Meiji
Seika Pharma, Tokyo, Japan). These cell lines were con-
firmed to be negative for mycoplasma contamination, and
cells were used in 5–30 passages for experiments.

Transfection and an inhibitor

Single-stranded miRNA mimics for miR-508-3p, miR-509-
3p, miR-509-3-5p, and miR-514a-3p were synthesized, and
NC #1 was purchased from Bioneer (Daejeon, Korea). For
siRNA experiments, two Silencer Select Pre-designed
siYAP1 (No. 1; s534572 and No. 2; s536629) and Silen-
cer NC No. 1 siRNA were used (Thermo Fisher Scientific).
Cells were transfected with 20 nM mimic or 2 nM siRNA
using Lipofectamine RNAi Max (Thermo Fisher Scientific)
for 24 h, and used for further analysis. For co-transfection,
the total amount of miRNA mimics was 20 nM. In addition,
cells were treated with 1 μM verteporfin, a YAP1 inhibitor
(R&D Systems, Minneapolis, MN).

Cisplatin sensitivity analyses

For MTS assay, cells were seeded into 96-well plate and
simultaneously treated as described previously (n= 4 for each
condition). Then, medium was replaced with cisplatin (Nichi-

Iko Pharmaceutical, Toyama, Japan) containing medium, and
cells were incubated for 48 h. Finally, 10 μl of 5mg/ml Cell-
Titer 96 Aqueous One Solution (Promega, Madison, WI) was
added to each well and incubated with cells for 3 h, and the
optical density (OD) was determined using a spectro-
photometer at a wavelength of 490 nm. Cell viability was
calculated as “(ODcisplatin−ODblank)/(ODcontrol−ODblank) ×
100”. The IC50 value was calculated using the following
equation: IC50 (μM)= 10[log(A/B)×(50−C)/(D−C)+log(B)], where A
and B represent the highest and the lowest concentrations (µM)
to cover an estimated IC50 value, respectively. C and D
represent the cell viability at concentration B and D,
respectively.

For apoptosis assay, cells were seeded into six-well plate
and treater as described previously (n= 3). After cisplatin
treatment (7.5 or 20 μM, 48 h), apoptosis assay was per-
formed using a MEBCYTO Apoptosis Kit (Annexin V-
FITC Kit; Medical & Biological Laboratories, Nagoya,
Japan). A FACS Canto II flow cytometer (BD Biosciences,
San Jose, CA) was used for detection. Early apoptotic cells
are Annexin V-positive and PI-negative, whereas late
apoptotic cells are Annexin V/PI-double-positive.

For clonogenic assay, 300 transfected cells were seeded
into six-well plates (n= 6). Soon after the attachment of the
cells to the dishes, the cells were treated with 1 μM cisplatin
and incubated for 8 days. Then, cells were fixed and stained
using a mixture of 4% paraformaldehyde and 0.5% crystal
violet, and the colonies were counted.

Each experiment was performed at least three times.

mRNA sequencing

ES-2 cells were transfected with the NC mimic or a com-
bination of miR-509-3p and miR-509-3-5p in triplicate.
Then, mRNA sequencing was performed by Riken Genesis
(Tokyo, Japan). The obtained sequence data were trimmed,
mapped to iGenomes Homo sapiens NCBI build 37.2,
assembled, and normalized using fragment per kilobase of
exon per million reads mapped (FPKM). Genes with low
read coverage (<10 FPKM) were excluded, and sig-
nificantly dysregulated genes were determined using an
absolute log2 fold change exceeding 1 and an adjusted p
value of < 0.05. The raw data are shown in Supplementary
Table S5.

Online tools

The location of miRNA precursors was referred from RNA-
central (https://rnacentral.org/). Putative target genes were
referred from TargetScanHuman7.2 (http://www.targetscan.
org/vert_72/), DIANA-microT-CDS (http://diana.imis.athena-
innovation.gr/DianaTools/index.php?r=microT_CDS/index),
miRWalk3.0 (http://mirwalk.umm.uni-heidelberg.de/), and
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miRanda (http://www.microrna.org/microrna/home.do). More-
over, DAVID (https://david.ncifcrf.gov/tools.jsp) was used for
functional annotation.

Western blotting

Protein was extracted using RIPA Lysis buffer (Milli-
pore, Temecula, CA) with protease inhibitor cocktail
tables (Roche Diagnostics, Indianapolis, IN) or NE-PER
Nuclear and Cytoplasmic Extraction Reagents (Thermo
Fisher Scientific). Protein was separated by 10% SDS-
PAGE and transferred onto PVDF membranes. The
membranes were blocked in 3% BSA/TBS-T, and the
following antibodies were used: PhosphoPlus YAP
(Ser127) Antibody Duet #46538 and Anti-rabbit IgG,
HRP-linked Antibody #7074 (Cell Signaling Technol-
ogy, Danvers, MA). Then, protein bands were examined
using ELC Western Blotting Detection Reagents and the
ImageQuant LAS 4000 mini (GE Healthcare, Back-
inghamshire, UK), and band intensities were quantified
using ImageJ [43].

Generation of a stable cell line overexpressing YAP1

ES-2 cells that constitutively expressed YAP1 were
established by retrovirus infection. pQCXIP vectors
(Takara Bio) that encoded its complementary DNA were
transfected into 293T cells in combination with the
pVPack-GP and pVPack-Ampho vectors (Stratagene,
Tokyo, Japan) using calcium phosphate. Forty-eight hours
after transfection, the supernatants were added to ES-2
cells along with 2 μg/ml polybrene (Sigma-Aldrich), and
infected cells were selected by incubating with 1 μg/ml
puromycin for 2 days.

Immunohistochemistry

Immunohistochemistry was performed according to the
method described in our previous report [44]. Briefly, an
anti-YAP1 antibody (HPA070359; Sigma-Aldrich), a His-
tofine SAB-PO(R) kit, and 3, 3′-diaminobenzidine
substrate-chromogen (Nichirei, Tokyo, Japan) were used.

Statistical analysis

Statistical analysis was performed with SPSS version 26
(SPSS Inc., Chicago, IL). Student’s t test was used to
determine the significance of differences between the means
of two sets of data. The Kruskal–Wallis test was used to
determine the significance of differences between three or
more independent samples. A p value of < 0.05 was con-
sidered statistically significant.
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