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Abstract 

Background:  Split-hand/ foot malformation with long bone deficiency 3 (SHFLD3) is an extremely rare condition 
associated with duplications located on 17p13.3, which invariably encompasses the BHLHA9 gene. The disease inher‑
its with variable expressivity and significant incomplete penetrance as high as 50%.

Results:  We have detected 17p13.3 locus one-allele triplication in a male proband from family 1 (F1.1), and dupli‑
cation in a male proband from family 2 (F2.1) applying array comparative genomic hybridization (array CGH). The 
rearrangements mapped to the following chromosomal regions–arr[GRCh38] 17p13.3(960254–1291856)×4 in F1.1 
and arr[GRCh38] 17p13.3(1227482–1302716)×3 in F2.1. The targeted quantitative PCR revealed that the 17p13.3 locus 
was also duplicated in the second affected member from family 2 (F2.2; brother of F2.1). In the next step, we per‑
formed segregation studies using quantitative PCR and revealed that F1.1 inherited the triplication from his healthy 
father—F1.2, whereas the locus was unremarkable in the mother of F2.1 & F2.2 and the healthy son of F2.1. However, 
the duplication was present in a healthy daughter of F2.2, an asymptomatic carrier. The breakpoint analysis allowed 
to define the exact size and span of the duplicated region in Family 2, i.e., 78,948 bp chr17:1225063–1304010 (HG38). 
Interestingly, all symptomatic carriers from both families presented with variable SHFLD3 phenotype. The involvement 
of secondary modifying locus could not be excluded, however, the Sanger sequencing screening of BHLHA9 entire 
coding sequence was unremarkable for both families.

Conclusions:  We have shed light on the one-allele CNV triplication occurrence that should be considered when a 
higher probe (over duplication range) signal is noted. Second, all SHFLD3 patients were accurately described regard‑
ing infrequent limb phenotypes, which were highly variable even when familial. Of note, all symptomatic individuals 
were males. SHFLD3 still remains a mysterious ultra-rare disease and our findings do not answer crucial questions 
regarding the disease low penetrance, variable expression and heterogeneity. However, we have presented some 
clinical and molecular aspects that may be helpful in daily diagnostic routine, both dysmorphological and molecular 
assessment, of patients affected with SHFLD3.
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Introduction
Isolated split-hand/ foot malformation (SHFM), i.e., 
ectrodactyly, is a heterogeneous group of limb anomalies 
that manifest either as mild single phalanx hypoplasia or 
a complete aplasia of phalanges and metatarsals accom-
panied by additional peripheral skeleton defects, in its 
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most severe form [1]. Following the recent classifica-
tion proposed by Umair and Hayat, isolated SHFM can 
be subdivided into type 1, limited to hand or/ and foot 
(SHFM types 1–6), and type 2 involving long bones defi-
ciencies in addition to hand or/ and foot skeletal deform-
ities (SHFLD types 1–3) [2].

The first cases of split-hand/ foot malformation with 
long bone deficiency type 3 (SHFLD3; MIM: 612576) 
were described in a Brazilian family by Richeri-Costa 
et al. in 1987 as a variant expression of the Gollop-Wolf-
gang complex (MIM: 228250). Both affected siblings 
had tibial aplasia-ectrodactyly, whereas one of them also 
presented with femoral bifurcation [3]. The molecular 
disease background was revealed almost a quarter of a 
century later as a variable in size heterozygous duplica-
tions in 17p13.3 locus [4]. The critical SHFLD3 region 
encompasses, however, solely the BHLHA9 gene (Fin-
gerin) encoding a transcription factor involved in embry-
onic limb development [5]. Besides, recessive point 
pathogenic variants within the BHLHA9 are associated 
with other limb anomalies such as camptosynpolydactyly 
complex (MIM: 607539) and syndactyly, mesoaxial syn-
ostostic, with phalangeal reduction (MIM: 609432) [6, 7].

SHFLD3 occurs in 1 per 1,000,000 live births making 
it an ultra-rare genetic disease characterized by variable 
expressivity of phenotypes and incomplete penetrance 
(as high as 50%). In line with the gnomAD SVs v2.1 
database, structural variants located in the BHLHA9 
gene occur with frequency 4.6e−5. Interestingly, some 
researchers have also pointed to a sex bias resulting in a 
higher ratio of affected males and a higher incidence of 
having affected male offspring by asymptomatic carriers 
[5].

Results
Clinical report
A two probands F1.1 (sporadic) and F2.1 (familial) from 
two different families underwent dysmorphological and 
molecular analyses due to upper and lower limb abnor-
malities from the SHFM spectrum (Figs. 1a and 2a). We 
have noted severe malformations of upper and lower 
extremities in sporadic individual F1.1 involving bilateral 
ectrodactyly, bilateral tibial agenesis, and unilateral short-
ening and campomelic left femur (Fig. 1b–e). Patient F2.1 
presented bilateral upper limbs monodactyly, ulnar hypo-
plasia, severe hypoplasia of the right lower extremity and 
digital hypoplasia of the left foot (Fig. 2b, c) whereas his 
brother F2.2 showed divergent phenotype involving bilat-
eral ectrodactyly of upper extremities, unilateral ectro-
dactyly of the lower left extremity, and absence of digits 
with almost complete syndactyly of the remaining central 
toes in the lower right extremity (Fig. 2d, e). The genetic 

diagnosis was planned according to the SHFM diagnostic 
algorithm proposed by Sowińska-Seidler et al. [1].

Molecular analyses
Array comparative genomic hybridization (array CGH) 
had been implemented for F1.1 & F2.1 and has revealed 
17p13.3 locus triplication or duplication, respectively. The 
rearrangements mapped to the following chromosomal 
regions–arr[GRCh38] 17p13.3(960254–1291856)×4 in 
F.1.1 and arr[GRCh38] 17p13.3(1227482–1302716)×3 
in F2.2. The targeted quantitative PCR revealed that the 
17p13.3 locus was also duplicated in the second affected 
member from family 2 (F2.2; brother of 2.1). In the next 
step, we had performed segregation studies using quan-
titative PCR and revealed that F1.1 inherited the tripli-
cation from his healthy father—F1.2, whereas the locus 
was unremarkable in the mother of F2.1 & F2.2 and a 
healthy son of F2.1. However, the duplication was present 
in a healthy daughter of F2.2, an asymptomatic carrier. 
We have also performed a series of quantitative PCRs to 
narrow down the triplicated or duplicated regions (Addi-
tional file 1: Fig. S1 and Additional file 2: Fig. S2). Finally, 
the breakpoint analysis by Sanger sequencing allowed to 
define the exact size and span of the duplicated region in 
Family 2, i.e., 79,948 bp chr17:1225063–1304010 (HG38) 
(Fig. 3).

Besides, we Sanger sequenced the BHLHA9 entire cod-
ing sequence for either symptomatic (F1.1, F2.1, F2.2) 
or asymptomatic (F1.2 & F2.3) carriers of duplicated/ 
triplicated 17p13.3 locus and results of this analysis was 
unremarkable.

Discussion
Copy number variations (CNVs) represent a known 
cause of congenital limb malformations [8, 9]. One 
example constitutes SHFLD3 linked to a critical dupli-
cated region encompassing one gene–BHLHA9 [5]. The 
BHLHA9, termed Fingerin, is a crucial regulator in limb 
and finger development that encodes a basic helix-loop-
helix (bHLH) A9 transcription factor [10, 11]. It is well 
known that the gene is dosage-sensitive. Next to gain-
of-function mutations resulting in SHFLD3, loss-of-
function mutations in BHLHA9 may cause phenotypes 
such as camptosynpolydactyly complex (MIM: 607539) 
and syndactyly, mesoaxial synostostic, with a phalangeal 
reduction (MIM: 609432) [12].

In the current paper, we have reported two families 
in which individuals harbor 17p13.3 CNV and, if symp-
tomatic, were diagnosed with SHFLD3. Array CGH 
1 × 1  M implemented in F1.1& F2.1 has indicated that 
the patients harbour the following CNVs–arr[GRCh38] 
17p13.3(960254–1291856)×4 and arr[GRCh38] 
17p13.3(1227482–1302716)×3, respectively. The 
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chr17:960254–1291856 (HG38)  triplication was also 
present in an unaffected individual F.1.2 (father of F1.1) 
(Fig. 1a), whereas chr17:1227482–1302716 (HG38) dupli-
cation was also carried by  an affected F2.2 (brother of 
F2.1) and an asymptomatic female carrier F2.3 (Fig. 2a). 
We have excluded the presence of other modifying CNVs 
in F1.1 and F2.1 along with point mutations within the 

entire BHLHA9 coding sequence in all symptomatic and 
asymptomatic 17p13.3 duplication carriers. Of note, we 
were unable to exclude the presence of other modifying 
loci within the genome, however, other researchers per-
forming such studies were unable to find them.

Undeniably, BHLHA9 triplication was the most inter-
esting finding reported here. So far, only one research 

Fig. 1  a Pedigree of family; F1.1–affected male individual; F1.2–unaffected male carrier of 17p13.3 triplication encompassing BHLHA9 gene. Results 
of clinical assessment of individual F1.1. was presented in b–e. b, c Upper extremities X-ray imaging showed hypoplasia of fingers. d, e Lower 
extremities X-ray imaging revealed bilateral tibial aplasia and hypoplasia of feet bones. An analysis was made at age of 6 months and 2 years, 
respectively
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has visualized its presence on one chromosome 17, 
which was Japanese founder triplication detected among 
five patients with SHFLD3 [13]. To our best knowledge, 
no other CNVs triplications of one allele were linked to 
inborn skeletal disorders, or generally, to most Mende-
lian diseases. However, SCN1A triplication was described 
in Alzheimer’s disease, or 1q21.1 triplication was linked 
to facial dysmorphism, whereas a few aberrations in 
the form of partial chromosomal triplications were also 

described applying classical cytogenetic methods [14, 
15]. Thus, it may be suggested that one-allele triplications 
exist with higher frequency but are overlooked apply-
ing array CGH methods due to evaluating higher probes 
signal as regular duplication or using slide formats with 
improper median probes spacing.

In our cohort, we noted that all affected individuals 
harboring 17p13.3 copy gain were males. These findings 
were consistent with the hypothesis claiming the sex 

Fig. 2  a Pedigree of Family 2 has two affected male individuals harboring 17p13.3 duplication encompassing the BHLHA9 gene—F2.1 & F2.2, 
and one unaffected female carrier—F2.3. F2.1 b, c presented with bilateral monodactyly of upper extremities and partial aplasia of the right lower 
extremity such as femur, tibia, foot aplasia. Note steatomastia. His left foot was hypoplastic. F2.2 d, e presented bilateral ectrodactyly of upper 
extremities, left feet ectrodactyly, and hypoplasia of the right foot
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bias occurrence [5, 13]. Similar to other SHFLD3 cases, 
we described highly heterogenous and unique limb phe-
notypes for a particular patient. Importantly, we did 
not reveal any changes between phenotype severity and 
number of 17p13.3 gained copies. For the first time, we 
have illustrated upper extremities bilateral monodac-
tyly (F2.1), which constituted a severe form of SHFLD3. 

Reviewing the medical literature, we have noted that 
bilateral oligodactyly represents a rare clinical feature 
of SHFM spectrum – sporadically, it was reported in 
SHFM3 but never in SHFLD3 [16]. Patient F2.1 also had 
partial hypoplasia of the right lower limb in the form of 
tibial, foot aplasia, and pes varus, which was operated. 
On the other hand, his brother–F2.2, had a more “classic” 

Fig. 3  Results of the breakpoint sequencing analysis of the 17p13.3 duplication in members of family 2. We resized the analyzed region by applying 
a series of quantitative real-time PCR, followed by targeted PCR and Sanger sequencing. The duplication was 78,948 bp in size, resized genomic 
coordinates–(HG38) 17:1225063–1304010. The same 78,948 bp duplicated region was harbored by affected male individuals F2.1, F2.2, and 
unaffected female carrier F2.3
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SHFLD3 phenotype as he presented bilateral ectrodac-
tyly of upper extremities, left foot ectrodactyly, and hypo-
plasia of the right foot. We have listed all clinical features 
of symptomatic F1.1, F2.1 and F2.2 in Table 1.

The lack of penetrance of reported here 17p13.3 trip-
lication/ duplication is intriguing. However, lack of 
17p13.3 duplication penetrance is a well known phenom-
enon that was described in all reported so far families 
[5, 17–19]. One could suspect the presence of additional 
loci, which modify the SHFLD3 phenotype or block its 
expression in asymptomatic carriers. Unfortunately, none 
SHFLD3 locus modifier was discovered so far. Consid-
ering the current state of the  art, we could suspect the 
presence of epigenetic changes, i.e., methylation profile 
changes or histone modifications that have been visu-
alized in some Mendelian disorders recently [20–23]. 
Unfortunately, we were unable to broaden our research 
and perform studies to reveal modifying factors/addi-
tional genomic or epigenetic changes, whose presence 
might have explained the asymptomatic 17p13.3 duplica-
tion carriers’ occurrence (F1.& F2.3) or phenotypic vari-
ability observed in affected male individuals (F1.2, F2.1, 
F2.2). Another limitation of this study may be the lack of 
BHLHA9 expression level analysis, as it is not expressed 
in available for testing tissues (based on GeneCards data-
base and medical literature review).

Conclusions
We have shed light on the one-allele CNV triplication 
occurrence that should be considered when a higher 
probe (over duplication range) signal is noted. Second, 
all SHFLD3 patients were accurately described regard-
ing infrequent limb phenotypes, which were highly 
variable even when familial. Importantly, we have noted 
the first bilateral monodactyly occurring in SHFLD3. Of 
note, all symptomatic individuals were males. SHFLD3 
still remains a mysterious ultra-rare disease and our 
findings do not answer crucial questions regarding the 
disease low penetrance, variable expression and het-
erogeneity. However, we have presented some clinical 
and molecular aspects that may be helpful in daily diag-
nostic routine, both dysmorphological and molecular 
assessment, of patients affected with SHFLD3.

Methods
Peripheral blood was collected from affected indi-
viduals and their healthy relatives, and next, gDNA 
was isolated via either the salting-out method or the 
MagCore® HF16 Automated Nucleic Acid Extractor 
(RBC Bioscience Corp.).

Array CGH
We performed array CGH using Agilent Sure Print G3 
Human CGH microarray 1 × 1 M kit. The hybridization 
signals were detected with SureScan Dx Microarray 
Scanner and visualized using Agilent CytoGenomics 
software (all from Agilent Technologies) as described 
previously [24].

Quantitative PCR (qPCR)
We applied qPCR to determine the 17p13.3 locus dos-
age and narrow down its genomic coordinates using 
SYBR dye-based master mix (SYBR Green PCR Mas-
ter Mix; ThermoFisher Scientific). Reactions ran on 
the Viia7 cycler as described previously [25]. In short, 
we applied the comparative 2−ΔΔCT method using con-
trol DNA as a calibrator. The results were normalised 
to albumin gene (ALB), whereas factor VIII (F8) was 
targeted in order to assure reliability of the assay (sex 
determination). Specific primers were designed using 
the Primer3 tool v. 0.4.0. For primer sequences, see 
Additional file 3: Table S1.

PCR and Sanger sequencing
PCR followed by Sanger sequencing were applied to 
screen for pathogenic mutations in the BHLHA9 gene 
in patients F1.1, F1.2, F2.1, F2.2 and F2.3 to establish 
the exact breakpoints of the duplication in members 
of Family 2. The PCR reactions and PCR products 

Table 1  Summary of clinical data observed among symptomatic 
carriers of 17p13.3 triplication (F1.1) or duplication (F2.1& F2.2) 
resulting in split hand/foot malformations with long bones 
deficiencies type 3 (SHFLD3)

The list of SHFLD3 features was prepared based on Online Mendelian 
Inheritance in Man database

+ feature present; − feature absent; nd no data

F1.1 F2.1 F2.2

Sex M M M

Lower extremities

Tibial aplasia/ hypoplasia + + −
Distal femoral bifurcation − − −
Hands

Ectrodactyly + − + (bilateral)

Monodactyly − + (bilateral) −
Oligodactyly − − −
Brachydactyly − − −
Syndactyly, third and fourth digits − − −
Camptodactyly, third and fourth 
digits

− − −

Feet

Clubfoot + − -

Pes varus + + (operated) nd

Toe hypoplasia or aplasia + + +
Absent halluces − + −
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purification were carried out following standard pro-
tocols, whereas specific primers were designed via the 
Primer3 tool v. 0.4.0. Next, Sanger sequencing was 
performed on an automated sequencer Applied Bio-
systems Prism 3700 DNA Analyzer using dye-termi-
nator chemistry kit v.3, ABI 3130XL [26]. The analysis 
was performed applying the BioEdit tool and anno-
tated against the GRCh38 human reference genome 
to map the deletion breakpoints or reference sequence 
NM_001164405.2 to analyze the BHLHA9 coding 
region. The reaction conditions are available upon 
request. For primer sequences, see Additional file  4: 
Table S2.

Abbreviations
Array CGH: Array comparative genomic hybridization; CNV: Copy number vari‑
ations; SHFLD3: Split-hand/foot malformation with long bone deficiency type 
3; SHFM: Split-hand/foot malformation.
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tive real-time PCR on DNA from all individuals from Family 1 (F1.1–affected 
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the 17p13.3 duplication and triplication regions for F1.1 (b). Error bars 
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method. Error bars represent standard deviation. Ratios can be interpreted 
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