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ABSTRACT

Sequence-specific interactions of RNA-binding
proteins (RBPs) with their target transcripts are es-
sential for post-transcriptional gene expression
regulation in mammals. However, accurate predic-
tion of RBP motif sites has been difficult because
many RBPs recognize short and degenerate se-
quences. Here we describe a hidden Markov
model (HMM)-based algorithm mCarts to predict
clustered functional RBP-binding sites by effectively
integrating the number and spacing of individual
motif sites, their accessibility in local RNA second-
ary structures and cross-species conservation. This
algorithm learns and quantifies rules of these
features, taking advantage of a large number of
in vivo RBP-binding sites obtained from cross-
linking and immunoprecipitation data. We applied
this algorithm to study two representative RBP
families, Nova and Mbnl, which regulate tissue-
specific alternative splicing through interacting
with clustered YCAY and YGCY elements, respect-
ively, and predicted their binding sites in the mouse
transcriptome. Despite the low information content
in individual motif elements, our algorithm made
specific predictions for successful experimental val-
idation. Analysis of predicted sites also revealed
cases of extensive and distal RBP-binding sites im-
portant for splicing regulation. This algorithm can be
readily applied to other RBPs to infer their RNA-
regulatory networks. The software is freely avail-
able at http://zhanglab.c2b2.columbia.edu/index.
php/MCarts.

INTRODUCTION

Mammals express hundreds of RNA-binding proteins
(RBPs) interacting with specific target transcripts even in
a single tissue like brain (1). Such interactions control
multiple steps of RNA metabolism, including alternative
RNA splicing and polyadenylation, mRNA export,
editing, translation and turnover, contributing to specifi-
cation of different cell types and developmental stages
(2,3). Disruption of protein–RNA interactions resulting
in misregulation of RNA is implicated in genetic
diseases such as neurologic disorders and cancer (4,5).
Despite their central roles, inferring RNA-regulatory

networks, especially on the global scale, has been
impeded by both technical difficulties and the nature of
protein–RNA interactions. Most RBPs recognize short
(�3–7 nucleotides or nt) and degenerate sequence motifs
with limited information content. For example, the high-
affinity binding sites of the prototypical neuron-specific
splicing factor Nova are characterized by the tetramer
YCAY (Y=C/U), as revealed by in vitro RNA selection
(6,7), X-ray crystallography (8) and in vitro splicing assays
(9,10). Other examples include recognition of YGCY se-
quences by Mbnl (11,12), UCUY by Ptbp1 (13) and Ptbp2
(14) and U-tracts by Hu (15,16) [reviewed by (17)].
Different strategies seem to have been used by RBPs to
achieve sufficient targeting specificity (18), including co-
expression of RBPs and their substrate transcripts in
specific temporal or spatial windows to limit the search
space, and cooperative binding of different RBPs to
proximal sites (i.e. RNA motif modules) to stabilize each
other. Another important mechanism is the additive or
synergistic binding of multiple RNA-binding domains
(RBDs) of an RBP (19). The latter appears to be a
common scenario because many RBPs have multiple
RBDs [e.g. 47% of annotated mouse RBPs (20)] and/or
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can multimerize, and thus several copies of the same
sequence motif may be required for high-affinity and
functional protein–RNA interactions. Following this
notion, detailed biochemical and bioinformatic ana-
lysis demonstrated that three or more YCAYs clustered
together are in general necessary and sufficient for Nova
binding to RNA through the three KH domains, resulting
in tissue-specific inclusion or exclusion of alternative
exons (9,10,21,22).
Due to these complexities, few endogenous targets have

been confidently identified for most RBPs until recently
(17,23,24), which in turn has limited the capability of
modeling RBP-binding specificity for effective and global
prediction. Currently, RBP motifs are mainly represented
by either sequence consensuses (25) or position weight
matrices (PWMs) (26), which were originally used to
describe transcription factor–binding motifs (27).
However, prediction of individual motif sites using these
models has limited discriminative power when applied to
RBPs to determine target transcript-binding sites. This is
further complicated by the fact that these RBP motifs were
frequently derived from a small number of examples
validated in separated studies, which may reveal biased rep-
resentations of RBP-binding specificity. Therefore, with
only a few exceptions (28), these motif models do not
have enough specificity to predict novel RBP targets.
To map sites of protein–RNA interactions in an

unbiased manner, we previously developed a biochemical
assay named cross-linking and immunoprecipitation
(CLIP) to isolate RNA fragments that are directly
bound by an RBP (29,30). Combined with high-through-
put sequencing (HITS-CLIP), this approach is able to
map in vivo protein–RNA interactions at a genome-wide
scale (30,31). Since then, several variations of HITS-CLIP
were also developed by different groups (30). Importantly,
a large number of high-quality RBP-binding sites
identified in these experiments provide a training set so
that richer probabilistic models can be applied to depict
more sophisticated RBP-binding codes not apparent from
a limited set of examples. Here we describe a hidden
Markov model (HMM)-based algorithm and software
tool, named mCarts (motif-based predictor of clustered
accessible RBP target sites) that takes advantage of
massive HITS-CLIP datasets to learn models of RBP-
binding sites optimized for global prediction.

MATERIALS AND METHODS

The model of mCarts

mCarts is motivated by the tandem arrangement of
multiple RBDs in an RBP or the tendency of an RBP to
multimerize, so that it can naturally characterize clusters
of core motif sites by explicitly considering the variable
spacing of individual sites, their accessibility and conser-
vation across different species. In a previous effort, we
developed an algorithm to predict clusters of YCAY
elements (referred to herein as YCAY clusters) recognized
by Nova, using several heuristic rules derived from
analysis of a small number of Nova-regulated alternative
exons (22). These rules considered clustering of YCAY

elements and their conservation among eight vertebrate
species. However, such a method is not optimized from
a global perspective and cannot be readily applied to other
RBPs. To overcome these limitations, we designed a
general framework based on a HMM that can take
advantage of CLIP data to optimize the model for
specific RBPs and to predict clustered RBP-binding sites
(Figure 1). This approach aims to improve the signal-to-
noise ratio by integrating multiple types of information to
score each individual motif site and also capture the clus-
tering of multiple sites.

Specifically, the proposed method takes a set of se-
quences with robust CLIP tag clusters and background
sequences (regions with no CLIP tags) as positive and
negative training data, respectively, and compares motif
sites in the two sets using features relevant to their bio-
chemical or functional significance (Figure 1A and B, blue
and gray in positive and negative datasets, respectively).
The spacing (d) between neighboring motif sites is
modeled explicitly as a feature given their importance
for RBP binding. Motif conservation (c) is quantified
using all mammalian or vertebrate species using branch
length scores (BLS) (32), which were previously
demonstrated to be effective in predicting binding sites
of brain- and muscle-specific splicing factors of the
RBFOX family (28). Due to the dramatic difference in
basal conservation level, the distributions of conservation
in 50 and 30 untranslated regions (UTRs), coding se-
quences (CDS) and introns are estimated separately.
Moreover, we also model accessibility of motif sites (a),
as represented by the probability of each site located in
single-stranded regions, because in vitro selection (6,7), X-
ray crystallographic data (8), CLIP data (24) and compu-
tational analysis (33,34) consistently suggested that RNA
secondary structures can modulate the accessibility and
function of RBP motif sites.

We designed a HMM consisting of six states to represent
motif sites in an RBP-bound motif site cluster or back-
ground sequences (Figure 1C and Table 1). The first
motif site in a RBP-bound motif site cluster is represented
by S+or I+, depending on whether it is the first site of an
input sequence; the following sites in a RBP-bound cluster
are represented by the state ‘+’. States to represent motif
sites in background sequences (S-, I-, -) are defined simi-
larly. Each individual motif site is an observation of one of
the six states, characterized by x ¼ ðd,a,cÞ in the emission
probability, while transition between states captures clus-
tering of motif sites (Figure 1C). All possible transitions
between states (directed edges in Figure 1C) are determined
by the definition of each state (see the example in Figure
1D). All model parameters are estimated during training.
During prediction, the state of each motif site is inferred
by the Viterbi algorithm and clusters are defined and
scored by the log-likelihood function log[P(xjcluster)/
P(xjbackground)] (Figure 1D). Additional details of the
algorithm are described in the Supplementary Notes.

Software implementation

mCarts is currently implemented in Perl and C++, and is
user friendly and flexible. The program takes a library of
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Figure 1. Overview of mCarts to predict clustered RBP motif sites using sequence, accessibility and conservation information. Prediction of Nova-
bound YCAY clusters is used for illustration. (A) The proposed method uses motif sites in the CLIP tag clusters and sequences without CLIP tags as
positive and negative training datasets, respectively. Motif sites are searched in these regions, and their distance to the preceding sites, accessibility
and conservation are evaluated. (B) The distribution of each feature for sites in the positive (blue curves) or negative (gray curves) training dataset is
estimated using a nonparametric representation. The distance between YCAYs in an RBP bound cluster (blue curve in the left panel) is censored at
30 nt, to impose an implicit limit of spacing allowed in a YCAY cluster. Conservation is modeled using BLS separately for different genomic regions.
(C) The graphic representation of the HMM. Three states represent motif sites in an RBP-bound motif site cluster (blue), and the other three states
represent motif sites in background sequences (gray). Detailed definition of each state, and their emission probability distribution, is summarized in
(B) and Table 1. (D) The HMM model is used to predict RBP-bound motif site clusters in the whole transcriptome. The predicted clusters near
Nova1 exon4, a validated Nova target alternative exon, are shown as an example. In the zoom-in view, tracks shown are coordinates of YCAY
elements with gray scale representing their conservation (BLS), the inferred HMM states, and predicted YCAY clusters and their scores, and Nova
CLIP tags.
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data files, which include multiple alignments of extended
genic sequences, precalculated mRNA accessibility scores
and gene structure annotations. In addition, the user
provides the consensus motif sequence and the genomic
regions to derive positive and negative training sites. The
software, data library files (for mm9 and hg18) and docu-
mentation are freely available at http://zhanglab.c2b2.
columbia.edu/index.php/MCarts.

Compilation of CLIP data, exons, introns and alternative
splicing events

HITS-CLIP data for Nova (24) and Mbnl2 (35) were
described previously (SRA accessions: SRA019982 and
SRA053472, respectively). Nova HITS-CLIP data are
composed of >4.4 million unique tags, and the Mbnl2
CLIP data are composed of 703 431 unique tags, following
filtering, genomic mapping and removal of polymerase
chain reaction (PCR) duplicates as described in the
original studies.
We searched motif sites of Nova and Mbnl in all genic

sequences as defined by RefSeq and UCSC-known gene
transcripts, with 10 000 nt extension on each side. These
regions consisted of �1.45G nt sequences in total,
including 24 992 723 Nova high-affinity tetramer YCAYs
and 15 205 158 Mbnl high-affinity tetramer YGCYs [with
CGCC excluded (11)]. Annotations of exons, introns and
alternative splicing events were generated by alignment of
RefSeq, mRNA and EST sequences to the genome, as
previously described (24). Repetitive regions were
defined based on RepeatMasker (36), which was down-
loaded from the UCSC genome browser (37).

Model training and prediction
We did stringent filtering to get both positive and negative
training data for the HMM. For Nova, the positive
training dataset consisted of 6231 nonrepetitive genic
CLIP tag clusters with peak height (PH)� 15 and
located in exons or 1 kb flanking intronic sequences on
each side (exon+ext1k sequences). This threshold is
roughly the median PH of CLIP tag clusters near Nova-
regulated alternative exons. The negative training dataset
consisted of 110 998 exon+ext1k sequences, in which no
CLIP tags were present. The positive and negative sets
included 34 058 and 2 124 463 YCAYs, respectively. For
Mbnl, we similarly defined a positive training dataset con-
sisted of 5536 nonrepetitive genic CLIP tag clusters with
PH� 7 in exon+ext1k regions, and a negative training

dataset consisted of 171 357 exon+ext1k sequences
without any CLIP tags. These datasets included 13 090
and 3 941 944 YGCYs (with CGCC excluded), respect-
ively. The trained models were then used to predict clus-
tered motif sites of Nova and Mbnl in all extended genic
sequences, although only predicted clusters in genic se-
quences were presented in this article.

Estimation of sensitivity and specificity using
HITS-CLIP data

To test if inclusion of the training data in our transcrip-
tome-wide prediction would introduce model overfitting
and bias in performance evaluation, we performed a
2-fold cross-validation by splitting the whole transcrip-
tome randomly into two halves. Two models were then
trained using CLIP tag clusters and background sequences
in one half, and tested on the other half, and vice versa.
These models were denoted as cross-validation models.
The predictions by the two cross-validation models on
the independent halves were pooled together and
compared with those predicted by the model trained on
the full dataset. Specificity and sensitivity of prediction
were evaluated by comparing Nova-binding YCAY
clusters predicted by the cross-validation models with
CLIP data using standard receiver operating characteristic
(ROC) curves. We defined the region±50 nt around the
peak of a CLIP tag cluster as the ‘footprint’ region of
Nova binding. The footprint regions of �2000 nonrepeti-
tive robust CLIP tag clusters (PH� 15) located in internal
exons with 1 kb extension on each side were used as a
surrogate of the true-positive dataset; to define a true
negative set, we randomly sampled 100-nt sequences
from exon+ext1k sequences without any CLIP tags.
The reason we defined the footprint region for comparison
was to eliminate the effect of variable sizes of different
CLIP tag clusters, and the choice of particular size was
empirical (based on observation of a limited number of
validated Nova-binding sites). CLIP tag cluster footprints
or background sequences were predicted as positive if an
overlapping motif site cluster above a certain threshold
was present, and negative otherwise, from which
specificities and sensitivities were calculated. To evaluate
the contribution of each individual feature, we built
HMMs with various subsets of features (d+c, d+a and
d) to make comparisons with each other and with the
full model. All other model parameters were kept the
same. ROC curves were calculated for each model.

Table 1. HMM emission probability distribution of each feature given the state

State (s) Description Pr(djs)a Pr(cjs), Pr(ajs)a

S+ Site in an RBP-bound motif cluster initiating an input sequence Pr(0)=1 +
S� Site in a background region initiating an input sequence Pr(0)=1 �

+ Succeeding site in an RBP-bound motif cluster + +
� Succeeding site in background sequences � �

I+ Site initiating an internal RBP-bound motif cluster � +
I� Site initiating an internal background region � �

a‘+’ represents the distribution estimated from motif sites CLIP tag clusters (blue curves in Figure 1B); ‘�’ represents the distribution estimated from
motif sites in background sequences (gray curves in Figure 1B).
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Predicting RBP-dependent splicing using clustered motif
sites or HITS-CLIP data

We compared Nova or Mbnl target exons predicted by
clustered motif sites or CLIP tag clusters with exons
showing Nova- or Mbnl-dependent splicing as identified
by independent splicing microarray or RNA-Seq data.
Because multiple CLIP tag or motif site clusters typically
exist in the alternatively splicing region, we derived a
summarized CLIP tag or motif site cluster score by
weighting each cluster according to their distance to the
splice sites, as described previously (24). Each cassette
exon was measured by six regional CLIP or motif site
cluster scores denoted as sUI5

0
ss, sUI3

0
ss, sE3

0
ss, sE5

0
ss,

sDI5
0
ss and sDI3

0
ss (UI: upstream intron; DI: downstream

intron; E: exon). The maximum of them, denoted as
summarized CLIP tag cluster score or summarized motif
site cluster score, was used to rank exons. The thresholds
used to predict Nova or Mbnl target exons shown in
Figure 3 and Supplementary Figure S10 were determined
somewhat arbitrarily. For comparison, we used a set of
483 cassette exons with Nova-dependent splicing,
observed in at least one of four sets of Affymetrix exon
or exon-junction microarrays that compared wild type
(WT) and Nova knockout (KO) mice, as defined previ-
ously (24). Similarly, we used a set of 290 cassette exons
with Mbnl2-dependent splicing, observed in exon-junction
microarray or RNA-Seq data, as defined previously (35).

Normalized complexity maps

The normalized complexity map of CLIP tags was
generated as described previously (31,35). Briefly, we
used a set of 325 nonredundant Nova target cassette
exons confidently predicted by a Bayesian network
approach or validated experimentally by reverse tran-
scriptase–polymerase chain reaction RT-PCR (24), and
290 Mbnl2-dependent exons as determined by RNA-Seq
or exon-junction microarrays (35). The normalized com-
plexity map of clustered motif sites was generated simi-
larly, except that motif site cluster scores in each
alternatively spliced region were used to weight each
cluster.

RT-PCR validation of predicted Mbnl target exons

RNA extraction and RT-PCR for the analysis of Mbnl
targets was performed as described previously (38). We
used cDNA from quadriceps of WT and Mbnl1"E3/"E3

(KO) mice as well as hippocampal cDNA from WT and
Mbnl2"E2/"E2 (KO) mice ranging from 3 to 6 months old,
129/BL6 mix-background mice. Each group included
three biological replicates, and unpaired t-test was used
for statistical analysis.

RESULTS

Prediction of Nova-binding YCAY clusters

As an application exemplifying the proposed method, we
predicted Nova-bound YCAY clusters on a genome-wide
scale. Nova proteins, encoded by two separate genes,
Nova1 and Nova2, are important for synaptic functions

(39), in part through regulating alternative splicing as pre-
dicted by a position-dependent ‘RNA map’. In this map,
alternative exons are included when Nova binds YCAY
clusters in downstream introns and are excluded when
Nova binds to YCAY clusters within the alternative
exons or upstream introns (22,31). To define the compre-
hensive RNA-regulatory network of Nova, we recently
generated in-depth mouse brain Nova HITS-CLIP data
composed of >4.4 million unique tags (24). To train the
HMM, we applied stringent filtering criteria to obtain
matched sets of positive and negative training sequences
from exons and 1 kilobase (kb) flanking intronic regions
on each side (exon+ext1k sequences). All YCAY
elements in these regions were extracted; spacing
between neighboring elements, their accessibility and con-
servation were evaluated.
The large sample size of the training data made it

possible to obtain precise nonparametric estimation on
the distribution of each feature (Figure 1B and
Supplementary Figure S1). All features showed clear dif-
ferences between Nova-bound and background YCAYs,
with smaller spacing, more accessibility and higher con-
servation for Nova-bound YCAYs. Therefore, all these
features are expected to contribute to the prediction of
Nova-bound YCAY clusters. Using this model, we pre-
dicted 841 501 potential Nova-bound YCAY clusters with
�3 YCAYs in all genic regions of the mouse genome
(Supplementary Dataset S1). Each cluster was assigned a
log-likelihood score, denoted as YCAY cluster score,
which is important to distinguish high-confidence predic-
tions from those of low confidence (see below).

Evaluation of predicted YCAY clusters using CLIP data

We first evaluated the predicted YCAY clusters on a
global scale by comparing them with CLIP data.
Because CLIP tag clusters and background sequences
used to estimate model parameters were also included in
the prediction, we first performed 2-fold cross-validation
to determine if the model is overfit. mCarts gave robust
predictions, as reflected in both emission probabilities
(Supplementary Figure S1) and the resulting YCAY
cluster scores (Figure 2A) predicted by models derived
from different training sets. Based on the presence of
overlapping YCAY clusters, we were able to cross-
validate the footprint regions of robust CLIP tag
clusters and matched background sequences of the same
size at a specificity of 85% and sensitivity of 74%, or a
specificity of 99% and a sensitivity of 20% when we
increased the threshold of the YCAY cluster score
(�7.3, and the median YCAY cluster score near validated
Nova target exons is �15; Figure 2B). The latter repre-
sents a �20-fold increase in prediction specificity
compared with random guesses. Prediction of YCAY
clusters using models derived from subsets of features con-
firmed that all features used by mCarts indeed contributed
to the accuracy of prediction (Figure 2B). Predictions
based on spacing of YCAYs alone achieved the least sat-
isfying performance, with 12% sensitivity at 99% specifi-
city. Inclusion of conservation or accessibility together
with spacing increased the sensitivity to 16.2% and
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12.8% at the same specificity, respectively, which were
nevertheless not as good as the full model (20%).
Moreover, YCAY clusters with higher scores are more
likely to overlap supporting CLIP tag clusters
(Figure 2C), and more robust CLIP tag clusters with a
larger PH are more likely to harbor predicted YCAY
clusters (Supplementary Figure S2). In contrast, this was
not observed for YAAY clusters predicted by the same
model, which were not expected to be bound by Nova
(9,10) and used as a control. This supports the notion
that the YCAY cluster scores indeed reflect reliability of
prediction quantitatively.

Extensive and distal YCAY clusters

The proposed algorithm is flexible in several aspects we
believe to be important for modeling clustered RBP motif
sites. First, it does not require arbitrary sliding windows,
which would limit the number of individual sites in a
cluster and the region a cluster can span (cluster width).
Our previous analysis suggested that functional Nova-
binding sites in general have �3 YCAY elements in a
window of �45 nt (22), but these criteria likely represent
the approximate minimal requirement. In fact, a number
of YCAY clusters predicted by mCarts are far more ex-
tensive, with large variations in terms of the number of
YCAY elements (Supplementary Figure S3A) and cluster
width (Supplementary Figure S3B). In total, we predicted
3287 clusters with a score �15. These clusters typically
consist of many YCAY elements in longer stretches of
sequences. One such example is the YCAY cluster down-
stream of exon 6 in the Ptprf gene, which is strongly
activated by Nova. (22). Strikingly, this YCAY cluster,
scored 74 by mCarts, consists of 23 YCAY elements in a
200-nt region overlapping with highly conserved se-
quences and a reproducible CLIP tag cluster (PH=11)
(Supplementary Figure S4A). However, this exon received
a moderate score (net YCAY score=1.7) in our previous
analysis (22), which was below the threshold (jnet YCAY
scorej � 2.7) previously used to predict Nova target exons,
as a result of fragmentation of the YCAY cluster (see the
black box in the YCAY track, Supplementary Figure S4A
bottom panel; see Figure 4 below for more examples).
Second, mCarts has a natural representation of different

types of sequences (i.e. CDS, untranslated regions and
intron) with different baselines of conservation, which
makes it possible to predict YCAY clusters that span
exon–intron boundaries (e.g. Figure 1D), and also those
distal from splice sites. Among the 2467 YCAY clusters
with score �15 that are also �400 nt away from any
annotated exons, a particularly interesting subset is 310
YCAY clusters distally located in flanking introns of
cassette exons, including 135 clusters (43.5%) overlapping
with CLIP tag clusters. One example is exon 17 of the
Ctnna2 gene, which was identified as a Nova-dependent
exon by exon-junction microarrays (39). A strong YCAY
cluster predicted by mCarts (score=36), overlapping with
a robust CLIP tag cluster (PH=33), is located in the
upstream intron, �1.6 kb downstream of the 50 splice
site; no other major YCAY clusters were predicted in
the alternatively spliced region (Supplementary Figure

S4B). The distance of this cluster to the nearest exon is
much larger than that of typical splicing-regulatory elem-
ents. Another example of distal YCAY clusters is shown
in Supplementary Figure S4C, and similar examples for
other RBPs have also been reported (40), indicating that
splicing regulation mediated by distal sites in introns
might be a more general phenomenon.

Prediction of Nova-regulated alternative exons using
YCAY clusters

We next evaluated how YCAY clusters defined by mCarts
can predict Nova-regulated alternative splicing. We first
examined a set of 325 nonredundant Nova target cassette
exons validated by RT-PCR or predicted by Bayesian
networks (24). This analysis demonstrated that the
position-dependent Nova RNA map based on predicted
YCAY clusters, reflecting a population average of Nova
action, was similar to the one derived from HITS-CLIP
data (Supplementary Figure S5).

We then compared mCarts with our previous approach
(22) in accuracy of predicting individual targets. Our
previous method was first evaluated on a set of 48 Nova
target cassette exons identified by CLIP (29), microarrays
(39) and biochemical studies (9,10,21). To minimize the
false-positive rate, a stringent threshold of ‘net YCAY
score’ was previously determined so that 13 of the
validated 48 exons (‘training set’) passed the threshold
(sensitivity=27.1%), which was then applied prospect-
ively to predict 41 additional alternative exons in the
mouse genome as new candidates (‘test set’). Among
them, 20 exons were bona fide targets based on RT-PCR
validation, giving a validation rate of 20/41 (48.8%).
Using a threshold of mCarts YCAY cluster
score=21.1, we now predicted 15 of the 48 exons in the
same training set (sensitivity=31.3%), as well as 10 of 41
exons in the same test set, among which 9 are bona fide
targets (validation rate=90%) (Supplementary Figure
S6). The only false-positive prediction of mCarts
(Sec24c, YCAY cluster score=28.7) overlapped with a
strong CLIP tag cluster (PH=21), although Nova-de-
pendent splicing of this exon is currently not apparent.
Therefore, YCAY clusters predicted by mCarts alone
can identify a subset of top Nova target exons with a
high validation rate, substantially outperforming our
previous heuristic method.

Because our model was trained using CLIP data, an
important question is whether the bioinformatic YCAY
clusters provided additional information to determine
functional Nova target exons. To address this question,
we compared the performance of YCAY clusters and
CLIP tag clusters in predicting Nova-dependent splicing,
as measured independently by splicing microarrays that
compared WT and Nova KO brains or spinal cords (24).
When we predicted a similar number of Nova target exons
using either summarized YCAY cluster scores (�10) or
CLIP tag cluster scores (�10), respectively, a substantial
proportion of exons (136/541 or 25.1% for CLIP data;
136/574 or 23.7% for YCAY clusters; 2.4% expected
by chance; P< 10�81, Fisher0s exact test; Figure 3A
and B) showed evidence of Nova-dependent splicing.
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Importantly, CLIP data and YCAY clusters predicted
overlapping but distinct sets of exons. Among the exons
predicted by both, a much higher proportion (82/190 or
43.2%; P< 10�11, Fisher’s exact test) had evidence of
Nova-dependent splicing. Alternatively, if we consider
the union of the targets predicted by CLIP or mCarts,
we obtained �1.7-fold increase in the total number
without sacrificing accuracy, compared with those pre-
dicted by CLIP data alone (925 versus 541). While micro-
array data might miss a substantial fraction of bona fide
Nova target exons, these observations nevertheless suggest
that YCAY clusters defined by mCarts and CLIP tag
clusters in general had a comparable performance in pre-
dicting Nova target exons, and YCAY clusters provided
additional information complementary to the CLIP data.

Separate studies in our lab have so far performed
detailed mutagenesis analyses in three transcripts to
define the exact Nova-binding sites important for alterna-
tive splicing regulation: GABAA receptor g2 (Gabrg2)
exon 9 (10), Nova1 exon 4 (9) and Dab1 exons 7 b and c
(41). In all these cases, the YCAY clusters independently
predicted by mCarts precisely matched the experimentally
validated Nova-binding sites (Figure 4A–C, left panel; the
YCAY cluster with score indicated). These validated
YCAY clusters are in general supported by CLIP tag
clusters, although some exceptions were also observed.
We note that some of the validated YCAY clusters were
fragmented in our previous prediction (boxes in the
YCAY track), presumably due to the use of sliding
windows of a fixed size. We also evaluated the contribu-
tion of individual YCAYs to the affinity of Nova binding,
and the impact of mutations on Nova-dependent alterna-
tive splicing. In all three examples, the predicted YCAY

cluster scores in WT or mutant reporter sequences showed
a strong correlation to the alternative exon inclusion level
and explained a majority of variation (R2 between 0.80
and 0.84, except in one case R2=0.65; Figure 4A–C,
scatter plots on the right), again suggesting that the con-
fidence of mCarts prediction reflects the functional signifi-
cance of RBP motif sites.

Prediction and evaluation of Mbnl-binding YGCY clusters

To assess whether mCarts can be generally applied to
other RBPs, which also bind clusters of short and degen-
erate motif sites, we predicted Mbnl-binding sites on a
genome-wide scale. In human, MBNL proteins, encoded
by three members MBNL1, MBNL2 and MBNL3, are key
splicing factors in the neuromuscular disease myotonic
dystrophy (DM) (4,42). A major molecular mechanism
of DM is believed to be sequestration of the MBNL
proteins by microsatellite C(C)UG expansions that
contain their high-affinity YGCY elements (11,12), result-
ing in loss of MBNL function normally required to
regulate alternative splicing of its endogenous target
exons (43). This sequestration model was recently
validated by splicing microarray analysis, which
demonstrated similar global splicing defects in quadriceps
muscles of mouse models either expressing a CUG repeat
expansion (HSALR) or depletion of Mbnl1 (Mbnl1 KO)
(12). While Mbnl1 is particularly important for splicing
regulation in skeletal muscle, and Mbnl3 is expressed pri-
marily in placenta (44), we recently demonstrated that
Mbnl2 is expressed at a relatively high level in brain,
including hippocampus, suggesting that this member of
the Mbnl family is particularly important for CNS
function (35). Indeed, using exon-junction microarrays
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Figure 2. Evaluation of predicted YCAY clusters using CLIP data. (A) Correlation of YCAY cluster scores predicted by 2-fold cross-validation
models (x-axis) and cluster scores predicted by the HMM trained on the full-size training dataset (y-axis). The squared Pearson correlation is
indicated. (B) Comparison of cross-validation HMMs using all or subsets of features for the accuracy of Nova-bound YCAY cluster prediction.
HMMs were trained on half-size training sets and evaluated on the independent test sets, as in x-axis in (A). Specificity and sensitivity were estimated
from the presence of predicted YCAY clusters in the footprint region of robust CLIP tag clusters (±50 nt of peaks, PH� 15) or background
sequences of the same size, and the resulting ROC curves are shown. Models using different subsets of features are compared: d, distance; a,
accessibility; c, conservation. (C) The overlap between the footprints of CLIP tag clusters and predicted YCAY clusters with varying scores.
Nonrepetitive YCAY clusters are binned into groups according to their scores. For each bin, the proportion of YCAY clusters overlapping with
all CLIP tag cluster footprints (±50 nt of peaks) is shown (blue bars, left axis). YAAY clusters predicted by the same model are shown (gray bars) as
a control. The cumulative number of nonrepetitive YCAY clusters is shown as the black curve (right axis).
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and RNA-Seq on hippocampal tissue, we found hundreds
of alternative exons whose splicing was altered on Mbnl2
depletion in mice, suggesting that Mbnl2 loss-of-function
might explain several CNS phenotypes, including
hypersomnia and learning/memory deficits observed in
both Mbnl2 KO mice and DM patients (35). Mbnl2
HITS-CLIP experiments showed that Mbnl2 binds to
tetramers that follow the YGCY consensus (except
CGCC), which is similar to the specificity of Mbnl1
(11,12). Correlating CLIP data with microarray and
RNA-Seq results suggested that Mbnl2 regulates alterna-
tive splicing by interacting with sequences enriched in
YGCY elements, whose positions determine exon inclu-
sion or exclusion, in a manner analogous to Nova.
We focused initially on Mbnl2 because of the availabil-

ity of HITS-CLIP data. However, we expect that Mbnl2-
binding sites may have a substantial overlap with those of
the other two members of the family owing to the similar-
ity in their motifs. Following the same pipeline used to
analyze Nova, we defined matched sets of positive and
negative training data based on Mbnl2 CLIP data, and
searched all YGCY elements (CGCC excluded, the same
below) therein. In general, YGCY elements in CLIP tag
clusters are more clustered, and have higher cross-species
conservation (Supplementary Figure S7), qualitatively
similar to what we observed with Nova. However, we
did not observe a clear preference for Mbnl to recognize
YGCYs in single-stranded sequences, in contrast to Nova,
which is consistent with the sequestration of MBNL by
the pathogenic hairpin structure formed by CUG repeats
in DM (4,42).
mCarts predicted 277 632 potential Mbnl-binding

YGCY clusters with �3 YGCYs in all genic regions,
which were ranked according to the log likelihood score
or YGCY cluster score (Supplementary Dataset S2).
When we overlaid the predicted YGCY clusters with
CLIP tag clusters, YGCY clusters with higher scores

showed a higher overlap, and vice versa (Supplementary
Figure S8), again suggesting that the YGCY cluster score
can be used to separate high-confidence predictions from
those of low confidence. In contrast, control YACY
clusters predicted by the same model, which are presum-
ably not bound by Mbnl due to lack of the core GC di-
nucleotide (11), had a much lower overlap with CLIP
data, and the magnitude of overlap did not depend on
the stringency of YACY clusters or CLIP tag clusters.

Prediction and validation of Mbnl-regulated alternative
exons using YGCY clusters

We next correlated predicted YGCY clusters with exons
showing Mbnl-dependent splicing. Overall, YGCY
clusters were enriched near 50 and 30 splice sites in the
downstream introns for exons showing Mbnl2-dependent
inclusion, and in the upstream introns for exons showing
Mbnl2-dependent skipping. This matched well the
patterns we observed from CLIP data (Supplementary
Figure S9).

The predicted YGCY clusters also provided sufficient
specificity to determine individual Mbnl-regulated exons.
By requiring a summarized YGCY cluster score �10 (see
‘Materials and Methods’ section for more details), we pre-
dicted 392 cassette exons from 263 genes to be regulated
by Mbnl. A significant fraction (48/392 or 12.2%) of these
exons showed evidence of Mbnl2-dependent splicing
as observed in exon-junction microarrays or RNA-Seq
data (35), while only 1.9% is expected by chance
(P=3.7� 10�21, Fisher’s exact test). These genes
showed enrichment of specific gene ontology terms (45),
such as small GTPase binding (false discovery rate or
FDR< 7.3� 10�3), synapse (FDR< 2.0� 10�3) and cell
projection (FDR< 1.5� 10�2), as compared with all
genes containing cassette exons, consistent with the role
of Mbnl in neuromuscular function. The concordance of
exons predicted by YGCY clusters with exons showing
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Mbnl2-dependent splicing is also comparable with that of
CLIP data, if we predicted a similar number of exons by
summarized CLIP tag cluster score �3.8 (49/395 or
12.4%) (Supplementary Figure S10). Importantly, exons
predicted by both YGCY clusters and CLIP data showed
higher concordance with Mbnl2-dependent splicing (19/70
or 27.1%) than those predicted by either CLIP or YGCY
clusters alone (P< 0.003, Fisher’s exact test). Again, if we
consider the union of the targets predicted by CLIP or
mCarts, we obtained �1.8-fold increase in total number
without sacrificing accuracy, compared with those pre-
dicted by CLIP data alone (717 versus 395). This
supports the notion that YGCY clusters also provided
additional information complementary to the CLIP data.
We then focused on the top 30 nonoverlapping exons

predicted by YGCY clusters (summarized YGCY cluster
score �20.2) for detailed analysis of splicing regulation by
Mbnl2 in hippocampus and Mbnl1 in quadriceps muscle
(Supplementary Table S1). Among these, 8 exons previ-
ously showed Mbnl2-dependent splicing in hippocampus
(35), and 3 additional exons were previously validated to
be regulated by Mbnl1 in quadriceps muscle (12) (11/30 or
36.7%). The inclusion of both Mbnl1 andMbnl2 targets in
predictions is expected, because they both recognize
YGCY elements. Because the RNA-Seq or exon-junction
microarray data used in previous studies likely missed a
number of bona fideMbnl targets, owing to their relatively
moderate statistical power, we tested predicted exons cur-
rently without evidence of Mbnl1/2-dependent splicing by
performing semi-quantitative RT-PCR, using WT or
Mbnl1- or Mbnl2-KO mice. Among the 12 exons tested,
we were able to draw conclusions on 11 exons, including
9 exons (81.8%) that showed Mbnl1-dependent splicing in
muscle or Mbnl2-dependent splicing in hippocampus, and
2 exons that showed no changes on Mbnl1 or Mbnl2 de-
pletion (Figure 5A and B, Supplementary Tables S1 and
S2). Therefore, the overall validation rate of the top 30
predictions is 88.5% (0.367+0.633� 0.818). Note that a
majority of these exons (22/30) have few or no CLIP tags
(summarized CLIP tag cluster score <3.8) in the alterna-
tively spliced region, probably due to the relatively limited
depth of the CLIP data. In all cases, with only one excep-
tion (Camk2g), downstream YGCY clusters correctly pre-
dicted Mbnl-dependent exon inclusion, while upstream or
exonic YGCY clusters correctly predictedMbnl-dependent
exclusion. For Camk2g, the predicted YGCY cluster is in
the downstream intron, but only 8 nt from the 50 splice site,
which will potentially block the access of the 50 splice site to
the spliceosome, and therefore explain its repressive effect.
Intriguingly, a 54-nt homologous cassette exon in both
Mbnl1 and Mbnl2, which is developmentally regulated to
affect the nuclear localization of Mbnl proteins (46), is pre-
dicted among the top candidates by YGCY clusters. In
both cases, this exon showed Mbnl2-dependent exclusion
in hippocampus in RNA-Seq data, and the Mbnl1 exon
was also tested and validated by RT-PCR (35). The high-
scoring YGCY cluster (score=33 and 34, respectively) is
located upstream of the alternative exon, and supported by
overlapping CLIP tag clusters (Figure 6). Therefore, like
many other splicing factors, Mbnl autoregulates its own
expression at the splicing level.

DISCUSSION

Here we present mCarts, a computational method capable
of predicting clustered RBP motif sites on the genome-
wide scale. This method combines several features intrin-
sically or extrinsically important for specific binding of
RBPs to their target transcripts and function of such inter-
actions. Predictions of Nova-binding YCAY clusters
using this algorithm have been integrated with additional
information including CLIP data, Nova-dependent
splicing detected in microarrays, as well as evolutionary
signatures, to define the Nova alternative splicing target
network (24). Here we describe the method and make the
software available for the community. We systematically
evaluated its performance to show its reliability and com-
plementarity with the biochemical CLIP data, and discov-
ery of novel functional RBP motif sites that are
unexpectedly extensive and distal. As an important exten-
sion, we also demonstrate its general applicability by
applying mCarts to study another representative splicing
factor Mbnl to predict its binding sites and target exons,
and show that predicted novel target transcripts can be
successfully validated.

Mapping in vivo protein–RNA interactions has been
challenging until recently. Splicing-sensitive microarrays
(39) or more recently RNA-Seq (35) in combination
with perturbation of specific RBPs do not distinguish
direct or indirect targets, or pinpoint the exact binding
sites. In vitro selection (6) to purify short RNA oligos
with high affinity to specific RBPs do not reflect their
function in vivo. Mutation analysis was able to identify
exact sites of functional significance, but was labor inten-
sive (9,10,41). Applications of high-throughput biochem-
ical assays including HITS-CLIP and its variants (30)
provide a means of mapping in vivo protein–RNA inter-
actions on a global scale, which are critical to train any
data-driven probabilistic models, including mCarts
proposed in this study.

However, bioinformatic prediction of RBP motif sites is
complementary to biochemical protein–RNA interaction
footprints in several regards. First, one major goal of
investigating RNA-regulatory networks is to understand
how the genetic information coded in the genome,
including the position and strength of cis-regulatory
elements, can be unfolded to orchestrate gene expression.
Modeling and characterization of RBP-binding sites at the
sequence level provide a more mechanistic, rather than
empirical, view of protein–RNA interactions, which will
eventually be essential to interpret sequence variations and
mutations in evolutionary, population and disease studies.
In addition, the ability of bioinformatic predictions to
determine exact motif sites is also complementary to the
�30–60 nt resolution of CLIP data and important for
certain applications such as mutagenesis and therapeutic
interference, although this is addressed in part by cross-
linking induced mutation site analysis (47).

Second, the comprehensiveness of CLIP data largely
depends on the complexity of the library and the depth
of sequencing, especially for transcripts with low abun-
dance, restrictive expression in specific cell types or fast
degradation. CLIP might also miss some sites owing to
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several technical issues, such as inaccessibility of certain
sequences [e.g. RNase A cuts only single-stranded se-
quences, and RT may stall at some cross-link sites (47)].
In line with these arguments, some Nova target exons
have predicted YCAY clusters validated to be critical,
but few supporting CLIP tags were observed (e.g.
Gabrg2 exon 9 in Figure 4A, Glra2 exons 3a and b

described in (6,48), and additional examples in
Supplementary Figure S6). Therefore, the true-positive
rate of predicted RBP motif sites is likely higher than
that estimated from comparison with CLIP data
(Figure 2B and C, and Supplementary Figure S8).
Third, the biochemical protein–RNA interactions

detected by CLIP is a snapshot of the specific condition
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under investigation, and CLIP tag cluster peak height rep-
resents a composite measurement of binding affinity and
transcript abundance. On the other hand, bioinformatic
predictions of RBP motif sites are independent of

transcript abundance and not limited to genes expressed
under specific conditions. Some predicted motif sites
without support from CLIP could be bona fide binding
sites of the RBP in other conditions. However, we also

A

B

C

Figure 6. Mbnl1 and Mbnl2 are autoregulated through alternative splicing. (A, B) Both Mbnl1 (A) and Mbnl2 (B) have a 54 nt alternative exon,
which showed Mbnl-dependent splicing. In both cases, a strong YGCY cluster was predicted in the upstream intron near the 30 splice site, where
robust CLIP tags were mapped. (C) Alignment of the alternative exon (shaded) and flanking intronic sequences in Mbnl1 and Mbnl2 (dotted boxes
in A and B) are shown. YGCY elements are highlighted by underscores, and those in predicted YGCY clusters are shown in bold.
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expect bioinformatic methods may include false positive
predictions in sequences that RBPs never bind, as the
current model almost certainly does not capture all the
mechanistic details of protein–RNA interactions.
Ranking of predicted RBP motif sites by confidence
scores helped to reduce false positives, and the high-
scoring sites favor those with high cross-species conserva-
tion (Supplementary Figure S4B and C). It is particularly
encouraging that among the top candidate exons pre-
dicted to be direct RBP targets, a high validation rate
was achieved (90% and 88.5% for Nova and Mbnl,
respectively).

mCarts extended several previous efforts that attempted
to predict cis-regulatory elements in RNA, and some of
them predicted splicing-regulatory elements (6–8 mer
words) enriched in exons or introns without restricting
analysis to specific RBPs (25). It is not surprising that
these regulatory elements (more precisely, motifs) do not
provide sufficient specificity to predict individual target
transcripts, which was reflected in varying effects depend-
ing on context sequences when they were inserted into
different reporters (49,50). The binding motifs of specific
RBPs were also determined experimentally by in vitro se-
lection or other approaches, and the resulting short con-
sensus sequences or PWMs were used to search exonic or
intronic sequences to predict putative splicing-regulatory
elements. These predictions similarly suffered from the
low information content of the motif representation. For
example, when a Ptbp1-binding consensus sequence
(YYYYUCUUYYYY) was used for genome-wide
search (51), only 1% of predicted sites overlapped with
CLIP tag clusters (52).

To overcome the small size and high degeneracy of RBP
motifs, we previously derived a set of heuristic rules spe-
cifically tailored to predict YCAY clusters recognized by
Nova (22). However, such a method was neither optimized
from a global perspective due in part to the limited size of
the training set, nor can it be readily adapted to study
other RBPs. A more general method named SFmap was
proposed more recently (53). This method weights
multiple motif sites in a sliding window based on their
similarity with the consensus and pairwise conservation
in human and mouse. However, both scoring functions
and the size of sliding windows were chosen in a
somewhat ad hoc manner independent of specific RBPs.
The use of pairwise conservation also limited the discrim-
inative power comparative analysis of many sequenced
species can provide to identify sequences under strong
selection.

Compared with these previous efforts, mCarts provides
the generalizability that can be readily applied to different
RBPs, and also the capability to be optimized for specific
RBPs in a data-driven manner, with minimal prior know-
ledge and assumptions. Variations of HMMs have been
applied to model combinations of different transcription
factor–binding motifs (54–57) and miRNA target sites
(58). Our model is specifically designed to predict
protein–RNA interactions according to several distinct
features, including spacing of individual sites, their acces-
sibility and conservation. As we described above, combin-
ation of these features in a unified framework greatly

improved the accuracy of prediction, partly by more quan-
titative modeling of these features and elimination of strict
limits on cluster size, a caveat in previous approaches
(22,53). The effectiveness and general applicability of the
method were demonstrated in its application on two rep-
resentative RBP families Nova and Mbnl, resulting pre-
dicted motif sites that have substantial concordance with
CLIP data. It also predicted alternative exons regulated by
each protein, as evaluated by independent splicing micro-
array or RNA-Seq data and RT-PCR validation, and
many of these are complementary to those predicted
from CLIP data. Given that an increasing amount of ex-
perimental data to determine binding sites of various
RBPs is being generated using CLIP (30) and other
technologies, we expect that the proposed method and
the software tool has the potential to facilitate the char-
acterization of protein–RNA interactions and the con-
struction of RNA-regulatory networks.
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