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Chiral nanoparticles  
in singular light fields
Ilia A. Vovk1, Anvar S. Baimuratov1, Weiren Zhu2,3, Alexey G. Shalkovskiy4,5, 
Alexander V. Baranov1, Anatoly V. Fedorov1 & Ivan D. Rukhlenko1,3

The studying of how twisted light interacts with chiral matter on the nanoscale is paramount for 
tackling the challenging task of optomechanical separation of nanoparticle enantiomers, whose 
solution can revolutionize the entire pharmaceutical industry. Here we calculate optical forces and 
torques exerted on chiral nanoparticles by Laguerre–Gaussian beams carrying a topological charge. We 
show that regardless of the beam polarization, the nanoparticles are exposed to both chiral and achiral 
forces with nonzero reactive and dissipative components. Longitudinally polarized beams are found to 
produce chirality densities that can be 109 times higher than those of transversely polarized beams and 
that are comparable to the chirality densities of beams polarized circularly. Our results and analytical 
expressions prove useful in designing new strategies for mechanical separation of chiral nanoobjects 
with the help of highly focussed beams.

The current progress of pharmaceutical research and technology is slowed down by the absence of a unified 
method of separation of enentiometic forms of chiral drug molecules, which often exhibit profoundly differ-
ent interactions with biological tissues1. The separation of molecular enantiomers is an extremely difficult task, 
because they are indistinguishable through interactions with achiral objects and have mostly identical physical 
properties, such as densities, solubilities, boiling and melting points, etc.2. Chiral chromatography, derivatiza-
tion, and other well developed techniques of racemate resolution are useful on analytical scale3,4, but become 
highly inefficient and quite expensive where kilograms of different chiral mixtures need to be quickly and reliably 
purified5.

A promising approach to tackling this problem is in using enantioselective mechanical forces induced by chi-
ral light6–10. Unfortunately, the interaction of circular polarized light with chiral molecules themselves is naturally 
weak due to the smallness of molecules compared to the optical wavelength and because of the relatively small 
number of atoms constituting them11,12. A much stronger chiroptical response is featured by chiral plasmonic 
complexes13,14, chiral semiconductor nanocrystals15–23, quantum-dot molecules24, helix-type quantum-dot super-
crystals25, and ‘Swiss-roll’ structures26. While all of them can in principle be used to advance existing and create 
new techniques for sensing, separation, and delivery of enantiomeric drug molecules, semiconductor nanocrys-
tals appear to be especially promising due to their resistance to photobleaching, tuneable energy spectrum, and 
highly selective interaction with both enantiomeric molecules and living tissues27,28.

Our recent study of interaction of chiral nanoparticles with circularly polarized light has revealed an optimal 
field pattern which eliminates the achiral forces acting on the nanoparticles and maximizes the chiral ones29. This 
paper continues our research on the interaction of nanostructured chiral matter with chiral light fields. We use 
the dipolar approximation to analytically calculate optical forces that are exerted on small chiral nanoparticles 
by the electromagnetic fields of Laguerre-Gaussian beams of different polarizations. Since the chiral part of the 
force is induced by chirality flow and the gradient of chirality density, these quantities are also treated analytically 
and thoroughly analysed. We hope that this study will be useful in the development of new enantioseparation 
techniques and stimulate new experiments.

A small chiral nanoparticle can be modelled as a point dipole of electric polarizability α α α= ′ + ′′i  and 
mixed electric-magnetic polarizability χ χ χ= ′ + ′′i . Suppose that such a dipole is exposed to the field of a laser 
beam of frequency ω propagating in the positive direction of the z axis. To study the chiral effects associated with 
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the inhomogeneity of the beam in the transverse plane, we go beyond the scalar approximation and define the 
electromagnetic field of the beam through its vector potential = ω−t eA r A( , ) Re( )i t

0 , where

= u eA r e r( ) ( ) (1)ikz
0

is the time-independent phasor, e is the unit polarization vector, k =  ω/c is the wave number, and u(r) the complex 
amplitude of the beam. In what follows, we restrict ourselves to considering Laguerre-Gaussian beams, whose 
amplitude is given by

ρ= φ ρ ϕu U z er( ) ( , ) , (2)lm
i z( , , )lm

where

ρ ρ ρ= ρ−U z a w w w L w e( , ) ( / )( / ) (2 / ) , (3)lm lm
l

m
l w

0
2 2 ( / )2

φ ρ ϕ ρ ϕ ζ= + − + +z k R l l m( , , ) /(2 ) ( 2 1) , (4)lm
2

alm is the normalization constant, λ π=w z /0 0  is the waist radius, = +w w z z1 ( / )0 0
2  is the beam width, 

L x( )m
l  is the associated Laguerre polynomial, = +R z z z/0

2  is the wavefront curvature radius, ζ = − z ztan ( / )1
0  is 

the phase delay, l =  0, ± 1, ± 2, …  is the topological charge of the beam, and m =  0, 1, 2, …  is the number of nodes 
in the radial direction.

The electric and magnetic fields of the beam, defined similar to the vector potential as = ω−t eE r E( , ) Re( )i t
0  

and = ω−t eH r H( , ) Re( )i t
0 , are given in the Lorenz gauge by the phasors

= ∇ ∇ ⋅ +i k ikE r A A( ) ( / ) ( ) , (5)0 0 0

= ∇ ×−ZH r A( ) , (6)0 0
1

0

where µ ε=Z /0 0 0  is the impedance of free space. By substituting Eq. (1) into Eqs (5) and (6) and using the 
paraxial approximation ∂ ∂ u z k u/ , we arrive at the following general expressions for the electric and mag-
netic fields:

= ⋅ − − ⋅ +ik ikE r A e e Q Q A e A( ) ( )( ) ( ) , (7)z z z0 0 0 0

= ×−ZH r Q A( ) , (8)0 0
1

0
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and we have taken into account that ϕ∂ ∂ =u ilu/ .
The fields are normalized to the total power carried by the beam, which is given by the z component of its 

Poynting vector Π = × ⁎E H(1/2) Re[ ]0 0  integrated over the entire transverse plane,

∫π ρ ρΠ= ⋅ .
∞

P e2 ( ) d (10)z
0

The time-averaged forces and torques acting on a chiral nanoparticle are given by30,31

α α
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χ χ Φ Π= ′ ∇ + ′′ − ∇ ×χ c k KF ( / ) (2 ), (12)

α χΓ Φ Π= ′′ + ′′2 , (13)E( )

where  = ⋅ ⁎E E E( )0
2

0 0 ,  = ⋅ ⁎K k c E H/(2 )Im( )0 0  i s  the  chira l ity  density  or  s imply  ‘chira l ity ’, 
ω ε µΦ Φ Φ= +( /2)( )E H

0
( )

0
( )  is the chirality flow, and Φ = × ⁎i E E( /2)[ ]E( )

0 0  and Φ = × ⁎i H H( /2)[ ]H( )
0 0  are the 

electric and magnetic ellipticities. The signs of χ′ and χ′′ distinguish between the two nanoparticle enantiomers 
and determine the directions of the chiral force and torque. In what follows, we shall focus on χF  and Γ  while 
assuming that the achiral force is cancelled or minimized by the off-resonant excitation of nanoparticles31.

The chiral optical force produced by a Laguerre-Gaussian beam can be used to separate chiral nanoparticles 
exhibiting sufficiently strong circular dichroism (CD). The CD signal is proportional to the imaginary part of the 
electric-magnetic polarizability, χ∝ ′′CD , and determines the degree of enantioselectivity in the nanoparticle 
interaction with chiral light29. Of course, in addition to pure electric and electric-magnetic polarizabilities, nano-
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particles also possess a much smaller magnetic polarizability, β β β= ′ + ′′i , which is ignored in  
Eqs (11–13). Since the three polarizabilities of a nanoparticle of size a are related as the three consecutive powers 
of ka — α ε χ β µ ~c ka ka/ : : / 1 : : ( )0 0

2 — the assumption of zero magnetic polarizability is well justified as long 
as ka ≪  1. But even if the nanoparticle is not small compared to the optical wavelength, its pure magnetic response 
contributes to the achiral component of the optical force and does not affect the chiral one31.

Results and Discussion
We begin by analysing how a chiral dipole interacts with a light beam produced by a transversely polarised vector 
potential. By setting e =  ex in Eqs (7) and (8), we find that the electric and magnetic fields of the beam are given by

=
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These fields are almost completely transverse, with small longitudinal components originating from the depend-
ence of u on the transverse coordinates.

Using the obtained fields in the above definitions yields
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where =I k u Z/(2 )2 2
0  is the local intensity of the beam. Equations (10) and (19) give the normalization constant 

of the form
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where = + + −x x x x n( ) ( 1) ( 1)n  for n =  1, 2, 3, …  and (x)0 =  1 is the Pochhammer symbol32.
One can see that a chiral dipole illuminated by a transversely polarized Laguerre-Gaussian beam carrying a 

nonzero orbital angular momentum ω=L lP c/( )z  exhibits both achiral and chiral forces, each of which has a 
reactive and dissipative components. Since the characteristic ρ- and z-scales of chirality variations are w and z0, 
and z0 ≫  w, the reactive chiral force has a dominant ρ component and the dissipative chiral force has a dominant 
z component, which are about z0/w times larger than the nondominant ones:

χ
ρ

χ〈 〉 ≈
′ ∂
∂

+ ′′ .χ ρ
c
k

K c KF e e2
(21)z

Figure 1 shows chirality density, reactive part of the chiral force, and dissipative part of the chiral force pro-
duced by the transversely polarized Laguerre-Gaussian beam with l =  m =  1. The sign of chirality near the center 
of this beam and the beams with l >  0 coincides with the sign of chirality of right circularly polarized light. For 
l =  ± 1 the chirality on the beam axis scales like ∝  m +  1. Panels (a) and (b) of the figure illustrate the fact that the 
dissipative part of chiral force, given by the second term in Eq. (21), is fully determined by the chirality density. 
For l =  1 this density peaks at the beam axis, where the optical intensity is zero. For larger l the central peak disap-
pears, because the first derivative of intensity with respect to the radius vanishes at ρ =  0, and the transverse dis-
tribution of chirality density has a ring structure. In this case, the maximal chirality resides in the first (closest to 
the axis) ring, near the point where function I(ρ) has an inflection. On the other hand, the reactive part of the 
chiral force scales in proportion to the first derivative of chirality density. Panel (c) shows that, depending on the 
sign of χ′, chiral nanoparticles are either pulled into the area of negative chirality near the beam axis or pulled out 
of it.

Another beam of practical interest is the one with a circularly polarized vector potential. Its electric and mag-
netic fields are
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Figure 1. (a) Normalized chirality density, (b) reactive component of chiral force, and (c) dissipative 
component of chiral force in planes z =  0 (left panels) and y =  0 (right panels) for transversely polarized 
Laguerre-Gaussian beam with l =  m =  1, λ =  500 nm, and z0 =  100 m. The chirality and the magnitudes of forces 
on the density plots are in the units of λP c z/( )0

2 , χ′P w z/( )0 0
2 , and χ′′P w z/( )0

2
0 .



www.nature.com/scientificreports/

5Scientific RepoRts | 7:45925 | DOI: 10.1038/srep45925

where = ±± ( )ie e e / 2x y  and the plus or minus sign corresponds to, respectively, the left circularly polarized 
(LCP) or right circularly polarized (RCP) vector potential. Similar to the previous case, the field polarization 
nearly coincides with the polarization of A0.

The fields of circularly polarized beam (CPB) yield the following chirality density, chirality flow, and Poynting 
vector:

ε
=±K k E

2
, (24)
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and the normalization constant is given by Eq. (20).
Much like the transversely polarized beam (TPB) of linear polarization, the CPB carries angular momentum 

Lz =  lP/(cω) and exerts on a chiral dipole two kinds of reactive and dissipative forces. In contrast to the linearly 
polarized beam, the chirality flow of the CPB exceeds the curl of the Poynting vector throughout the entire space 
except the immediate vicinity of the phase singularity. As a consequence, the dissipative part of the chiral force is, 
again, proportional to chirality, χ≈ ′′χ c KF e2 z

d . Figure 2 shows chirality density and reactive part of chiral force 

Figure 2. The same as in Fig. 1(a) and (b) but for left circularly polarized Laguerre-Gaussian beam with 
l =  m =  1; the chirality and the magnitude of the force are in the units of λkP c z/( )0  and χ′kP w z/( )0 0 .
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produced by the CPB with l =  m =  1. The distribution of chirality density follows the intensity profile of the beam 
and is nonzero even in the absence of topological charge. The characteristic radius of this distribution is larger 
than in the case of TPB, which is evidenced by the comparison of Fig. 2(a) with Fig. 1(a) and Eq. (24) with 
Eq. (16). The radial component of the reactive chiral force is proportional to the derivative ρ∂ ∂I/  of beam inten-
sity and, therefore, has a complex ring structure even for small m. At the same time, the magnitude of this force 
decays with the distance from the beam axis more gradually than in the case of TPB.

Finally, we consider a Laguerre-Gaussian beam with a longitudinally polarized vector potential (e =  ez), which 
does not have a plane-wave analogue. The electric and magnetic fields of this beam,

ρ ρ
= −
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both vanish for purely transverse plane waves, with u =  const and l =  0. With these fields, the above definitions 
give
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Some algebra leads to the normalization constant
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In contrast to the previous two cases, the longitudinally polarized beam (LPB) does not carry an angular 
momentum in the z direction, because Π× =r( ) 0z

. But similar to the CPB, for ρ λ  we have Φ Π∇ ×  
and χ≈ ′′χ c KF e2 z

d . The chirality density produced by a LPB is similar in form to Eq. (16). However, due to 
different intensities of the two beams, their actual chiralities can differ by many orders of magnitude. This can be 
seen from Eqs (16), (20), (24), (30), and (33), which give the following ratios of chirality density of LPB to the 
chiralities of TPB and CPB far away from the phase singularity:
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+ +

K
K

z k
l m

2
2 1

,
(34)

LPB

TPB

0

ρ ρ
=±

+ +
∂
∂

K
K

z
l m

l
k

u2
2 1

ln
,

(35)
LPB

CPB

0

where |u| is the profile of either LPB or CPB, and we have taken into account that for CPB ≈ k uE0
2 2 2. It is 

easy to see that = ϑz k 2/0
2, where ϑ is the angular radius of cone which is asymptotically approached by the 1/e2 

irradiance contours of the beam. Hence, one can enhance the chirality of LPB as compared to the chirality of TPB 
by simply reducing the divergence of the beam. In the above examples, with z0 =  100 m and λ =  500 nm, the 
enhancement factor exceeds 109. By further estimating near z =  0 that ρ ~ w0 and ρ∂ ∂ ~ w/ 1/ 0, we find from 
Eq. (35) that ± + +~K K l l m/ /( 2 1)LPB CPB . This result implies that the LPBs with m =  0 can produce chirali-
ties that are comparable in strength to the chirality of circularly polarized Gaussian beam of zero topological 
charge.

The z component of the Poynting vector of the LPB with l =  m =  1 is shown in Fig. 3. An interesting feature to 
note here is that the Poynting vector reaches its maximal value on the beam axis. This feature originates from the 
derivative in Eq. (32) and is specific to LPBs with l =  ± 1. Indeed, for ρ →  0 one can show that

ρ
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By considering here that = + = +L m m(0) ( 1) 1m
1

1 , for l =  ± 1 we get Π = I w w(0) 2 ( / )z 0 0
4, where π=I P w/( )0 0

2 .
As a concluding remark, we would like to note the need of a tradeoff between the magnitude of the enanti-

oselective optical forces exerted on chiral nanoparticles by TPB and LPB and the degree of spatial separation 
provided by them. This conclusion simply follows from the fact that these forces are determined by the derivatives 
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of the beam intensity and, therefore, are the stronger the smaller the typical length scale of intensity variations. 
Hence, an increase of the beam waste w0 or a reduction of the number of radial nodes m for a given beam power 
inevitably reduces the chiral optical forces.

In conclusion, we have calculated optical forces and torques exerted on chiral nanoparticles by 
Laguerre-Gaussian beams of transverse, circular, and longitudinal polarizations. The chirality density of the lon-
gitudinally polarized beam was found to be comparable to the chirality density of the circularly polarized beam. 
For a weakly divergent beam, it can exceed the chirality of the transversely polarized beam by a factor of 109. It 
was also shown that regardless of their polarization, Laguerre-Gaussian beams with topological charges exert 
on the nanoparticles chiral and achiral forces with both reactive and dissipative components. We believe that 
our findings and derived analytical expressions will help to solve the problem of optomechanical separation of 
nanoparticle enantiomers.
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