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Abstract: Effectively identifying high-risk patients with de novo hypertensive disorder of pregnancy
(HDP) is required to enable timely intervention and to reduce adverse maternal and perinatal
outcomes. Electronic medical record of pregnant women with de novo HDP were extracted from
a birth cohort in Beijing, China. The adverse outcomes included maternal and fetal morbidities,
mortality, or any other adverse complications. A multitude of machine learning statistical methods
were employed to develop two prediction models, one for maternal complications and the other for
perinatal deteriorations. The maternal model using the random forest algorithm produced an AUC
of 0.984 (95% CI (0.978, 0.991)). The strongest predictors variables selected by the model were platelet
count, fetal head/abdominal circumference ratio, and gestational age at the diagnosis of de novo
HDP; The perinatal model using the boosted tree algorithm yielded an AUC of 0.925 (95% CI (0.907,
0.945]). The strongest predictor variables chosen were gestational age at the diagnosis of de novo
HDP, fetal femur length, and fetal head/abdominal circumference ratio. These prediction models
can help identify de novo HDP patients at increased risk of complications who might need intense
maternal or perinatal care.

Keywords: hypertension in pregnancy; preeclampsia; mortality

1. Introduction

Hypertensive disorders of pregnancy (HDP) are common complications in pregnant
women that cause maternal and fetal morbidity and mortality worldwide, accounting for
approximately 14.0% of maternal deaths per year [1]. The International Society for the
Study of Hypertension in Pregnancy (ISSHP) classifies HDP into four categories, of which
gestational hypertension and pre-eclampsia are the two de novo subtypes (de novo HDP)
that contribute to most cases of the disorders. De novo HDP are characterized by the
presence of hypertension occurred after 20 weeks of gestation and may be accompanied
with proteinuria (a symptom with high levels of protein in the urine, indicating impaired
kidney function), plus other maternal organ dysfunctions [2]. Patients with de novo HDP
can suffer serious adverse maternal and neonatal outcomes, including stroke, acute kidney
injury, heart failure, fetal growth restriction, preterm delivery, and even death [3]. These
clinical deteriorations would require prolonged hospitalization as well as considerable
medical resources and attention such as transferring to intense care unit [4]. Early prediction
of de novo HDP’s adverse outcomes therefore becomes crucial to the planning and the
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allocating of care, especially when given the scarcity of medical resources in low- and
middle-income countries where the incidence rates are the highest [5–7]. For example, a
2011 survey revealed that HDP affected 5.22% of all pregnancies in China, where 86.49% of
the cases were gestational hypertension or pre-eclampsia (i.e., de novo HDP) [8].

Although clinical predictors (such as chest pain/dyspnea, low platelet count, increased
AST/ALT, creatinine >100 µM, diastolic BP > 110 mm Hg) are widely used by international
clinical practice guidelines as criteria for predicting outcome and classifying severity in
women with de novo HDP, they often lack the ability to accurately distinguish those at
higher risk of developing maternal or perinatal complications [9–13]. To address this
global challenge, multiple studies have developed various risk prediction models: The
fullPIERS and the subsequent miniPIERS were the first models to predict adverse maternal
outcomes for patients with pre-eclampsia in high-income and low-income countries [14,15].
However, these studies were carried out in mostly non-east-Asian participants, and external
validation of fullPIERS in the Chinese population did not lead to desirable results [16].

Hence, considering that the performance of the prediction model depends heavily
on the target subjects and setting, two recent studies were conducted at different centers
in China [17,18]. Both prediction models achieved relatively high AUC: 0.822 (95% CI
[0.796, 0.847]) and 0.867 (95% CI [0.844, 0.890]). While these two localized models filled
the gap by identifying east Asian patients with only pre-eclampsia that might develop
maternal deterioration, they missed another large de novo HDP population that have
gestational hypertension and, additionally, neglected the substantial risks faced by the
patients’ fetuses. The objective of our study was to develop and validate two predictive
models for adverse maternal and neonatal outcomes, whereby healthcare providers can
effectively make assessment and take intervention for patients with de novo HDP.

2. Materials and Methods

This study was reported in line with the Transparent Reporting of a Multivariable
Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) statement [19].

2.1. Study Design and Population

We established a retrospective 7-year birth cohort at Tongzhou Maternal and Child
Health Care Hospital of Beijing, which is a tertiary obstetric center in Northern China. This
study enrolled patients diagnosed with de novo HDP (gestational hypertension or/and
pre-eclampsia) that were admitted to the hospital between January 2012 and December
2019. By collecting data of the aforementioned subjects, we developed and validated two
prediction models for adverse maternal outcomes or severe neonatal complications in
patients with de novo HDP. The proposed timing to apply these models is when a pregnant
woman has been diagnosed with de novo HDP, typically between 33 and 39 weeks into
gestation, and the clinician, through experience, perceives the need for further identifying
the risk of developing adverse outcomes. The time period for prediction was from the
initial diagnosis of de novo HDP to delivery and discharge within a week. Approval by the
Institutional Review Board of Peking University Health Science Center was obtained for
this study (No. IRB00001052-21023). Consent was acquired, and patient information was
deidentified and anonymized to ensure confidentiality.

2.2. Data Collection

A group of postgraduate students, obstetric nurses, and the hospital’s data engineers
were recruited and trained using established data extraction criteria. Electronic medical
records were either automatically mass extracted from the system, or manually inputted
by the investigators. Consistency check was carried out regularly throughout the data
extraction to ensure validity.
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2.3. Inclusion and Exclusion Criteria

This study included pregnant women who delivered at the Tongzhou Maternal and
Child Health Care Hospital of Beijing between January 2012 and December 2019, and
satisfied the following conditions: (1) ≥18 years old; (2) singleton gestation; (3) diag-
nosed with de novo HDP during hospitalization; (4) not yet diagnosed with the above
mentioned morbidities after admission but met the 2018 the International Society for the
Study of Hypertension in Pregnancy (ISSHP) guidelines [2] and the 2020 Chinese HDP
clinical practice guidelines [20]. According to these guidelines, gestational hypertension
was defined as de novo onset (after 20 weeks of gestation) of hypertension (systolic blood
pressure ≥140 mm Hg, diastolic blood pressure ≥90 mm Hg, or both) without the presence
of proteinuria or other end-organ dysfunction; pre-eclampsia can be defined as new hyper-
tension arising 20 weeks of gestation with proteinuria, other biochemical/hematological
abnormalities, or both.

Patients were excluded from the study if they were transferred to other hospitals, did
not undergo any pregnancy termination throughout hospitalization, or encountered any
adverse outcome of interest ahead of the collection of predictor data. If a pregnant woman
had multiple prior pregnancies, only the latest pregnancy’s information was kept. Other
previous pregnancies diagnosed with de novo HDP were considered as having past de
novo HDP history, which would be used as a predictor variable.

2.4. Candidate Predictors

Predictability, reliability, and accessibility were the criteria for selecting candidate
predictor variables. In addition to general characteristics such as demographics and the
number of prenatal checkups, variables considered in modeling (Table S1) were extracted
from past medical history, cardiorespiratory tests, hematological tests, renal tests, hep-
atic tests, and fetal ultrasound measurements, diagnosis records, operative records, and
progress records. The earliest values after the diagnosis of de novo HDP were chosen be-
cause this window would allow sufficient time for intervention before the onset of adverse
outcomes. If such variable of a certain record was missing, the closest measure taken within
a week before the diagnosis would be used as a replacement. Based on common missing
data handling approaches, predictor variables (except for those having high p values)
whose missingness was greater than 10% were excluded in the modeling because if such
missingness was kept, the analysis was likely to be biased [21]. Variables with less than
10% missing data were imputed using the k-nearest neighbor algorithm, which takes the
average from k (number) nearest neighbors found in the training set to impute the missing
values. Clinical diagnostic cutoff points were used to generate supplementary categorical
variables (high, low, or normal) based on their continuous counterparts. The final working
dataset for maternal adverse outcome included 77 candidate predictor variables in total:
45 continuous, 32 categorical; For adverse neonatal outcome, the final working dataset
included 80 candidate predictor variables in total: 44 continuous, 36 categorical.

2.5. Study Outcomes

The selected adverse maternal and neonatal outcomes were based on previous stud-
ies [14,15,17,18,22], systemic reviews [23], international clinical practice guidelines [2,11,12],
and Chinese guidelines [20]. The outcomes included maternal and neonatal morbidities,
mortality, or any other adverse events containing severe cerebrovascular, cardiorespiratory,
liver, hematological, and renal complications (Table 1). These outcomes were defined using
the International Classification of Diseases 10th Revision (ICD-10) codes and intensive
care unit (ICU) admission records (extracted from electronic medical records). Ten adverse
maternal outcomes were determined by the following ICD-10 codes: HELLP syndrome
(O14.2), eclampsia (O15), cerebrovascular complications (O99), placental abruption (O45),
acute kidney injury (O90.4), pulmonary edema (J81), liver dysfunction (S36.1), disseminated
intravascular coagulation (D65), death (O95, R96, R99), and ICU admission. Six adverse



Healthcare 2022, 10, 2307 4 of 11

neonatal outcomes were identified, including preterm birth, fetal growth restriction or
small for gestational age, neonatal ICU admission, low Apgar scores, and neonatal death.

Table 1. Occurrence of adverse maternal and neonatal outcomes by mortality/morbidity.

Maternal
Outcomes

Neonatal
Outcomes

Total occurrence 102 (5.58%) Total occurrence 306 (16.73%)

HELLP syndrome 51 Preterm birth 275

Eclampsia 3 Fetal growth restriction or
small for gestational age 33

Cerebrovascular
complications 0 Neonatal ICU admission 0

Placental abruption 45 Low Apgar scores (<7) 17

Acute kidney injury 0 Neonatal death 5

Pulmonary edema 6

ICU admission 1

Liver dysfunction 3

Disseminated intravascular
coagulation 2

Maternal death 0

2.6. Development and Validation of the Model

The candidate predictor variables were filtered using univariate analysis: t test or
Wilcoxon rank sum test for continuous variables and Pearson’s chi-square test or Fisher’s
exact test for categorical variables. Variables associated (p ≤ 0.1) with the outcomes were fed
into a multitude of machine learning algorithms to identify the best predictive models for
maternal or neonatal outcome. The most representative machine learning methods of each
type were screened and evaluated, including random forest, C5.0, bagged CART, boosted
trees, k-nearest neighbors, neural network, flexible discriminant analysis, boosted logistic
regression, naïve Bayesian, single C5.0 tree, boosted generalized linear model, elastic net,
partial least squares, nearest shrunken centroids, bagged MARS, and tree models from
genetic algorithms [24].

Ten-time repeated 10-fold cross validation was performed to randomly create 100 com-
binations of training and testing sets to optimize the machine learning models without
overfitting. The best predictive machine learning methods for adverse maternal and
neonatal outcomes were chosen based on their AUC (Area under the receiver operating
characteristic curve: a metric to evaluate model performance; the larger the area the better),
sensitivity (the model’s ability to identify positive instances), and specificity (the model’s
ability to detect negative instances).

Machine learning algorithm screening carries considerable weight in our study, as this
process determines the final performance of the prediction models. Machine learning algo-
rithms can be assessed based on a variety of metrics, such as interpretability, computation
speed, ease/difficulty of feature selection, and robustness to predictor noise. Each algo-
rithm has its advantages and disadvantages. Careful performance screening and evaluation
must be performed to determine the most suitable machine learning method(s) for our
models. Two machine learning methods, random forest and boosted tree, were identified
to be the most suitable in the study population. The first chosen algorithm, random forest,
is a widely used supervised algorithm that creates a “forest” by growing and combining
multiple decision trees. The logic behind the algorithm is that multiple individual decision
tree models can achieve better performance as a group than separately. The random forest
algorithm is less prone to overfitting and can yield high accuracy. It is also robust to outliers
and predictor noise, maintaining relatively stable performance even when new data points
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are introduced into the dataset because this may only affect one decision tree. However, the
random forest algorithm can be complex and time consuming compared to other methods.
The second selected algorithm, boosted tree, is similar to random forest by repeatedly
fitting multiple decision trees to improve the accuracy of the model. It uses the boosting
method that weighs the input data in subsequent trees. This algorithm is easy to tune and
robust to noise but can take longer to compute.

Backward feature elimination/selection (a technique that includes all features in the
model than remove those less statistically significant variables one by one) was applied
to the two selected models, shrinking their most informative predictor number to a man-
ageable size for better application in clinical practice. For comparison, two additional
benchmark models for adverse maternal and neonatal outcomes were created using the
best performing machine learning methods identified by this study and fit with predictor
variables deemed important in the fullPIERS study. These fullPIERS-selected variables
included gestational age, chest pain or dyspnea, platelet count, creatinine, and aspartate
transaminase concentrations, and oxygen saturation. We did not include oxygen satura-
tion due to high percentage of unavailability in our study population, which was also
found prone to be missing in the fullPIERS study [14]. R (Version 4.1.0) was used for data
extraction, model fitting, and statistical analyses.

3. Results
3.1. Cohort Characteristics

As shown in Table 2, between January 2012 and December 2019, 1829 patients diag-
nosed de novo HDP were identified from a birth cohort study at the Tongzhou Maternal
and Child Health Care Hospital of Beijing. A total of 102 (5.58%) patients developed
adverse maternal outcomes, and 306 (16.73%) developed adverse neonatal outcomes af-
ter their diagnosis of de novo HDP. For both adverse maternal outcomes and neonatal
outcomes, maternal age (years), gestational age at diagnosis (weeks) showed significant
statistical difference, whereas BMI was only significant for maternal outcomes, and Parity
for neonatal outcomes. The number of perinatal checkups were not analyzed for association
was because only the more severe condition would lead to the more checkups, but not
vice versa. These characteristics therefore should not be used as predictors. Compared
to patients who had no adverse maternal outcomes, patients with complications had an
earlier diagnosis of de novo HDP, lower fetal abdominal circumference, greater umbilical
artery flow of the fetus, less frequent ultrasound checks, higher creatine, increased uric acid,
higher aspartate aminotransferase and higher glutamate transaminase, elevated lactate
dehydrogenase, higher total bilirubin, increased blood glucose, higher creatine kinase
isoenzyme, higher urea nitrogen and increased electrolyte level, and lower platelet volume
and thrombocytosis. Participants who developed adverse neonatal outcomes had similar
characteristics. They had lower gestational age at the diagnosis of de novo HDP, lower fetal
abdominal circumference, increased fetal umbilical artery flow, and higher creatine and uric
acid levels. They also had higher aspartate aminotransferase and glutamate transaminase,
increased lactate dehydrogenase, and elevated creatine kinase. The major adverse maternal
outcomes for our study were HELLP syndrome (50.00%) and placental abruption (44.12%)
(Table 1). The primary adverse neonatal outcome was preterm birth (89.87%) (Table 1).
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Table 2. General characteristics of the study population.

Adverse Maternal Outcomes Adverse Neonatal Outcomes
No, n = 1 727 Yes, n = 102 p-Value No, n = 1523 Yes, n = 306 p-Value

Demographic characteristics
Maternal age (years) 29.3 (4.3) 30.9 (4.5) 0.008 29.2 (4.3) 30.4 (4.5) 0.040

BMI 24.6 (4.0) 23.3 (3.5) 0.004 24.6 (4.1) 24.0 (3.4) 0.6
Gestational age at diagnosis

(weeks) 36.5 (3.7) 33.7 (4.0) <0.001 37.1 (3.5) 32.9 (3.2) <0.001

Parity ≥1 425 (24.6) 30 (29.4) 0.4 367 (24.1) 89 (29.1) 0.036
Gravidity ≥ 1 824 (47.7) 50 (48.7) >0.9 711 (46.7) 164 (53.6) 0.3

Education level
Low 276 (20.8) 20 (19.4)

0.2
319 (20.9) 59 (19.4)

0.7Middle 608 (45.9) 41 (40.3) 695 (45.6) 138 (45.0)
High 442 (33.3) 41 (40.3) 509 (33.4) 109 (35.6)

Occupation
Worker/Farmer 69 (4.0) 3 (2.6)

0.8

61 (4.0) 12 (3.8)

0.5
Government

Employee/technician 755 (43.7) 45 (44.7) 664 (43.6) 137 (44.7)

Business/services 362 (20.9) 19 (18.4) 312 (20.5) 69 (22.6)
Others 541 (31.3) 35 (34.2) 486 (31.9) 88 (28.8)

Number of checkups during perinatal period
Perinatal checkups 9.6 (4.2) 7.8 (3.6)

NA

9.9 (4.1) 7.3 (3.3)

NA

Urine routine tests 38.4 (62.9) 33.9 (39.2) 35.3 (52.7) 52.3 (93.9)
Comprehensive metabolic

panel 5.2 (2.6) 6.9 (4.4) 4.9 (2.1) 7.1 (4.3)

Blood coagulation factor 4.1 (2.2) 6.6 (4.2) 3.8 (1.9) 6.1 (3.7)
Complete blood count 10.3 (3.3) 12.5 (4.9) 10.1 (3.1) 12.0 (4.7)

Urine protein tests 28.2 (52.5) 25.5 (32.7) 25.4 (41.9) 41.3 (83.5)
Fetal ultrasound tests 3.2 (1.2) 2.6 (0.9) 3.3 (1.2) 2.5 (1.0)

Continuous variables: mean (standard deviation); Categorical variables: count (column percentage).

3.2. Model Development, Specification, and Performance

Predictor variables having potential association (p ≤ 0.1) with adverse maternal out-
comes or adverse neonatal outcomes were fed into numerous representative machine
learning algorithms (Tables S2 and S3). After 10 repeated 10-fold cross validation, the
best performing method in terms of AUC for adverse maternal outcome was the random
forest algorithm, followed by bagged CART, C5.0, neural network, k-nearest neighbor, etc.
(Figure S1). The top 10 most informative predictor variables selected by the random forest
method included platelet count, fetal head/abdominal circumference ratio, gestational
age at diagnosis, low plateletcrit (categorical), plateletcrit, 24 h urine protein, creatinine,
high serum chlorine (categorical), fetal femur length/abdominal circumference ratio, and
prothrombin time (Figure S2). For adverse neonatal outcomes, the best performing method
in terms of AUC was boosted tree, followed by random forest, C5.0, flexible discriminant
analysis, and bagged CART (Figure S3). The top 10 most important variables chosen by
the boosted tree method included gestational age at diagnosis, fetal femur length, fetal
head/abdominal circumference ratio, fetal biparietal diameter, fetal head circumference,
24 h urine protein, abnormal fetal head circumference (categorical), umbilical artery blood
flow, resistance index, and fetal pulsatility index (Figure S4). These respective predictors
for both adverse maternal and neonatal outcomes consistently spanned machine learning
models, indicating their strong predictive power (Table S4(1,2)).

Table 3 showed the performance for each model with each set of predictor variables
using the aforementioned backward feature elimination method. In terms of adverse
maternal outcome model (random forest), the model with all predictor variables had the
highest AUC, sensitivity, and specificity. Starting from the top 10 variables, the AUC began
to drop. It was noted that models with less than 7 of the most important variables begin to
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drop faster in terms of sensitivity. Therefore, the simplified maternal model must contain
at least the top 7 most important predictor variables (Table 3 and Figure S5). Applying
the same approach to the adverse neonatal outcome model (boosted tree), the model with
all variables had the highest AUC, sensitivity, and specificity. Interestingly, unlike the
maternal models, the neonatal AUC values did not follow a linear decreasing manner. The
model with the top 6 most important predictor variables had the second highest AUC and
sensitivity, which should then be chosen as the final simplified neonatal model (Table 3 and
Figure S6).

Table 3. The performance of selected models with different sets of top features based on backward
feature elimination method.

Maternal Model Neonatal Model

Number of
Features AUC Sens Spec Number of

Features AUC Sens Spec

All variables 0.986 (95% CI
[0.978, 0.991])

0.783 (95% CI
[0.735, 0.824])

0.994 (95% CI
[0.988, 1.000]) All variables 0.930 (95% CI

[0.907, 0.945])
0.548 (95% CI
[0.484, 0.600])

0.980 (95% CI
[0.974, 0.987])

Top 10 0.972 (95% CI
[0.961, 0.981])

0.647 (95% CI
[0.600, 0.714])

0.988 (95% CI
[0.983, 0.994]) Top 6 0.923 (95% CI

[0.906, 0.937])
0.533 (95% CI
[0.467, 0.600])

0.974 (95% CI
[0.972, 0.987])

Top 9 0.972 (95% CI
[0.963, 0.979])

0.743 (95% CI
[0.706, 0.794])

0.980 (95% CI
[0.971, 0.988]) Top 7 0.922 (95% CI

[0.905, 0.937])
0.541 (95% CI
[0.484, 0.600])

0.974 (95% CI
[0.967, 0.980])

Top 7 0.965 (95% CI
[0.955, 0.974])

0.714 (95% CI
[0.676, 0.765])

0.977 (95% CI
[0.965, 0.983]) Top 9 0.922 (95% CI

[0.902, 0.936])
0.525 (95% CI
[0.467, 0.581])

0.974 (95% CI
[0.972, 0.987])

Top 8 0.965 (95% CI
[0.953, 0.973])

0.686 (95% CI
[0.629, 0.735])

0.971 (95% CI
[0.965, 0.983]) Top 8 0.922 (95% CI

[0.902, 0.936])
0.525 (95% CI
[0.467, 0.581])

0.974 (95% CI
[0.972, 0.987])

Top 6 0.962 (95% CI
[0.947, 0.970])

0.588 (95% CI
[0.543, 0.629])

0.977 (95% CI
[0.971, 0.983]) Top 10 0.921 (95% CI

[0.903, 0.935])
0.516 (95% CI
[0.452, 0.570])

0.980 (95% CI
[0.974, 0.987])

Top 5 0.943 (95% CI
[0.930, 0.958])

0.543 (95% CI
[0.471, 0.591])

0.983 (95% CI
[0.977, 0.988]) Top 5 0.906 (95% CI

[0.890, 0.925])
0.452 (95% CI
[0.387, 0.516])

0.961 (95% CI
[0.948, 0.974])

Based on the predictor variables selected in the fullPIERS model and the best per-
forming machine learning algorithms selected by the two models developed in this study,
the benchmark models using fullPIERS predictor variables and trained using the same
dataset, however, were outperformed by our models (Table 4 and Figure 1). By com-
parison with the models developed in this study, although the benchmark models had
similar AUCs of 0.942 (95% CI [0.930, 0.960]) vs. 0.965 (95% CI [0.953, 0.973]) for adverse
maternal outcomes and 0.889 (95% CI [0.869, 0.911]) vs. 0.923 (95% CI [0.906, 0.937]) for
neonatal outcomes, they had lower sensitivity (the ability to distinguish patients at risk):
0.623 (95% CI [0.554, 0.676]) for the benchmark maternal model vs. 0.686 (95% CI [0.629,
0.735]) for our maternal model; 0.323 (95% CI [0.267, 0.390]) for the benchmark neonatal
model vs. 0.533 (95% CI [0.467, 0.600]) for our neonatal model.

Table 4. Performance comparison between our models and the benchmark models.

Models Developed in This Study Benchmark Models

AUC Sens Spec AUC Sens Spec

Maternal
model

0.965 (95% CI
[0.953, 0.973])

0.686 (95% CI
[0.629, 0.735])

0.971 (95% CI
[0.965, 0.983])

Maternal
model

0.923 (95% CI
[0.906, 0.937])

0.533 (95% CI
[0.467, 0.600])

0.974 (95% CI
[0.972, 0.987])

Neonatal
model

0.942 (95% CI
[0.930, 0.960])

0.623 (95% CI
[0.555, 0.676])

0.971 (95% CI
[0.965, 0.983])

Neonatal
model

0.889 (95% CI
[0.869, 0.911])

0.323 (95% CI
[0.267, 0.390])

0.967 (95% CI
[0.954, 0.980])
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Figure 1. Performance comparison between our models and the full PIERS model for predicting
adverse maternal and neonatal outcomes in our study population.

4. Discussion
Main Findings

We developed two risk prediction models using machine learning, aiming to identify
patients with de novo HDP that might develop adverse maternal outcomes or severe
neonatal deterioration. Our models predicted the risks of adverse maternal and neonatal
outcomes as soon as the patients were diagnosed with de novo HDP. Using a variety of
machine learning statistical methods, we identified informative and predictive risk factors,
including those considered important in previous studies and additional features that
pertained to our study population. In descending order of feature importance, predictor
variables of the maternal model contained platelet count, fetal head/abdominal circumfer-
ence ratio, gestational age at the diagnosis of de novo HDP, low plateletcrit (categorical),
plateletcrit, 24 h urine protein, and creatinine; the predictor variables of the neonatal
model comprised gestational age at the diagnosis of de novo HDP, fetal femur length, fetal
head/abdominal circumference ratio, fetal biparietal diameter, fetal head circumference,
and 24 h urine protein.

Except for gestational age, creatinine, and platelet count that were present in both our
models and the fullPIERS model, the rest of the predictor variables selected by our models
were different. For example, our models identified fetal head/abdominal circumference
ratio as a crucial risk factor for predicting both adverse maternal and neonatal outcome.
Besides this predictor variable from fetal ultrasound assessment, one more variable (fe-
tal femur length/abdominal circumference ratio) from the same examination was also
considered important in the maternal model. This finding indicates how demographic,
geographic, and socio-economic differences in two study settings can play an essential
role in model development, resulting in distinct sets of predictors in our study and the
fullPIERS study. It also further emphasizes the importance of developing a tailored model
that is more suitable for the local population and clinical practice, instead of deploying a
model based on different population that might be underperforming in the new setting.
These predictor variables deemed important by our models, in addition to carrying more
predictive power in the Chinese population, they can also be easily accessed because the
3 types of tests that they were extracted from, comprehensive metabolic panel, complete
blood count, and fetal ultrasound assessment, are commonly used in most hospitals across
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China. Our models should be able to facilitate and streamline management of health care
given to pregnant women, in particular to those diagnosed with de novo HDP who can
benefit the most from early perinatal intervention.

Apart from predictor variables such as platelet count and gestational age at the di-
agnosis of the disorder and creatinine, the models developed in this study also identified
some novel predictor variables other than those of the other published models for adverse
maternal outcome. Variables from the comprehensive metabolic panel and complete blood
count constituted the majority of predictor variables for the maternal model, in addition
to the fetal head/abdominal circumference ratio, which was identified as an important
predictor in both our maternal and neonatal models as a clinical variable that was not
traditionally considered. This latter variable, in conjunction with other predictor variables
from the fetal ultrasound assessment, contributed to the most predictive variables selected
by the neonatal model. In practice, if limited by the availability of clinical check-ups, the
patients can possibly undergo a minimum of 3 types of tests (comprehensive metabolic
panel, complete blood count, and fetal ultrasound assessment) to enable risk prediction for
any adverse outcomes.

5. Conclusions

Between 2003 and 2009, hypertensive disorders of pregnancy (HDPs) accounted for
8–10% of all pregnancies and 14% of all maternal deaths globally [1]. In 2011, HDP affected
5.22% of all pregnancies in China, causing millions suffered from the disorders [8]. Multiple
international and regional studies [14,15] were carried out to address this international
challenge by developing risk assessment tools, which presented good prediction ability to
identify patients at risk of adverse maternal outcome. We developed two risk prediction
models using machine learning, aiming to identify patients with de novo HDP that might
develop adverse maternal outcomes or severe neonatal complications. By comparison,
our models not only concentrated on both the maternal and neonatal outcomes, but also
outperformed the benchmark model by a significant margin. The risk prediction tool
developed in this study can aid in identifying women at elevated risk of developing
adverse maternal or neonatal outcomes, allowing providers to take timely prevention or
intervention, thus elevating both health and financial burden.

Some strengths were presented in this study. First, we included a wide range of
accessible clinical variables that fit the local clinical settings. Second, the gestational age of
diagnosis for de novo HDP was extracted by a hybrid method, which guaranteed good
data quality. We extracted the gestational age of the diagnosis from the free text of medical
records using the regular expression matching method. Then, all the information was
double checked by two independent researchers to examine abstraction accuracy. Third,
compared to previous risk prediction models such as fullPIERS [14], miniPIERS [15], and
the two other regional models developed for the Chinese population [17,18], our study
also took tremendous consideration in modeling adverse neonatal outcomes, which had
a relatively large case sample for analysis. Fourth, the important predictors identified in
our models and their associated tests are readily available at most hospitals and can be
acquired quickly at relatively low cost.

Meanwhile, there are still some limitations to our present study. First, our study
collected data primarily from the suburban population in northern China (Beijing). The
potential of our model’s generalizability needs more study to validate. Second, the units of
diagnosis dates for de novo HDP are in weeks, which may lack temporal accuracy to build
the model for predicting outcomes within several days. Third, our current models have
not yet been externally validated. To address such limitations, it is necessary to establish
a multi-center, multi-demographic collaboration with hospitals located in other parts of
China, through which we can cross-validate our models and potentially develop a useful
prediction tool with greater generalizability.
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