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Abstract 
Various methods exist that utilise information from genetic predictors 
to help identify potential causal relationships between measured 
biological or clinical traits. Here we conduct computer simulations to 
investigate the performance of a recently proposed causal Graphical 
Analysis Using Genetics (cGAUGE) pipeline, used as a precursor to 
Mendelian randomization analysis, in comparison to our previously 
proposed Bayesian Network approach for addressing this problem. 
We use the same simulation (and analysis) code as was used by the 
developers of cGAUGE, adding in a comparison with the Bayesian 
Network approach. Overall, we find the optimal method (in terms of 
giving high power and low false discovery rate) is the cGAUGE pipeline 
followed by subsequent analysis using the MR-PRESSO Mendelian 
randomization approach.
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Introduction
In a paper recently published by Amar et al. (2021), a pipeline 
entitled “causal Graphical Analysis Using Genetics” (cGAUGE) 
was proposed. This pipeline involves carrying out various  
pre-processing/filtering steps to reduce the number of vari-
ables to be taken forward for subsequent causal inference 
analysis using extensions of Mendelian randomization (MR) 
approaches, including inverse variance weighted (IVW) regres-
sion (Burgess et al., 2013), MR-Egger (Bowden et al., 2015) 
and MR-PRESSO (Verbanck et al., 2018). Amar et al. (2021) 
demonstrated that use of their cGAUGE pipeline resulted in 
a lower false discovery rate (FDR) compared to carrying out  
the same MR analysis approaches with no pre-filtering of  
variables.

Amar et al. (2021) also considered the Bayesian network (BN) 
approach that we previously described (Howey et al., 2020). 
However, the BN methods were not optimally implemented  
by Amar et al. (2021), and only a single FDR value (rather 
than a detailed comparison of FDRs under different scenar-
ios) was reported. We therefore here use the R simulation code  
of Amar et al. (2021) and re-run some of their simulation exam-
ples to compare the MR methods (with/without cGAUGE  
pre-filtering) with our BN approach. We also take the oppor-
tunity to evaluate not just the FDR but also the power (at any 
given FDR) of the different methods considered, which was not  
reported by Amar et al. (2021).

As previously discussed (Howey et al., 2020), there is a lack 
of direct comparability between MR and BN methods, and 
so for making discoveries with MR we chose to consider  
p-value threshold values of 0.1, 0.05 and 0.01, while for BN 
we used edge probability thresholds of 0.7, 0.8 and 0.9. The 
resulting powers and false discovery rates (FDR) are therefore 
not directly comparable, but they do give some indication of  
how the methods perform using thresholds that might be  
considered reasonably comparable choices in practice. In addi-
tion, by plotting receiver operating characteristic (ROC) curves, 
we can make direct comparisons between the methods in terms  
of the powers achieved at any given FDR.

Methods
To reproduce the simulated data and MR analyses of Amar  
et al. (2021), we downloaded the R code they provided. We 
used it to repeat the results presented in Figure 3a of Amar  
et al. (2021) but we additionally analysed the data using a 
BN approach. We only considered the “UniqueIV” version 
of cGAUGE as this had been shown by Amar et al. (2021) to  
perform the best. There were 15 continuous traits simulated, 
each having between 10 to 20 binary instrumental variables. 
The traits were set to have random causal relationships with 
around 1 or 2 other traits. Different levels of horizontal plei-
otropy were set through assigning the simulation parameter  
p

pleio
 values of 0, 0.1,...0.4, where zero indicates no horizon-

tal pleiotropy. We used 100 simulation replicates and calcu-
lated the average false discovery rate (FDR) and the number  
of causal predictions between variables. We also calculated 
the average power of each method to identify the true causal  
relationships in each simulation. For MR, p-value threshold 

values of 0.1, 0.05 and 0.01, adjusted using the BY algorithm  
(Benjamini & Hochberg, 1995; Benjamini & Yekutieli, 
2001), were used. For BN, edge probability thresholds of 0.7,  
0.8 and 0.9 were used.

In our earlier paper (Howey et al., 2020) we described two 
BN approaches. The first used only four variables (two traits 
and a weighted allele score variable for each trait) in any 
given analysis, and the second included all available trait  
variables simultaneously in the analysis, together with a weighted 
allele score variable for each trait variable. Here we reproduce  
Figure 3a of Amar et al. (2021), adding in our four-variable  
BN approach. (This is the approach that was labelled as 
BN(G,Z) in Figures 3–6 and as B1 in Figure 10 of Howey et al.  
(2020)). Weighted allele score variables were created using 
genetic instrumental variables (IVs) passing a p-value thresh-
old of 0.05 when adjusted with Bonferonni correction from 
approximately 225 available IVs. We performed four-variable 
BN analyses for every pair of variables chosen from the 15 trait  
variables together with their accompanying weighted allele 
score variables. All variables were treated as continuous. We 
also separately carried out four-variable BN analyses using 
weighted allele score variables created from the subset of  
instrumental variables that were suggested by the “UniqueIV” 
cGAUGE method. All BN analyses were carried out using our 
freely available BayesNetty software package.

The rationale for choosing the four-variable BN approach 
for each trait pair (instead of using all trait variables in one  
fitted network) was as follows: In the simulated data and 
related underlying network, Amar et al. (2021) considered a  
variable to be causal on another variable if there was a directed 
path from one variable to the other with possible intermedi-
ate variables. Therefore, when an average BN is fitted to all the 
data, a fair comparison with the MR methods should account  
for the many potential paths when calculating the prob-
ability of a causal path from one variable to another. There are  
considerable practical challenges to correctly estimating the 
probability of a complete causal path from one variable to  
another from the average networks calculated by the BN  
approach when all the data is considered. The four-variable BN 
method avoids all such problems and has the advantage of a  
simple analysis approach, making it computationally extremely 
quick, particularly as no random restarts are required in the  
fitting process.

For the BN analyses we calculated an average network for 
every pair of trait variables as previously described (Howey 
et al., 2020). To compute the average network, the data was  
bootstrapped with replacement 1000 times and the best fit  
network was fitted at each iteration. The weighted allele score 
variable for each trait variable was constrained to be fixed as a 
parent variable and no other edges were permitted to or from  
the weighted allele score variables. Thus, the only edge in ques-
tion was between the two traits. The number of times that 
an edge appeared between two variables in each best fit net-
work was recorded, together with its direction. This allows  
us to calculate the strength and direction values (between 0 
and 1) for each pair of variables, where the strength is defined 
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as the probability (proportion of times) that an edge appears  
between the two nodes and the direction is the proportion of 
times that the edge is in a given direction, given that it exists. 
The overall probability of a directed edge from one variable  
to another was given by the product of the strength and direction.

We constructed ROC curves by calculating the mean true 
and false positive rates over the 100 simulation replicates for 
each test at different (p-value or edge probability) thresholds. 
Three different levels of horizontal pleiotropy were considered,  
corresponding to p

pleio
 parameter values of 0, 0.2 and 0.4,  

respectively.

Results and discussion
Figure 1 shows the average FDR (leftmost panels), number 
of predictions (middle panels) and power (rightmost panels) 

for different p-value and edge probability thresholds rang-
ing from the least stringent (top panels) to the most stringent 
(bottom panels). It can be seen by comparing the top left and  
top middle plots with the top panels of Amar et al. (2021)  
Figure 3a, that we do indeed replicate their results (subject to 
some random stochasticity). As previously mentioned, the MR 
FDRs and powers cannot be compared directly with those of 
BN, but we apply edge probability thresholds that in practice 
could be considered reasonably similar and we thus consider it  
reasonable to compare these results.

When p
pleio

 = 0 there is no horizontal pleiotropy and the FDR 
for BN is slightly higher than that of other methods, but when 
p

pleio
 > 0 the BN FDR is lower than MR-PRESSO (without 

use of cGAUGE) and around the same as IVW (without use of  
cGAUGE). Lower FDRs are achieved by the MR meth-

Figure 1. Mean number of discoveries, empirical false discovery rates (FDR) and power of Mendelian randomization and  
Bayesian network (BN) methods. ���� ���� ���������� ������ ��� ���� �������� ���� �� ����� �� ���������� ����� �������� ���� ���������� ������ ��� ���� �������� ���� �� ����� �� ���������� ����� ���� A��� et al.  
(2021), ���� ��� ��� ���� ���� ��� �������� ����� ��������������� �� A��� et al. (2021) F������ 3�. T�� ����� ���� ��� �v������ ������� ��  
��� ����������� ��� ����������� ��v��� �� ����z����� ���������y ���v�� by ����� ���������� ��������� ppleio. �����v����� ���� ���� M�� ���� 
were made at significance levels (pvalMR) �� 0.1, 0.05 ���� 0.01 �� ��� ���, �������� ���� b����� ���� ��������v��y, ����� ���j������� ��� F���  
������ ��� BY ����������. �����v����� ���� ���� BN ����y��� ���� ����� �� ������ ���b�b����y (probBN) ����������� �� 0.7, 0.8 ���� 0.9 
�� ��� ���, �������� ���� b����� ���� ��������v��y. T�� ������� ���� ���� �� ������ ���� ��� F���, ���b�� �� ������������ ���� ��� �����,  
��������v��y. IVW=��v���� v������� ����������.
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ods when “UniqueIV” cGAUGE filtering is applied, with  
MR-PRESSO combined with cGAUGE filtering achieving the 
overall lowest FDR. The number of predictions (middle panels)  
are included as these were presented in Amar et al. (2021), 
although we consider the power (rightmost panels) to be of 
more interest. The BN power is reasonably high but decreases 
when p

pleio
 increases, similar to what is seen for the MR methods  

with the exception of MR-PRESSO.

We also tried using the IVs suggested by the cGAUGE 
method in our BN approach, even though the cGAUGE  
pipeline was originally designed for use with MR analyses. 
There was little difference in the FDR or power of BN between 
using cGAUGE or not. The FDR was around the same, a little  
higher when the edge probability threshold was 0.7 and a  

little lower when it was 0.9. The power was negligibly higher 
for all thresholds. The average FDRs obtained when using 
BNs with p

pleio
 = 0 and p

pleio
 = 0.3 and using an edge probability  

threshold of 0.7 were 17% and 27%, respectively, similar to 
those reported by Amar et al. (2021). The FDR value for p

pleio
 

= 0 was within the range suggested by Amar et al. (2021) 
(between 16% and 21.4% among the top 20 predicted edges) 
but for p

pleio
 = 0.3 the FDR was lower than that suggested by  

Amar et al. (2021)

(> 31% among eithe the top 10 or top 20 predicted edges).

Figure 2 shows the ROC curves obtained when p
pleio

 was set 
to 0, 0.2 and 0.4. The first obvious peculiar feature of the ROC 
curves in Figure 2 (a) to (c) is that none of the curves reach 

Figure 2. Receiver operating characteristic (ROC) curves of Mendelian randomization and Bayesian network (BN) methods.  
���� ���� ���������� ������ ��� ���� �������� ���� �� ����� �� ���������� ��� ����� �� A��� et al. (2021) F������ 3�. T�� ��OC ���v�� ���� 
results from simulations for different levels of horizontal pleiotropy given by data simulation parameter ppleio (��� A��� et al. (2021))  
��� �� ������ 0, 0.2 �� 0.4. T�� p-v����� �� ��� M�� ����� ���� ���j������ ������ ��� BY ���������� �� ����� (a) �� (c) ���� ��� ���j������ �� �����  
(d) �� (f). IVW=��v���� v������� ����������.
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Figure 3. Close-up receiver operating characteristic (ROC) curves of Mendelian randomization and Bayesian network (BN) 
methods. ���� ���� ���������� ������ ��� ���� �������� ���� �� ����� �� ���������� ��� ����� �� A��� et al. (2021) F������ 3�. T�� ��OC 
curves show results from simulations for different levels of horizontal pleiotropy given by data simulation parameter ppleio (see A��� et al. 
(2021)) ��� �� ������ 0, 0.2 �� 0.4. T�� �-v����� �� ��� M�� ����� ���� ���j������ ������ ��� BY ���������� �� ����� (a) �� (c). IVW=��v���� v������� 
����������.

the top right hand corner (where the true and false positive  
rates would both equal 1). In BN analysis, on rare occasions 
the average network may never fit an edge between two traits 
if there is no strong association, resulting in a zero probabil-
ity of an edge and thus a true or false positive rate of 1 is not  
possible for any probability threshold. The results of MR tests 
are adjusted using the BY algorithm (Benjamini & Hochberg, 
1995; Benjamini & Yekutieli, 2001) using the R package 
function p.adjust, to be consistent with the results of  
Amar et al. (2021). This adjustment results in many p-values 
that are truncated at 1 and thus do not pass any p-value thresh-
old, resulting in no threshold where there is a true or false 
positive rate of 1. ROC curves in Figure 2 (c) to (d) show the 
MR methods without any adjustment, which are quite simi-
lar to those obtained when adjusting, but extend further to the  
top right hand corner.

The ROC curves in Figure 2 show the MR methods (par-
ticularly MR-PRESSO) that use the cGAUGE pipeline to be  
better in terms of providing the highest power at any given 
FDR, especially when there is horizontal pleiotropy, although  
they do have restricted true positive rates when the p-values 
are adjusted. Figure 3 shows a close-up view of the ROC 
curves from Figure 2 (focussing on small false positive rates) 
when the MR p-values are adjusted, in which it is easier to 
observe the overall optimality of the cGAUGE MR methods.  
When using the cGAUGE IV variables in the BN analyses, 
it can be seen from Figure 3 that there is an improvement in  
performance for low false positive rates, but, as shown in  

Figure 2 and Figure 3, the performance is worse for higher  
false positive rates.

Conclusions
In conclusion, our results support the use of the cGAUGE  
pipeline and suggest that it should ideally be followed by  
subsequent MR-PRESSO analysis. This approach, at least in the 
scenarios considered here, generates the highest power at any 
given FDR, in comparison to competing approaches. However, 
as previously noted (Howey et al., 2020), BN analysis makes  
different assumptions from MR and offers a complementary 
alternative, as MR and BN methods may behave differently  
when different assumption violations occur. The BN approach 
has also been extended to incorporate medium-to-large amounts 
of missing data through a network-informed imputation 
approach (Howey et al., 2021), which can result in a substantial  
boost in power when applied to real large-scale data sets. 

This research was funded in whole, or in part, by the Wellcome 
Trust (Grant number 219424/Z/19/Z). For the purpose of open 
access, the author has applied a CC BY public copyright licence 
to any Author Accepted Manuscript version arising from this  
submission.

Data and software availability
Code to simulate data, along with the R implementation of 
cGAUGE, were downloaded from https://github.com/david-dd-
amar/cGAUGE/. The BayesNetty software package is available 
from https://www.staff.ncl.ac.uk/richard.howey/bayesnetty/.
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The paper is well written and is thorough in describing implementation of the experiment, 
parameters and settings used and reasons behind their choices, code is available in a GitHub 
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repository. Motivation and conclusions of the work are clearly stated and well discussed. It is a 
useful piece of work for people intending to use cGAUGE or BN for causal inference analysis. 
 
If I have to point out one thing it would be lack of comment/discussion of results from the point of 
view of the number of predictions and power --- whilst FDR results are extensively discussed, the 
other two measures of performance are not commented upon. Furthermore, it would be helpful 
to explain what one expects to observe in way of number of predictions --- wouldn't proportion of 
correctly identified causal links be a better measure? 
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