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Abstract: Hormones are secreted in a circadian rhythm, but also follow larger-scale timetables,
such as monthly (hormones of the menstrual cycle), seasonal (i.e., winter, summer), and, ultimately,
lifespan-related patterns. Several contexts modulate their secretion, such as genetics, lifestyle,
environment, diet, and exercise. They play significant roles in human physiology, influencing growth
of muscle, bone, and regulating metabolism. Exercise training alters hormone secretion, depending
on the frequency, duration, intensity, and mode of training which has an impact on the magnitude
of the secretion. However, there remains ambiguity over the effects of exercise training on certain
hormones such as glucoregulatory hormones in aging adults. With advancing age, there are many
alterations with the endocrine system, which may ultimately alter human physiology. Some recent
studies have reported an anti-aging effect of exercise training on the endocrine system and especially
cortisol, growth hormone and insulin. As such, this review examines the effects of endurance, interval,
resistance and combined training on hormones (i.e., at rest and after) exercise in older individuals.
We summarize the influence of age on glucoregulatory hormones, the influence of exercise training,
and where possible, examine masters’ athletes’ endocrinological profile.
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1. Introduction

The aging process is accompanied by one or more changes in biological functions (affecting
nervous system, cardiovascular and respiratory systems, or renal function, amongst others), often
associated with an increasing susceptibility to co-morbidities and mortality [1,2].

According to the World Health Organization (WHO), three categories of population can be
distinguished: “young old” (65–74 years old), “middle aged” (75–84) and the oldest (85+). Generally,
aging leads to an overall loss of tissue vitality through a myriad of signaling mechanisms [3].

The anatomical and physiological changes associated with aging start several years before the
appearance of external signs. Many of these alterations gradually manifest in the third decade and
continue until death. These changes are also accompanied by a gradual decline in physical fitness
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and physical activity. This alteration of the cardiovascular and respiratory systems during the aging
process can be mainly explained by a decline in maximum oxygen uptake (~10% per decade) starting
from the age of 20 [4–7].

Advancing age is also associated with a decline in anaerobic performance, which can be
mainly explained by changes involving the neuromuscular system and a major loss in type II
fibers. Indeed, advanced age is accompanied by muscular wasting, a decrease in the rate of contraction,
and maximum force.

According to Korhonen et al. [8], the first decline in muscle strength and mass occurs around the
age of 30 and the loss is around 15% per decade from the age of 50 to 30% at the age of 70. Moreover,
available scholarly literature suggests that starting from the 4th decade of life, both skeletal muscle
mass and strength decline in a linear fashion and within the 8th decade of life, 50% of mass will be
lost [9]. Since muscle mass amounts to 60% of body mass, its pathological changes can have deep
consequences in the elderly.

One hypothesis for the reduction in physical performance and muscle weakness associated with
age is an alteration of the endocrine system [10–14]. In particular, the glucoregulatory system that
is characterized by important bio-molecules such as glucagon and insulin is critical to maintain the
constancy of glucose in the internal milieu. While it is clear that exercise training improves fitness and
physical capacity in older adults [15–19], whether exercise can improve the hormonal profiles of older
adults remains contentious [20–27].

Therefore, this review will summarize the existing literature concerning the influence of age,
and the effects of each mode of exercise (endurance, sprint, and resistance training) on relevant (basal)
hormones belonging to the glucoregulatory system.

Where possible, we will provide evidence from masters athletes involving the influence of lifelong
exercise on these hormones, but also report findings from interventional studies providing information
on the training effect on these hormones.

2. Materials and Methods

The present review was designed as a comprehensive review of the literature. Search strategy
adopted in the present review is summarized in Table 1.

Table 1. Search strategy adopted in the present comprehensive review of the literature for retrieving
studies investigating the effects of physical activity and exercise on glucoregulatory hormones in
elderly subjects.

Search Strategy Item Details

Search string
(old OR elderly OR effect of age OR aging OR ageing) AND (physical activity OR sport OR

exercise OR training) AND (insulin OR glucagon OR growth hormone OR IGF-1 OR
glucoregulatory hormones OR cortisol OR catecholamines)

Searched databases PubMed/MEDLINE, Scopus, ISI/Web of Science

Inclusion criteria

P (population): older subjects in good health
I (intervention) / E (exposure): physical activity interventions; exposure to physical activity

C (comparator / comparison): young subjects (both trained and untrained) and old
untrained subjects

O (outcome): changes in glucoregulatory hormones levels
S (study design): original, primary research article

Exclusion criteria

P (population): young subjects; old frail subjects or with diseases (diabetes, obesity)
I (intervention) / E (exposure): not exposed to physical activity / sports /exercise interventions or

exposed to combined interventions (dietary intervention, supplementation, pharmacological
treatment or other forms of manipulation) from which it was not possible to dissect the effect of

training only
C (comparator / comparison): absence of comparisons between age groups

O (outcome): changes in glucoregulatory hormone levels not reported in detail or not clear
S (study design): not original study (commentary, review, expert opinion, letter to editor, editorial)

Time filter None applied (from inception)
Language filter None applied (any language)
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3. Insulin, Aging and Physical Activity

Insulin plays a key role in glucose uptake by muscle, fat, and liver cells. Moreover, insulin inhibits
both the liver glucose production and its secretion in blood.

Recent reports suggest that the insulin/insulin-like growth factor-1 (IGF-1) signaling pathways
and molecular cascades have an important, evolutionarily conserved influence over rate of aging and,
thus, longevity [28]. The most important effects of advancing age on this hormone are the increase of
fasting insulin and decrease in insulin sensitivity [29,30].

Many studies examined the effect of different training modes, volumes and intensities on insulin
levels in older adults. From the available investigations, it appears that short-term (two weeks)
training was unable to reduce fasting insulin level in a group of 28 healthy middle-aged (40–55 years)
sedentary men, as shown by Heiskanen and coauthors [31]. More in detail, a program of six supervised
cycle ergometer training sessions, characterized either by high-intensity (n = 14; 4–6 × 30 s all-out
cycling/4-min recovery) or continuous moderate-intensity (n = 14; 40–60 min at 60% peak O2 uptake)
training did not affect fasting insulin concentration.

In contrast, Kirwan et al. [32] reported that nine months of endurance training reduced fasting
insulin and improved insulin action. Seals and colleagues [33] (12 months of endurance training
program), Kahn and coworkers [34] (six months of intensive endurance exercise program), Evans and
coauthors [35] (10–12 months of endurance training program) reported similar results. Therefore,
it appears that an intervention with a longer duration (e.g., from six up to 9–12 months) is required
to observe significant changes in fasting insulin in older adults. On the other hand, some studies
investigating the effects of 6/9-month training programs, such as the investigation by Goulet et al. [36],
Dipietro and coworkers [37] or Ihalainen and collaborators [38] failed to report beneficial changes in
insulin concentration.

The length of the training program seems to have an impact on insulin (in terms of levels or activity)
depending on the age group in which the intervention is carried out. Herbert et al. [23] reported a
moderate decrease in basal insulin following six weeks of high-intensity interval training (HIIT)
in sedentary older males, suggesting that sprint training can reduce fasting insulin in older adults.
Guezennec et al. [39,40] have investigated the impact of four months of weight lifting in athletes aged
~35 years old. After maximal sessions, the level of insulin did not change significantly.

Other studies examined the effect of resistance training in insulin sensitivity in elderly subjects and
reported that strength training induced improvement in insulin-stimulated glucose uptake promoted
by glucose transporter type 4 (GLUT-4) in elderly [41]. Further studies investigated the influence of
12 weeks of high resistance training (weight lifting program) in the elderly and observed decreased
insulin response [42].

Furthermore, when comparing young and middle-aged men, Sellami et al. [43] investigated
the impact of 13 weeks of combined sprint and strength training on insulin concentration in blood.
They reported a significant decrease in fasting insulin in both groups. Interestingly, the effect of age
that was evident at baseline was no longer present post-training, suggesting that combined sprint and
strength training can prevent the negative effects of aging in trained men [43].

From a molecular standpoint, it seems that lifelong regular physical activity leads to epigenetic
mechanisms in terms of global DNA methylation patterns positively impacting on skeletal muscles’
functioning in aged healthy individuals. One study has recently found that DNA methylation was
statistically significantly lower in 714 promoters of genes involved in glycogen metabolism, glycolysis,
oxidative stress resistance and muscle contraction, activity and myogenesis, whereas, methylation
of introns, exons and CpG islands was apparently independent of physical activity practice [38].
Other cellular mechanisms that can explain how exercise can mitigate the mandatory age-related
change in insulin levels include GLUT expression and translocation, skeletal muscle capillarization,
improving insulin activity and sensitivity and favoring glucose uptake [42,44–52].

Even if short-term training cannot affect insulin levels, it seems to be sufficient in improving or
at least preserving insulin secretion pattern and response to oral glucose load. Some studies have,
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indeed, shown that a single bout of high intensity intermittent exercise [53], a couple of bouts of
exercise [54,55] or light/moderate-intensity physical activity [56–60] can be sufficient in preserving
insulin activity and response to oral glucose tolerance test (OGTT).

In other studies, the physical activity level (trained versus untrained) was self-reported and
assessed through the administration of questionnaires [61–65] or via quantitative measurements, such as
accelerometer [59]. Some studies included in the present comprehensive review were high-quality
randomized or pseudo-randomized studies [66–68].

Summarizing (Table 2), based on the available studies, it appears that aging is associated with
an increase of insulin level; a major part of this increase can be counteracted by exercise training.
Exercise is, indeed, a full mediator of the relationship between inactivity time sedentary behaviors
and insulin resistance [69]. Exercise, especially long-term (i.e., 12–24 weeks and not less than
8–10 weeks) [70–72] endurance, resistance and multimodal/combined training [73,74] or short-term
(i.e., bouts of six weeks of HIIT) [75–77] training program, can positively impact on insulin levels [78],
even though existing scholarly findings are not so clear-cut and warrant further investigations.

Table 2. Studies investigating the effects of physical activity and exercise on insulin in elderly subjects.

Authors Study Year Sample Size Age Gender Intervention Main Findings

Seals et al. [33] 1984 11 63 ± 1 y Male and
female

12 months of endurance
training (low-versus

high-intensity program)

Improved insulin sensitivity
and reduction in total AUC for
insulin by 8–23% (by 8% after

the low-intensity training
program and by 23% after the

high-intensity
training program)

Seals et al. [61] 1984 12 62 ± 1 y Male Self-reported physical activity

Lean older subjects had similar
insulin levels when compared

to younger subjects and
statistically lower than the

older untrained individuals

Hollenbeck et al.
[62] 1985

20 (13 inactive
versus 7 active

subjects)
60–75 y Male Self-reported physical

activity level
Better insulin resistance profile

in older trained subjects

Craig et al. [42] 1989 9 (cases versus 6
young controls) 62.8 ± 0.7 y Male

12 weeks of progressive
high-resistance training

(weight lifting program with a
three set, six to eight repetition
protocol: 45–60 min of isotonic
weight-conditioning exercise

on Nautilus equipment and leg
press, leg extension, leg curl,
torso extension, bench press,

pull down, pull over and
horizontal arm adduction)

Reduction in insulin levels

Tonino [70] 1989 11 60–80 y Male 12 weeks of physical training Decrease in peripheral insulin
resistance

Kahn et al. [34] 1990 13 61–82 y Male
6 months of intensive

endurance exercise training
Decrease of insulin levels

Increase of insulin sensitivity
by 36%

Broughton et al. [63] 1991 13 (cases versus 14
young controls)

60 y and
older Male Self-reported physical

activity level No significant differences

Poehlman and
Danforth [71] 1991 19 64 ± 1.6 y Male 8 weeks of endurance training

program (cycling exercise) No changes in insulin levels

Kirwan et al. [32] 1993 12
65 ± 1 y

[60–70 y] Male 9 months of endurance training Reduction in fasting insulin
Improved insulin activity

Cononie et al. [75] 1994 9 60–80 y Male Seven days of 50 min of
exercise at 70% VO2max

Fasting plasma insulin levels
and plasma insulin responses
to an oral glucose challenge

were reduced by 15% and 20%

DiPietro et al. [60] 1998 16 (7 of which
serving as controls) 73 ± 1 y Male and

female

Moderate-intensity aerobic
training, four times a week for

60-min sessions

Improvement in insulin
resistance and glucose

tolerance

Chadan et al. [54] 1999 7 62–69 y Female

Four bouts of physical activity
on separate occasions at either
a low (heart rate = 100 bpm) or
moderate intensity (heart rate =
120 bpm) for either 25 or 50 min

Decrease by 35% in all
experimental conditions

Evans et al. [35] 2005 10 80.3 ± 2.5 y,
77–87 y

Male (n = 8)
and female

(n = 2)

10–12 months of program (for a
total of 108 exercise sessions)

consisting in a supervised
endurance exercise training

comprising of 2.5
sessions/week, 58 min/session,
at an intensity of 83% of peak

heart rate

Improvement in insulin activity

Goulet et al. [36] 2005 8 versus 14 younger
controls 62.3 ± 4.7 y Female

Aerobic training (25–60 min
sessions of running at 60–95%
of maximal heart rate) three

days per week during
6 months, with insulin

resistance measured 3–5 days
after the last training bout

No improvement in insulin
resistance
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Table 2. Cont.

Authors Study Year Sample Size Age Gender Intervention Main Findings

DiPietro et al. [66] 2006 25 73 ± 10 y Female

Random allocation to
high-intensity [80% peak

aerobic capacity (VO2peak)]
aerobic training,

moderate-intensity (65%
VO2peak) aerobic training, and

low-intensity (stretching)
placebo control (50% VO2peak)

groups

Significant improvements only
in the high-intensity

training group

Bassami et al. [76] 2007 13 60 y and
older Male

Three 30-min trials on a cycle
ergometer at 50%, 60% and 70%
VO2max and two other trials at
60% and 70% VO2max in which

the total energy expenditure
was equal to that for 30 min at

50% VO2max

No significant differences
between groups

Fujita et al. [55] 2007 13 70 ± 2 y
Male (n = 10)
and female

(n = 3)

Bout of aerobic exercise (45-min
treadmill walk, 70% heart

rate max)

Improvement in
insulin resistance

Kodama et al. [56] 2007 56 64 ± 6 y
Male (n = 14)
and female

(n = 42)

Low-intensity and low-volume
exercise training (12-week

exercise program, comprising
of aerobic training and

resistance training)

Decrease in insulin resistance
by 21%

Dipietro et al. [37] 2008 20 74 ± 5 y Female

Random allocation into
a high-volume,

moderate-intensity aerobic
(n = 12) and a lower-intensity

resistance training (n = 8)
groups 4 times per week for 45

to 60-min sessions over
nine months

Not statistically significant
changes in insulin levels in

both groups

Dela et al. [72] 2011 42 (20 of which
serving as controls)

60 y and
older

Male and
female 12 weeks of alpine ski training

Decrease in insulin
concentration, decreased

insulin resistance

Lira et al. [57] 2011 14 70.32 ± 0.72
y Male

Moderate training for 60 min/d,
3 day/w for 24 weeks at a work

rate equivalent to the
ventilatory aerobic threshold

Improvement in insulin
concentration and
insulin resistance

Mikkelsen et al. [64] 2013 27 versus 22 young
controls NR Male

Self-reported physical activity
(n = 15 trained,

n = 12 untrained)

Better insulin profile in
trained subjects

Gando et al. [59] 2014 807 58-59 y Male and
female

Physical activity was measured
using a triaxial accelerometer

worn for 28 days and
summarized as light intensity
(1.1–2.9 METs) or moderate to

vigorous intensity (≥ 3.0 METs)

Light physical activity
inversely associated with

insulin resistance

Hwang et al. [67] 2016 51 (16 of which
serving as controls)

65 ± 1 y
[55-79 y]

Male and
female

Randomly allocated to
high-intensity interval training

(n = 17) or to moderate
intensity continuous training

(n = 18)

Insulin resistance decreased by
26% only in the high-intensity

interval training group

Chen et al. [68] 2017 26 60–76 y Male

Randomly allocated to the
eccentric training or concentric

training group (n = 13 per
group), performing 30–60

eccentric or concentric
contractions of knee extensors
once a week. The intensity of

the training program was
progressively increased over a
period of 12-weeks from 10% to

100% of maximal concentric
strength for eccentric training
and from 50% to 100% for the
concentric training program

Statistically significant
improvement of insulin

sensitivity only after
eccentric training

Herbert et al. [23] 2017 22 (cases) versus 17
(controls) 62 ± 2 y Male 6 weeks of high-intensity

interval training
Moderate reduction in

insulin levels

Robinson et al. [73] 2017 26 60 y and
older Male (53.8%)

12 weeks of high-intensity
aerobic interval, resistance, and

combined exercise training

Increased insulin activity and
sensitivity, with effects more
marked in the high-intensity

aerobic interval group

Banitalebi et al. [74] 2018 40 (12 of which
serving as controls)

67.35 ± 1.40
y Female

Randomly allocated to a
resistance followed by

endurance training program
(n = 12), endurance training

followed by resistance training
(n = 12), interval

resistance-endurance training
(n = 12)

No differences among the
groups and no difference
between before and after

the intervention

Lithgow and
Leggate [53] 2018 14 64 ± 2 y Male and

female
Single bout of high intensity

intermittent exercise

Insulin concentration during an
OGTT elevated at 60 min when

compared to the control trial

McGregor et al. [58] 2018 1,454 65–79 y Male and
female

Light-intensity physical activity
and moderate to vigorous
intensity physical activity

assessed during the Canadian
Health Measures Survey

2,000 steps/d can be sufficient
to preserve insulin activity

and sensitivity

Park et al. [65] 2018 2,325 60–74 y

Male
(n = 862)

and female
(n = 1,463)

Self-reported physical
activity level

OR of developing insulin
resistance 0.55 [95%CI

0.34–0.87] in men and 0.68
[95%CI 0.47–0.98] in women

Søgaard et al. [77] 2018 22 63 ± 1 y
Male (n = 11)
and female

(n = 11)

High-intensity interval training
three times/w for 6 weeks on a

bicycle ergometer

Statistically significant
improved insulin sensitivity
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Table 2. Cont.

Authors Study Year Sample Size Age Gender Intervention Main Findings

Ihalainen et al. [38] 2019

92 randomly
assigned to a group
performing strength
training one-, two-,

or three-times-per-w
and a non-training

control group

65–75 y Male and
female

Whole-body strength training
using 2–5 sets and 4–12

repetitions per exercise and 7–9
exercises per session for 6 mo

No differences between groups
and between before and after

the intervention

Abbreviations: AUC (area under the curve); CI (confidence interval); d (day); MET (metabolic equivalent task); min
(minute); mo (month); NR (not reported); OGTT (oral glucose tolerance test); OR (odds-ratio); w (week); y (years).

4. IGF-1, Aging and Physical Activity

The IGF1 gene is situated on the long arm of chromosome 12. IGF-I is an endocrine and
autocrine/paracrine growth factor expressed by multiple cell types. It plays a key role in the growth of
cells, muscle, cartilage, bone, skin, and controls cell growth. The concentration of IGF-1 in blood peaks
around adolescence and then declines after middle-age. This reduction in anabolic hormones has been
termed the ’somatopause’, and is suggested as a mechanism for the process of aging.

Importantly, IGF-1 is implicated in skeletal and muscle function, which deteriorates with age.
Eight weeks’ endurance training increased systemic IGF-1 in ~66-year-old males by ~19% [79].

However, other studies failed to observe any change in IGF-I following six months’ endurance
training in ~67-year-old males. Herbert et al. [23] investigated the difference between endurance-trained
master athletes (~60 years) and lifelong sedentary older adults (~62 years) and observed greater serum
IGF-1 concentration in the trained compared to the sedentary subjects (~18.4 vs. ~13.1 µg/dL,
respectively). Moreover, when exposing sedentary individuals to an endurance training program of
150 min/week, there was a small, non-significant increase in IGF-1 (~8% increase).

In addition, few studies explored the influence of sprint training on IGF-1 in older adults. Herbert
et al. [23] observed that old (~62 years) sedentary subjects experienced a large increase in IGF-1 following
12 weeks’ preconditioning and HIIT (~13.1 to ~16.9 µg/dL). Although six weeks of preconditioning of
150 min/week accounted for 8% of the change in IGF-1, HIIT was responsible for a further 21% increase
(28% greater than baseline). Findings from the same study suggest a trivial change in IGF-1 post-HIIT
in age-matched master athletes. Therefore, post-HIIT, the sedentary individuals and master athletes
had IGF-1 concentrations that were not significantly different.

Furthermore, when looking at the alteration of IGF-1 after resistance training in older adults,
Parkhouse et al. [80] observed an increase in ~68 year old females’ circulating IGF-1. However, a recent
investigation reported decreased systemic IGF-1 following 12 weeks’ resistance training in older adults
(74 ± 6 years) with an increase in lean mass [81].

As such, Arnason et al. [81] hypothesized that IGF-I was redistributed from circulation into tissue
during periods of anabolism. As a result of the ambiguity in the findings, the role of IGF-I in the
adaptive process to exercise during middle and older age remains unclear. The majority of studies
reported that resistance training can increase the concentration of IGF-1 in blood and increase muscle
mass and function [82–97]. Yet, more longitudinal studies are needed to explore the influence of
resistance training on IGF-1 in older adults, given the presence of discrepancies among the findings.

In a recent study, Sellami et al. [43] investigated the influence of age on somatotropic hormones.
They observed that young males had greater serum IGF-1 concentration than middle-aged men.
Moreover, Sellami et al. [43] reported that 13 weeks of combined sprint and resistance training
increased circulating IGF-1 in middle-aged participants. Furthermore, the effect of age that was
apparent at the study commencement was abrogated post-training, suggesting that exercise can
counteract the effect of age on IGF-1 in middle-aged men.

Taken together (Table 3), these data suggest that HIIT, resistance and combined training may be a
countermeasure to the age and lifestyle-related reduction in IGF-1, activating some gene pathways and
protein cascades [98,99].
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Table 3. Studies investigating the effects of physical activity and exercise on IGF-1 in elderly subjects.

Authors Study Year Sample Size Age Gender Intervention Main findings

Hagberg et al. [82] 1985

10 (cases versus 11 young
trained subjects, 13 young

sedentary subjects and
11 old trained subjects)

60–70 y Male Progressive VO2max test and
modified Balke protocol No changes

Poehlman and
Copeland [83] 1990 26 (cases versus 42

young controls) 59–76 Male Self-reported physical
activity level

IGF-1 level correlating with
leisure time physical activity

(r = 0.45; p < 0.01)

Poehlman et al. [84] 1994 18 66.1 ± 1.4 y
Male (n = 10)
and female

(n = 8)
8 weeks of endurance training Increase in IGF-1 level by 14%

Vitiello et al. [85] 1997 67 60 y and
older

Male (n = 46)
and female

(n = 21)

Randomized allocation to
3 d/w, 6-months endurance,
stretching/flexibility groups

and to 5-d/w, 6-months
endurance protocol

No differences among the
different experimental groups
and between before and after

the exercise interventions

Bermon et al. [86] 1999 32 67–80 y
Male (n = 16)
and female

(n = 16)

Randomly allocated to habitual
physical activity or to an

8-week strength
training program

Increase in total and free IGF-1
levels immediately after

exercise (by 17.7% and 93.8%)
and at 6 hours after exercise

(by 7.5% and 31.2%)

Bonnefoy et al. [87] 1999 39 66–84 y
Male (n = 14)
and female

(n = 25)

Acute and chronic exercise (in a
period of 6 months) evaluated

using a self-administered
questionnaire

IGF-1 levels correlated with
sports activity

Chadan et al. [54] 1999 7 62–69 y Female

Four bouts of physical activity
on separate occasions at either
a low (heart rate = 100 bpm) or
moderate intensity (heart rate =
120 bpm) for either 25 or 50 min

No differences among the
different experimental

conditions

Ravaglia et al. [88] 2001 48 60 y and
older Male

Self-reported physical activity:
active (n = 24) and inactive

(n = 24)

Higher IGF-1 levels in
active men

Borst et al. [89] 2002 62 68.1 y Male and
female

Randomly allocated to
6-month, 3-d/w program of

low-intensity or high-intensity
resistance training programs

No changes

Dennis et al. [90] 2008 16 versus 15 young controls 72 ± 5 y Male Acute resistance exercise

Higher levels of IGF-1 and
IGFBP5 in younger subjects,

especially after acute
resistance exercise

Tsai et al. [91] 2015 48 (24 of which serving
as controls)

71.40 ± 3.79
y (65–79 y) Male Long-term resistance exercise Increase in IGF-1 levels

Maass et al. [92] 2016 40 60–77 Male

Pseudo-random allocation to
aerobic exercise group (indoor
treadmill, n = 21) or to a control

group (indoor
progressive-muscle

relaxation/stretching, n = 19)

No changes

De Gonzalo-Calvo
et al. [93] 2012 26 (active, n = 13, inactive,

n = 13)
65 y and

older Male 49 ± 8 y of long-life training
Increase in IGF-1 concentration

correlating with
physical activity

Arnarson et al. [81] 2015 235 73.7 ± 5.7 y
Male (41.8%)
and female

(58.2%)

12-week resistance exercise
program (3 times/w; 3 sets, 6–8

repetitions at 75–80% of the
1-repetition maximum)

Decrease in IGF-1 levels

Herbert et al. [23] 2017 22 (cases) versus 17
(controls) 62 ± 2 y Male

12 weeks of preconditioning
and 6 weeks of

high-intensity training

Increase compared to baseline,
and compared to
preconditioning

Preconditioning accounted for
8% of the increase from baseline

Negaresh et al. [94] 2017 15 versus 16 younger
controls

60 y and
older Male 8 weeks of resistance training No change in IGF-1 levels

after training

Yoon et al. [95] 2017 21 65–75 y Female

Randomly allocated to a
low-intensity resistance

training with heating sheet
group (n = 8), a

moderate-intensity resistance
training (n = 6), and a heating

sheet group (n = 7), over
12 weeks

Increased IGF-1 level

Banitalebi et al. [74] 2018 40 67.35 ± 1.40
y Female

Randomized allocation to a
resistance followed by

endurance training (n = 12),
endurance training followed by

resistance training (n = 12,
interval resistance-endurance
training (n = 12) and a control

(n = 12) groups

No differences among the
groups and no difference
between before and after

the intervention

Cunha et al. [96] 2018 62 (21 of which serving as
controls)

60 y and
older Female

Randomized allocation to a
single set resistance training (n
= 21) or multiple set resistance
training (n = 20) programs, for
12 weeks using 8 exercises of

10–15 repetitions maximum for
each exercise

Increase in IGF-1 levels (by
7.1% in the single set resistance
training group and by 10.1% in

the multiple set resistance
training group)

Negaresh et al. [97] 2019 15 55–70 y Male
Whole-body progressive

resistance training program 3
d/w for 8 weeks (24 sessions)

Increase in IGF-1 levels

Abbreviations: d (day); mo (month); w (week); y (years).
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5. Growth Hormone, Aging and Physical Activity

Growth hormone (GH) secretion decreases with age, resulting in a downstream reduction in IGF-1
levels. This change, termed as the somatopause, is associated with loss of vitality, muscle mass, physical
function, and an increased risk of frailty, cardiovascular disease, and adiposity, amongst others [100].

Veldhuis et al. [101] showed that GH secretion during puberty varied between 1–1.5 mg/day,
while elderly people can produce only 50 µg/day. Several factors may be responsible for this decline,
such as physical inactivity, poor nutrition, and subsequent changes in body composition. Moreover,
Khan et al. [102] found that GH pulse decreased, and this decline was related to the alteration of
hypothalamic and somatostatin hormones.

Moreover, GH has a beneficial neuroprotective effect [103] mainly due to the activation of
anti-apoptotic pathway [104], this one particularly studied in literature. GH is also able to act on brain
derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3) [103] which, in turn, are particularly
sensitive to physical activity.

Until now, there have been no studies that have explored the impact of endurance training on
GH in older adults. Deuschle et al. [105] studied 11 elderly male marathon runners compared to
10 age-matched male sedentary people (controls), in order to study plasma concentration of GH, total
and free IGF-I/II and IGF-binding protein-1, 2, and 3 and insulin. In particular, authors did not find any
differences between runner vs controls, except for IGF-binding protein-1 and 2 increased in runners.

Moreover, Vanhelder al. [106] found similar results with a group of men aged 24–54 years who
participated in resistance training for one year. The program was composed of two exercises (exercise
protocol 1: vertical leg lifts at 85% of the subjects seven repetition maximum (SRM)/exercise protocol 2:
vertical leg lifts with one third of the previously used load). The results showed that GH increased
immediately after 5, 10, 25 min of exercise protocol 1. However, there was no significant increase after
exercise protocol 2. These findings suggest that the frequency, duration of exercise play an important
role in the regulation of GH secretion. Generally, the available studies showed that the frequency and
intensity of resistance training are important factors in the regulation of GH secretion.

Recently, Sellami et al. [43] reported that younger adults had greater GH at rest and in response to
sprint exercise than middle-aged participants. However, 13 weeks of combined sprint and resistance
training abrogated this age effect and increased GH at rest and post-exercise in both young and
middle-aged participants.

Summarizing (Table 4), very few studies have investigated the effect of physical activity and
training on GH levels in elderly subjects [74,107,108], generally reporting negative findings. Further
studies are needed to elucidate the mechanism of exercise on GH.

Table 4. Studies investigating the effects of physical activities and exercise on growth hormone in
elderly subjects.

Authors Study Year Sample Size Age Gender Intervention Main findings

Pyka et al. [107] 1992 11 versus 12
younger controls 72 ± 0.8 y

Male (n = 6)
and female

(n = 5)

3 sets of 8 repetitions for each
of the 12 exercises, at 70% of

1RM values

Growth hormone response to
resistance exercise

abolished/diminished in
elderly subjects

Cearlock and
Nuzzo [108] 2001 9 versus 16 younger

controls 60–85 y Female 4-week exercise program
followed by 1 w of no exercise No changes

Banitalebi et al.
[74] 2018 40 (12 of which

serving as controls)
67.35 ± 1.40

y Female

Randomized allocation to a
resistance followed by

endurance training program
(n = 12), endurance training

followed by resistance training
(n = 12), interval

resistance-endurance training
(n = 12) groups

No changes

Abbreviations: RM (repetition maximum); w (week); y (years).
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6. Glucagon, Aging and Physical Activity

Glucagon is a peptide hormone, belonging to the secretin family of hormones, produced and
released by the alpha cells of the pancreas. Being the major catabolic hormone of the human body,
it increases blood glucose and fatty acids concentration, differently from insulin [109].

Of note, no studies investigated the effect of physical activity on glucagon concentration in elderly
subjects, with the exception of Hagberg and coworkers [82], who found no changes in trained older
subjects, whereas untrained individuals reported increases in glucagon levels.

7. Cortisol, Aging and Physical Activity

Cortisol, the primary stress hormone, is a steroid belonging to the glucocorticoid family, produced
and released by the zona fasciculata of the adrenal cortex. This hormone plays a key role in controlling
blood glucose and metabolism in general. Studies exploring the impact of age on cortisol have shown
that cortisol increases with human aging. Seaton [110] reported that there was an elevation of night
time cortisol levels in elderly individuals and this increase could be caused by stressful factors such
as insomnia. Our laboratory has demonstrated that middle-aged men have higher basal cortisol
concentrations than young men [111].

There are only a few studies that have examined the effect of exercise training on cortisol in elderly
subjects. Herbert et al. [23] investigated the difference between lifelong sedentary and endurance-trained
master athletes and observed no difference in basal cortisol. Moreover, when exposing sedentary
individuals to an endurance training program of 150 min/week, there was no alteration to basal
cortisol. Similarly, De Souza Vale et al. [112] investigated the effect of three months of water aerobics
training in elderly women and reported no alteration to basal cortisol. However, an increase in cortisol
following six-week HIIT in master athletes has been observed, with a concomitant increase in peak
power output [23].

In middle-aged men, we have previously observed no alteration to basal cortisol following
combined sprint and resistance training, however the acute cortisol response to a supramaximal sprint
was elevated post-training [111].

Regarding the aging-related changes in the effect of exercise training on cortisol level,
Kraemer et al. [113] compared the level of cortisol in young and older men after heavy resistance
training three times per week for 10 weeks. Results showed a decline in resting cortisol at three
and 10 weeks in the older group. However, Häkkinen et al. [114] reported that elderly subjects and
middle-aged subjects did not experience any change in cortisol after six months’ progressive resistance
training. Similarly, Izquierdo et al. [115] investigated the effect of 16 weeks of progressive resistance
training in older and middle-aged participants and observed no change in cortisol in the middle-aged
group, but a decrease in the elderly group.

In summary, given the ambiguity of cortisol adaptation to resistance training, more research is
required to determine the effect of training variables (duration, intensity, volume, frequency) and
participant characteristics (age, training status, sex) on cortisol level.

8. Cathecolamines, Aging and Physical Activity

Catecholamine levels have been found to be different between young (20-years-old) and
middle-aged men (40-years-old), with plasma noradrenaline concentrations being significantly lower
(p < 0.05) in the young group when compared to the aged group. However, the precise neurobiological
mechanisms leading to this difference in concentration levels are not very well-known and conflicting
findings have been reported in the literature.

For instance, Hoeldtke et al. [116] showed that basal plasma noradrenaline concentration was
greater in the elderly due to age-affected sympathetic nervous activity or sensitivity to sympatho-adrenal
stimulation, without any difference in noradrenaline clearance. On the other hand, other authors found
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that clearance of noradrenaline tended to diminish with advancing age, which may contribute to the
increased plasma concentrations observed.

Of note, no study has examined the effects of exercise training on catecholamines in older adults.
In fact, the majority of studies investigated the impact of different types of training (sprint, endurance,
resistance training) on catecholamine in young individuals [117–123]. Results were found to be at
variance, and most of the time it was concluded that duration, intensity and type of training (aerobic
and anaerobic) are the principal factors that induced alterations in catecholamine responses.

A notable exception was the investigation carried out by Poehlman and Danforth [71], who assessed
the effects of 8 weeks of an endurance training program on norepinephrine kinetics in a sample of
19 older persons aged 64 ± 1.6 yr. Resting concentrations of norepinephrine were found to be increased
by 24% after cycling exercise due to a 21% increase in norepinephrine appearance rate, whereas no
change in norepinephrine clearance could be detected.

As such, due to the dearth of data and information, future studies are needed to determine the
effect of different exercise training modes and moderator variables on catecholamine secretion and
catecholamine circulating concentration in older adults.

9. Discussion and Future Prospects

There is an increasing interest in exercise training, as a therapeutic lifestyle strategy to attenuate the
hallmarks of aging and improve health. Exercise training attenuates many markers of biological aging
and one of the underlying mechanisms may be through the promotion of a more ‘youthful’ endocrine
profile. In vitro experiments suggest that cells treated with plasma isolated from younger individuals
are healthier or more ’youthful’ than those treated with plasma from their older peers. Therefore, in situ
cells exposed to a youthful systemic environment will likely have improved functioning compared
to those exposed to an older systemic environment. Evidence cited in this review suggests that it is
possible that exercise can act as a countermeasure to endocrinological aging.

Regarding this last point, it is necessary to keep in mind that both similarities and differences in
aging between/within genders exist.

However, despite such an increasing body of interest, the physiological effects of physical activity
and exercise on glucoregulatory hormones in elderly subjects are relatively understudied. Evidence
of the impact of training is generally circumstantial and randomized studies, carried out with high
methodological rigor and quality are few or lacking for some hormones. Whereas insulin has captured
the attention of scholars, there is a relative dearth of data and information for other hormones.

Given the importance of the topic of counter-aging effect of sports and physical activity and
considering the epidemiological and clinical burden of aging and age-related disorders, more attention
in the field is needed. Longitudinal studies employing larger sample sizes are warranted.
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