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Here we describe the non-canonical control of gene expression in Leishmania, a single-cell parasite that is
responsible for one of the major neglected tropical diseases. We discuss the lack of regulated RNA syn-
thesis, the post-transcriptional gene regulation including RNA stability and regulated translation. We also
show that genetic adaptations such as mosaic aneuploidy, gene copy number variations and DNA
sequence polymorphisms are important means for overcoming drug challenge and environmental diver-
sity. These mechanisms are discussed in the context of the unique flow of genetic information found in
Leishmania and related protists.
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1. Introduction

Infections by parasites of the genus Leishmania manifest in
three main forms: cutaneous leishmaniasis (CL), mucocutaneous
leishmaniasis (MCL) and visceral leishmaniasis (VL), which
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together are counted among the most important neglected tropical
diseases [1]. Leishmaniasis is endemic in large parts of the tropical
and subtropical regions of the World and poverty-related [2]. The
genus Leishmania is part of the order Trypanosomatida and of the
early-branching phylum Euglenozoa [3,4]. Leishmania spp. are clo-
sely related to other important pathogens, such as the causative
agents of human sleeping sickness, Trypanosoma brucei ssp, and
T. cruzi, the aetiologic agent of Chagas disease.

There are over 20 human-pathogenic species of Leishmania,
divided into sub-genera, of which Leishmania and Viannia [5,6]
are the most prominent. All leishmaniae undergo a biphasic life
cycle with two main morphologically distinct stages. In their
vectors, sandflies such as Phlebotomus spp. and Lutzomyia spp.,
leishmaniae proliferate rapidly as elongated, flagellated pro-
mastigotes within the midgut of females, which require mam-
malian blood for fertility. These promastigotes undergo small
morphological changes during the insect stage, emerging as
infective, highly motile forms that upon injection into the mam-
malian skin during the next sandfly blood meal end up in
phagocytic, antigen-presenting cells (APCs). Within those, they
undergo a critical differentiation into ovoid, aflagellated, non-
motile amastigotes that reside and proliferate inside the phago-
somes of macrophages and other APCs. By shedding protein-
loaded exosomes [7], they can modulate macrophage activity
and thus ensure their survival.

Proliferating amastigotes will destroy the host cell, escape and
infect new APCs. The ensuing immune reaction involves influx of
various immune cells, inflammatory responses, tissue swelling
and destruction, either restricted to the infection site (CL), spread-
ing through the lymphatic system (diffuse CL, MCL), or afflicting
the major lymphatic organs (spleen, liver, bone marrow) in VL.
The latter is almost invariably lethal in untreated cases or when
therapeutic options fail. The manifestation of Leishmania infections
in CL, MCL or VL is mostly preordained by the infecting species, but
the host immune status has also a considerable influence on the
outcome. In recent years, it has become increasingly clear that
not all Leishmania infections cause a symptomatic disease and that
parasites can persist in humans in subclinical infections for years
Fig. 1. Polycistronic transcription and RNA processing in Leishmania. The figure shows th
in red signify upper strand CDSs, green arrows indicate lower strand CDSs. Polycistronic
splicing of a 39-nucleotide spliced leader RNA (SL) and coupled poly-adenylation (poly
interpretation of the references to colour in this figure legend, the reader is referred to
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[8]. These subclinical cases are thought to constitute an important
reservoir for anthroponotic Leishmania species but may exacerbate
upon permanent or temporary immune suppression.

Conversion from the insect stage to the mammalian stage
requires Leishmania to change its gene expression. While gene
expression in most eukaryotes is controlled mainly at the level of
transcription initiation, by cis-acting promoters and trans-acting
transcription factors [9], Leishmania spp. and the entire order Try-
panosomatida lack gene-specific, regulated transcription by RNA
Polymerase II, missing both canonical promoter elements and
genes for cognate transcription factors [10]. Rather, Leishmania
chromosomes comprise of large polycistronic transcription units
(PTUs) of functionally unrelated genes [11,12]. The regions
between the PTUs are called strand switch regions where tran-
scription is initiated and terminated [13,14] (Fig. 1). However, epi-
somal DNA, e.g. plasmid- or cosmid-based transgenes, are
efficiently transcribed [15,16], without harbouring strand switch
region DNA. This argues for additional, unspecific initiation of
RNA synthesis. The polycistronic pre-mRNAs are processed into
mature mRNAs by coupled trans-splicing of a leader RNA and
polyadenylation [17]. With very few exceptions, Leishmania genes
lack introns and cis-splicing [18], eliminating alternative splicing
as a means of gene regulation.

The differentiation from the non-pathogenic promastigote form
of the insect host to the pathogenic amastigote stage is induced by
factors that are not yet fully understood. It is known, however, that
for a range of Leishmania spp., an acidic pH of 5.5 and a tempera-
ture increase to 33–37 �C are the major triggers for differentiation
even under axenic culture conditions [19,20]. Conversion into
amastigotes is crucial for survival within the mammalian host
and thus plays an important role in the pathogenicity of Leishmania
spp.. The pivotal role of heat shock proteins in differentiation and
adaption was proposed early and has been extensively studied in
Leishmania [21].

In the following, we shall discuss the ways by which Leishmania
can respond to environmental stimuli using post-transcriptional
gene regulation and adapt to environmental challenges by consti-
tutive genetic diversity and selection.
e distribution of coding sequences (CDSs) on the L. donovani chromosome 2. Arrows
transcripts are generated and processed into mature, monocistronic mRNA by trans-
A). The SL also contributes the CAP structure (yellow diamond) to the mRNA. (For
the web version of this article.)
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2. Post-transcriptional responses to environmental signals

2.1. Post transcriptional regulation

The response to environmental stimuli is mediated by post-
transcriptional regulation of gene expression in Leishmania spp., a
fact that was demonstrated by nuclear run-on experiments and
using the universal cellular heat shock response as model
[22,23]. Nuclear run-on and microarray studies showed that Leish-
mania genes are constitutively transcribed, consistent with the lack
of gene-specific transcription regulation. However, a global down
regulation of RNA synthesis was observed for axenic amastigotes
when compared with promastigotes [24,25]. The stage differentia-
tion process itself is associated with a globally increased protein
synthesis [26], but also with specific increases for amastigote
stage-specific proteins [27].
2.2. The role of mRNA stability and translation efficiency

While early research focused mainly on mRNA levels of selected
genes, later proteome analysis and system-wide RNA abundance
studies revealed that the regulation of Leishmania gene expression
occurs on levels other than RNA synthesis, i.e. RNA processing and
stability [28]. Even then, changes of mRNA abundance do not nec-
essarily translate into corresponding protein synthesis rates or
abundance, hinting at translation efficiency and protein half life
as additional targets of regulation [26,29–33].

RNA half life as a post-transcriptional regulatory mechanism
was shown for resistance to antimony, which differs in various
Leishmania species and correlates with the stability of the mRNA
coding for aquaglyceroporin (AQP1) and is mediated by the 30-
untranslated region (30 UTR) [34]. RNA stability is regulated by
non-long terminal repeat retrotransposons in the 30 UTR. In L.
major, two families of these Short Interspersed DEgenerated Retro-
posons (SIDER) could be identified, LmSIDER1 and LmSIDER2. For
SIDER2 it was demonstrated that it destabilises the mRNA and
even leads to an mRNA decay [35,36], while the SIDER1 family
can regulate mRNA translation in a stage-specific manner [37].
2.3. Ribosome profiling shows a regulated translation in Leishmania

RNA-Seq analysis is a powerful tool to obtain a genome-wide
view of mRNA abundance patterns and is often seen as the equiv-
alent to genome-wide gene expression analysis. However, in Leish-
mania and the related Trypanosoma spp., inducible mRNA
abundance and corresponding protein synthesis/abundance show
only a limited correlation [26,33,38–40]. To study the effect of
environmental triggers on gene expression in the parasite, the
steady-state level of proteins or translation rates can be measured.
The former can be done by mass spectrometry-based proteomics
[26,27,41] and the latter is achieved by ribosome profiling analysis
[42] or a combined metabolic labeling/mass-spectrometry strategy
[43]. The combination of ribosome profiling and RNA-Seq facili-
tates not only correlation studies of mRNA abundance and transla-
tion, but also gives a measure of the relative translation efficiencies
of mRNAs in response to environmental triggers. Ribosome profil-
ing analyses in L. donovani, combined with RNA-Seq, showed that
inhibition of HSP90, while having no global impact on gene expres-
sion, changes steady state levels for many mRNAs and causes
increased or decreased protein synthesis rates for <10% of the pro-
teome. RNA abundance variations correlate poorly with changes to
translation rates [33]. Among the proteins that show increased
synthesis upon HSP90 inhibition are many that are known as
markers of early amastigote differentiation, while induced mor-
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phological changes are reminiscent of in vitro stage conversion
[16,26,33,44].

2.4. Translation factors

While no canonical transcription factors are involved in control-
ling gene expression in Leishmania, translation factors may play
important roles. Axenically induced amastigote differentiation
coincided with reduced overall translation and phosphorylation
of translation factor eIF2a [45]. Reduction of protein synthesis in
amastigotes may reflect the adaptation to the reduced proliferation
rate observed for the intracellular stage [46]. Furthermore, it is
known for eukaryotes that stress causes a switch from cap-
dependent to cap-independent translation. Leishmania spp. can
adapt their translation machinery to environmental stress by a
special cap structure (cap-4) and associated cap-binding protein
eIF4E [47]. There are several factors, e.g. Leish4E-IP, that bind to
eIF4E and thus mediate the switch from cap-dependent to alterna-
tive translation initiation mechanisms [48]. Apart from these find-
ings, very little is known about translation factors and their role in
the regulation of inducible gene expression in Leishmania.

2.5. Post-translational modifications

Post-translational modifications (PTMs) are also involved in the
regulation of gene expression patterns by influencing the function
and stability of proteins through phosphorylation, acetylation,
methylation, and glycosylation. High throughput liquid chro-
matography/tandem mass spectrometry (LC-MS/MS) methodolo-
gies were used to study the prevalence of PTMs during axenic
differentiation into amastigotes and showed altered abundance
of modified proteins [49–51]. MAP kinases (MAPK), for instance,
play a major role in altering gene expression profiles. They are
highly conserved serine/threonine-specific protein kinases in all
eukaryotes and are important in signal transduction cascades. By
phosphorylating their substrates, MAPKs regulate critical cellular
functions in Leishmania affecting cell viability, parasitic life cycle
control, morphology and drug resistance [52–59]. Phosphorylation
of HSP70 and HSP90 by the L. donovani MAP kinase 1 is thought to
affect the stability of heat shock proteins and their functions dur-
ing the life cycle [60].

Casein kinases also play crucial roles in overcoming environ-
mental adversity. They are exported to the host cell cytoplasm
via exosomes and interact with parasite chaperones and host pro-
teins [61–64,94].
3. Genetic diversity and selection under environmental
challenge

The lack of gene regulation at the transcription level and the
absence of cis-splicing in Leishmania, the Trypanosomatida and
possibly all Euglenozoa sets these organisms apart from other
eukaryotic phyla [10,28,65,66]. Although Leishmania chromosomes
are divided into gene arrays that are transcribed in a polycistronic
mode [11,13,67], those arrays do not constitute operons of jointly
regulated, functionally related genes. Nevertheless, Leishmania
populations are able to adapt to environmental adversity.

Starting in the 1980s, researchers discovered that certain Leish-
mania genes were present in more than one copy per haploid set of
chromosomes [68–72], and the copy numbers often varied
between species and parasite isolates. This already hinted at gene
copy number variation (CNV) as a mechanism of genetic adaption.

The advent of reverse genetics in Leishmania research [73,74]
provided more puzzles. Double-allelic gene replacement by homol-
ogous recombination using different selection marker genes for
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both alleles often left detectable copies of the genes of interest
(GOI), in spite of a successful and verified gene replacement and
marker gene insertion [74,75].

Theavailabilityofdeepsequencingtechnology inrecentyearshas
greatly expanded our knowledge of the structure and dynamics of
Leishmania genomes. Parasite populations selected under virtually
any sort of pressure, e.g. drug challenge, temperature stress, pH
milieu, oxidative stress, but also loss-of-function mutations with
growth defects, can be subjected to whole genome sequencing
(WGS) alongside the pre-selection parental strain. The resulting
sequencereaddensitiescanthenbeanalysedforploidychanges,gene
CNVs, and single nucleotide polymorphisms (SNPs) [76].
Fig. 2. Constitutive and selected aneuploidy in Leishmania donovani selected under IC50

for 40 days. (A) NGS read alignment densities were established for each chromosome usi
2, and displayed as heat map. Note that i) chromosome 31 is constitutively tetrasomic, ii
trisomy after PTR1-i selection. In addition, chromosome 5 shows an intermediate ploid
read alignment over chromosome 5 for DMSO- (upper panel) or PTR1-i-selected (lowe
chromosome 5 in the PTR1-i-selected population.
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3.1. Aneuploidy and mosaic aneuploidy

Individual chromosome ploidy in Leishmania is highly variable
within populations [77–79]. Between one and up to six sister chro-
mosomes may occur. Chromosome ploidy can be assessed from the
relative NGS read alignment density, normalised to a reference
strain [76] (Fig. 2A). Intermediate fold values can indicate mosaic
aneuploidy, e.g. variances within the population, or partial chro-
mosome duplication events. Distinction between these possibili-
ties is done by plotting read alignment density against the length
of the chromosome: even read alignment density indicates whole
chromosome/partial population changes (Fig. 2B), while localised
of a pteridin reductase 1 inhibitor (PTR1-i) or an equivalent dose of solvent (DMSO)
ng the Bowtie2 algorithm, normalised against the overall average read density set at
)chromosomes 8, 12, and 24 are constitutively trisomic, and chromosome 23 shows
y indicating mosaic aneuploidy or partial chromosome amplification. (B) Sequence
r panel) shows equal relative read distribution, indicating mosaic aneuploidy for
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read alignment density increases may hint at partial chromosome/
whole population events.

Aneuploidy has been studied extensively in the context of drug
resistance. Decades of use of pentavalent antimony-based drugs in
endemic regions have led to wide-spread resistance, rendering
these drugs almost obsolete in certain areas [80–83]. The advances
of systems biology strategies in Leishmania spp. confirmed initial
proposals [84] linking antimony resistance with aneuploidy pat-
terns specific for resistant parasites [85–87]. However, mosaic ane-
uploidy also plays a role in the adaption to vector and host as
distinct patterns of ploidy are observed for vector- and host-
derived leishmaniae [86], but also for in vitro cultivated cells
[86,88,89].

Even more telling is a recent finding comparing somy patterns
of identical L. donovani strains obtained from cultivated parasites
or directly from clinical biopsies. This approach skips the in vitro
cultivation of parasites and the concomitant karyotypic diversifica-
tion prior to whole genome sequencing. While cultured parasites
showed a wide variety of somy patterns, ploidies were remarkably
similar for bone-marrow-derived parasite genomes [90], in keep-
ing with comparable selective pressures within the human hosts.

In multicellular organisms, aneuploidy is known to have severe
consequences, including tumour formation and chromosome
instability [91–93]. Yet, the leishmaniae seem to cope well with
genome plasticity. Firstly, aneuploidy is reversed quickly once
the benefits of a supernumerary chromosome expire. Secondly,
over expression due to additional gene copies appears to be limited
at the protein level [86,94]. Regulated translation may therefore
play a role in ameliorating the effects of aneuploidy.
3.2. Gene CNVs

As mentioned before, gene CNVs were observed for Leishmania
species and strains, often affecting heat shock gene arrays
[12,44,68–72], which can be assumed to mediate tolerance against
various physical and chemical stresses. Indeed, increased abun-
dances of HSP90 or HSP70 appear to protect Leishmania spp.
against antimony-containing drugs [95–97]. Drug selection pres-
sure can also lead to increased copy numbers for genes encoding
ABC transporter proteins [98]. The prevalent mechanism for gene
amplification was shown to depend on the SIDERs that are dis-
tributed over the Leishmania genomes. In addition to their roles
in mRNA stability, they can be found flanking amplified intra-
chromosomal and episomal genes and gene clusters, suggesting a
role of such repeats in the formation of linear and circular epi-
somes [94,99]. Such amplifications occur frequently and stochasti-
cally within a given population and, like mosaic aneuploidy,
contribute to the constitutive genetic diversity within Leishmania
isolates [85–87]. In fact, these fluctuations of gene copy numbers
are known to account for a majority of genetic adaptations [100].
However, while gene dosage affects the abundance of the corre-
sponding RNA(s) proportionally, their effect on protein abundance
during natural gene copy number variation [86] and targeted over
expression [94,101] is extenuated, likely due to modulated transla-
tion. Still, increased gene copy numbers lead to increased
expression.
4. SNPs

SNPs in non-coding or protein-coding sequences may affect
expression or function, respectively, of genes and their products.
They are usually associated with a loss-of-function phenotype. In
the context of drug resistance, SNPs were found in Leishmania
selected for resistance to the antileishmanial drug miltefosine.
Selected parasites carry a plethora of SNPs in the miltefosine trans-
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porter gene causing amino acid exchanges or open reading frame
shifts [102,103].

Another example for the selection of SNPs involves the L. major
P46 virulence enhancing protein, which, depending on the geo-
graphic origin of L. major isolates, shows distinct patterns of SNPs.
Defined SNP patterns were indeed selected in vitro and in murine
hosts, suggesting a role of P46 sequence polymorphism in the
adaption to diverse reservoir hosts found in various L. major-
endemic regions [104].
4.1. Mimicking CNV in the laboratory

Adaptive, extrachromosomal gene amplifications can be mim-
icked in a laboratory setting by complementation genetics, more
specifically by functional cloning from a cosmid library represent-
ing a Leishmania genome [15,105–109]. Since Leishmania genes do
not contain introns but need their flanking sequences for proper
RNA processing via trans-splicing and polyadenylation [110], unal-
tered, genomic DNA-bearing cosmids contain all the information
needed for proportional over expression of several neighbouring
gene loci. The compactness of the Leishmania genomes (~32–34 M
b) contributes to this, with less than 5000 individual cosmid clones
covering >99% of the genome [107], and allowing for a genome-
wide search for dominant genetic markers using a manageable
number of individual transfectants. Using shuttle cosmid vectors,
propagation in Escherichia coli and Leishmania spp. is feasible.
Lately, the technology was greatly improved by the use of next
generation sequencing (NGS) to map the origin of selected cosmids
and to establish the relative preference within a number of
selected gene loci [111–113]. This cos-seq strategy can now be
employed to identify dominant drug resistance markers for estab-
lished drugs and for drug leads, improving sustainable drug devel-
opment [111,114].
5. Conclusions

By dispensing with individually regulated RNA polymerase II
transcription, Leishmania spp., like all Trypanosomatida, lost an
important route to up-regulate the expression of genes needed
for overcoming environmental adversity, while allowing them to
dispense with cis- and trans-acting transcription regulators, thus
reducing genome size. The constitutive transcription of most of
their genome and the resulting waste of biochemical energy equiv-
alents is compensated in part by the compact arrangement of cod-
ing sequences, the lack of cis-splicing and introns, and the parasitic
life style, utilising the host’s energy resources. Generally speaking,
obligate parasites such as Leishmania spp. live in the stable envi-
ronments of either sandflies or mammals and are thus shielded
against acute environmental changes. Nevertheless, their extreme
and constitutive genetic variability as expressed in mosaic aneu-
ploidy, episomal and intrachromosomal gene amplification, a short
generation time, and an effective post-transcriptional stress
response allows them to adapt — as a population — to environmen-
tal challenges in an exemplary fashion.
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