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ABSTRACT

High-dimensional ‘-omics’ profiling provides a detailed molecular view

of individual cancers; however, understanding the mechanisms by

which tumors evade cellular defenses requires deep knowledge of

the underlying cellular pathways within each cancer sample. We ex-

tended the PARADIGM algorithm (Vaske et al., 2010, Bioinformatics,

26, i237–i245), a pathway analysis method for combining multiple

‘-omics’ data types, to learn the strength and direction of 9139 gene

and protein interactions curated from the literature. Using genomic

and mRNA expression data from 1936 samples in The Cancer

Genome Atlas (TCGA) cohort, we learned interactions that provided

support for and relative strength of 7138 (78%) of the curated links.

Gene set enrichment found that genes involved in the strongest inter-

actions were significantly enriched for transcriptional regulation, apop-

tosis, cell cycle regulation and response to tumor cells. Within the

TCGA breast cancer cohort, we assessed different interaction

strengths between breast cancer subtypes, and found interactions

associated with the MYC pathway and the ER alpha network to be

among the most differential between basal and luminal A subtypes.

PARADIGM with the Naive Bayesian assumption produced gene

activity predictions that, when clustered, found groups of patients

with better separation in survival than both the original version of

PARADIGM and a version without the assumption. We found that

this Naive Bayes assumption was valid for the vast majority of

co-regulators, indicating that most co-regulators act independently

on their shared target.
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Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

High-throughput genomic technologies have created increasingly

larger sets of data capturing the molecular status of cells, and
these advances have had great impact in the identification and

understanding of the cellular mechanisms altered in cancer.

Identification of key targets commonly altered within specific

tumors has enabled the creation of440 targeted therapies over
the past 20 years; however, the response rate of many of these

drugs is still550%, which highlights our incomplete understand-

ing of the pathways around these drugs (Park et al., 2008). An

example of such a resistance mechanism is activation of the RAS

pathway in EGFR altered colon cancer tumors, where mutated

KRAS constitutively activates the RAS cascade offering growth

signals independently of the EGFR pathway, rendering EGFR

blocking therapies such as cetuximab ineffective (Karapetis et al.,

2008). By obtaining a more complete understanding of the key

routes through which oncogenic signals travel within the cellular

signaling networks, it should be possible to predict new drug-

gable targets and identify escape routes through which tumors

can evade existing treatments.
Approaches for integrating -omics data at the level of path-

ways have been increasingly popular in the last few years, with

algorithms such as GSEA (Subramanian et al., 2005), SPIA

(Tarca et al., 2009) and PathOlogist (Efroni et al., 2007) all cap-

able of successfully identifying altered pathways of interest given

pathways curated from literature (Varadan et al., 2012). Another

approach has constructed causal graphs from curated inter-

actions in literature and used these graphs to explain expression

profiles (Chindelevitch et al., 2012). Algorithms such as

ARACNE (Margolin et al., 2006), MINDy (Bansal and

Califano, 2012) and CONEXIC (Akavia et al., 2010) take in

gene transcriptional information (and copy-number, in the case

of CONEXIC) to identify likely transcriptional drivers across a

set of cancer samples; however, these approaches do not attempt

to group drivers into functional networks identifying singular

targets of interest (Eifert and Powers, 2012). Some newer path-

way algorithms such as NetBox (Cerami et al., 2010) and Mutual

Exclusivity Modules in Cancer (MEMo) (Ciriello et al., 2012)

attempt to solve the problem of data integration in cancer to

identify networks across multiple data types that are key to the

oncogenic potential of samples. GIENA (Liu et al., 2012) looks

for dysregulated gene interactions within a single biological path-

way but does not take in to account the topology of the pathway

or prior knowledge about the direction or nature of the inter-

actions (Faith et al., 2007). Probabilistic graphical models have

been used extensively in network analysis with landmark uses in

the form of Bayesian Networks (Segal et al., 2003) and Markov

Random Fields (Letovsky and Kasif, 2003). Several methods

have successfully learned interactions from data through many

different means, including relevance networks (Faith et al., 2007).

Our algorithm, PARADIGM (Pathway Recognition Algorithm

using Data Integration on Genomic Models) (Vaske et al., 2010),

uses a probabilistic graphical model to integrate multiple gen-

omic data types on curated pathway databases and is unique for

its per-sample approach that allows individual samples to be

assessed alone or within the context of a cohort of interest.*To whom correspondence should be addressed.
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Learning sensible parameters for gene interactions is essential

for PARADIGM to infer activities within each sample. In the

original implementation of PARADIGM, expectation–maxi-

mization (EM) parameter learning was only performed by de-

fault on observational data parameters, as the limited size of

available datasets prevented robust estimation of interaction par-

ameters. When using a standard conditional probability table

with discrete variables, the size of the table, and therefore the

number of parameters, grows exponentially with the number of

regulators, presenting additional challenges to efficient estima-

tion of interaction parameters. However, by assuming a condi-

tional independence of the regulators, we can replace the

conditional probability table with a product of independent regu-

latory factors, and the number of parameters grows linearly with

the number of regulators.

Examination of statistics related to regulatory links, rather than

individual gene activities, is a view related (but not directly corre-

lated) to that which is normally examined in high-throughput

studies. By identifying regulatory links that have significantly dif-

ferent usage distributions within a phenotype of interest in the co-

hort, we can begin to examine how different regulators within a

network might produce similar cellular phenotypes despite using

entirely different pathways to accomplish them. Additionally,

these learned parameters can then be used as the basis for statis-

tical tests to establish howwell individual samples or subsets of the

cohort follow the distribution of learned parameter patterns for

each regulatory node. This article describes in detail this new ap-

proach and shows the overall improvement and additional ana-

lysis capabilities when applied across the TCGA data.

2 METHODS

PARADIGM represents the states of biological molecules—e.g. proteins,

mRNAs, complexes and small biomolecules—from a tumor sample as

variables in a probabilistic graphical model. For every gene, we use vari-

ables for the genome copy number, mRNA and protein, and additionally

a non-physical variable that corresponds to biological activity of a gene,

as annotated in a pathway, and which may be regulated by posttransla-

tional modification of the protein. Additionally, there are variables that

represent more abstract states, such as apoptosis, that are commonly

annotated in pathways.

Causal interactions that change the state of molecules—e.g. gene tran-

scriptional regulation, protein phosphorylation and complex formation—

are represented as directed edges from the regulating variable to the

regulated variable. For each variable Y in the probabilistic graph, we

introduce a factor into the joint probability model relating the state of

the variable to the state of all its regulators: FðYjX1,X2, . . . ,XNÞ, where

X1 through XN are the variables that regulate Y. This factor is a

conditional probability table: for each setting of ParentsðYÞ,P
y2Y FðY ¼ yjParentsðYÞÞ ¼ 1. Observations of individual variables,

such as the genome copy number or gene expression, are modeled as

separate variables, connected to the latent variable by a factor FðYjXÞ,

also a conditional probability table. The full joint probability state

is then:

Pð�Þ ¼
1

Z

Y

Y2�

FðYjParentsðYÞÞ ð1Þ

where Z is a normalization constant required due to regulatory cycles in

the pathway.

Given observations for a sample, we solve for marginal distribution

of each unobserved variable, using the loopy belief propagation

implementation in libDAI (Mooij, 2010) with inference performed in

the probability space (as opposed to log space), a convergence tolerance

of 10�9 and with the SEQFIX update schedule. The parameters for all F

functions are learned via expectation maximization in libDAI, stopping

when the ratio of successive log-likelihoods is510�10.

In this work, we have introduced new variables into each gene’s central

dogma that correspond to the transcriptional, translational and protein

regulation states of each gene, as shown in Figure 1A. This central dogma

means that each protein-coding gene will have identical central dogma

structure, and therefore we are able to share parameters between all

genes. The unique regulatory program is then modeled only in the tran-

scription, translation and protein regulation variables for each gene.

Regulation models: We extended PARADIGM by altering how regu-

lation nodes are handled by the algorithm. To construct a factor graph

and allow for comparison between many types of data, PARADIGM

discretizes the input data to down, up or normal relative to some control.

Regulation nodes collect activity signals of all of the genes involved in

regulation of a given gene at some point along the path from DNA to

active protein. These signals are collected in a single variable which con-

nects to a gene’s central dogma structure through a factor. Under the

original model, regulation nodes would simply take a vote of incoming

signals to decide if an activation or inhibition signal was passed along. In

this new version, we learn the likelihood of each setting of the child

variable Y being passed given the setting of the parent nodes

X1, . . . ,XN. In this article, we contrast both the co-dependent and inde-

pendent regulation models shown in Figure 1B. With the co-dependent

regulation model, this probability is stored directly as a parameter in a

conditional probability table for all possible settings of the parents and

child. In contrast, with the independent regulation model, we use P(Y)

and PðXijYÞ as parameters and simply calculate the product of the par-

ameters to find this probability:

FðYjX1, . . . ,XNÞ ¼
1

Z
PðYÞ

Y

i

PðXijYÞ ð2Þ

where Z is a normalizing constant that corresponds to PðX1, . . . ,XNÞ. To

initialize the parameters for the independent regulation model, we give

genome mRNA protein active

ActivationTranslationTranscription

Connections to 
transcription 
factors, etc.

Connections to 
miRNAs, etc.

Connections to 
kinases, etc.

X1 X2 X3 X4 X5

Y
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Y

Co-dependent Regulation Model Independent Regulation Model
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B

Fig. 1. Factor graph structures in PARADIGM. (A) Central dogma

structure shared by all protein coding genes. (B) Alternative regulation

models for the transcription, translation and activation nodes. In the Co-

dependent Regulation Model, we learn a full conditional probability table

of the child given the parents, while in the Independent Regulation

Model, we learn conditional probabilities of individual links and use a

Naive Bayes assumption to calculate the probability of the child node

given the parents
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P(Y) an equal probability of down, up or normal, and we set the initial

probability for PðXijYÞ based on the annotation of the link in the

pathway. For links labeled as activators PðdownjdownÞ ¼

PðnormaljnormalÞ ¼ PðupjupÞ ¼ 0:8 and for inhibitors PðdownjupÞ ¼

PðnormaljnormalÞ ¼ PðupjdownÞ ¼ 0:8 with all the probabilities of all

other settings set to 0.1. We also performed tests using a uniform distri-

bution across all settings to test the importance of using this prior know-

ledge from the pathway.

We use the same simple voting procedure that was originally used

in PARADIGM as the initial parameters for EM learning in the

co-dependent regulation model. We use � ¼ 0:001 so 99.9% of the prob-

ability is placed in the child state that wins the vote and 0.05% is placed in

the other states as the initial likelihoods.

An additional minor change to the original PARADIGM algorithm is

that we now allow ‘activation’ regulation of complexes and gene families

between the protein and active states. Specifically, each family and com-

plex is now modeled by a trio of variables: family/complex, regulation

and active, connected with a single factor Fðactivejregulation,

family=complexÞ. Regulators of the family or complex are connected to

the active variable, with either the co-dependent or independent regula-

tion model. Components of the family or complex are connected to the

family/complex variable, using either a noisy-min or noisy-max factor,

with � ¼ 0:001. Only the noisy-min or noisy-max factor was used in ear-

lier iterations of PARADIGM.

Regulation statistics: We use G-tests to determine the significance of

the dependence between parents and children of regulatory links (3) as

well as the significance of the conditional dependence between parents

given a child distribution (4):

Gp�c ¼ 2
X

i, j

Oi, j ln
Oi, j

Ei, j

¼ 2N
X

i, j

PðXi,YjÞ ln
PðXi,YjÞ

PðXiÞPðYjÞ

ð3Þ

Gp�p ¼ 2N
X

i, j

PðXi,XjjYÞ ln
PðXi,XjjYÞ

PðXijYÞPðXjjYÞ
ð4Þ

The G-test follows the �2 distribution, so we can find P-values using �2

distributions with 4 and 12 degrees of freedom for the parent–child test

and the parent–parent test, respectively. P-values are adjusted for false

discovery rate (FDR) and links with adjusted P50.05 are considered

significant.

Although the G-test (which is proportional to the mutual information)

tells us how strong an interaction is, it doesn’t give us details about the

sign of the interaction (i.e. activation is a positive interaction and inhib-

ition is a negative interaction). To get these details, we calculated both the

Pearson correlation between the parent and child, and the weighted

pointwise mutual information, or WPMI (5) (Raina et al., 2006) at all

possible settings of parent and child. Correlation was calculated using the

joint distribution PðXi,YÞ ¼ PðXijYÞPðYÞ, and significance was calcu-

lated using the Fisher transformation. Correlation between two parents

given the child was also calculated to determine if the three nodes formed

a coherent or incoherent feed forward loop.

To compare G-test results between groups, we took the differences of

the ranks of the G statistic in each group. The significance of this statistic

was calculated by performing a permutation test with 5000 random

permutations of the group membership and then adjusting for FDR.

For differences greater than any of those observed in the permutations,

the lowest possible P-value was used as an upper bound.

WPMIi, j ¼ PðXi,YjÞ ln
PðXi,YjÞ

PðXiÞPðYjÞ
ð5Þ

The WPMI is simply each individual element of the G-score sum. We

arrange the vector of 9 WPMI values as an easy to interpret heat map.

Ovarian clustering: We used the HOPACH clustering algorithm

from Bioconductor (van der Laan and Pollard, 2003; Pollard et al.,

2012), which attempts to find the number of clusters that best fits the

data. This results in different numbers of clusters for each set of IPLs

clustered, so to find clusterings with a consistent number of clusters be-

tween all datasets, we collapsed the smallest clusters by reassigning small

cluster members to the closest large cluster. We collapsed small clusters in

this manner to get a consistent number of clusters across all of our

clusterings. This method also served to keep cluster sizes consistent

across our comparisons.

2.1 Genomic and pathway data

Genomic and pathway data (Matthews et al., 2009; Schaefer et al., 2009)

detailed in Supplement 1.

Set enrichment: We used DAVID (Huang et al., 2008; Sherman et al.,

2009) to perform gene set enrichment on the genes involved in inter-

actions learned by PARADIGM. To maximize number of genes recog-

nized by DAVID, we split gene complexes and families into their

component genes. Enrichment for genes involved in links was compared

to a background of all of the genes in our curated pathway.

Intermediate nodes: A full conditional probability table with N par-

ents will store probabilities for all 3Nþ1 possible settings of parents and

children. Some central genes in our curated pathway have430 regulators,

so to prevent the size of these tables from becoming prohibitive, we

limited the number of parent nodes that could be attached to a child

node to 5. For genes regulated by more than five proteins, we added

intermediate nodes to the graph to maintain this limit. E.g. a gene with

10 regulators would have two intermediate nodes with five regulators

attached to each intermediate node.

Coxnet feature selection: The TCGA cohort was first subset down

to the 364 breast cancer samples labeled as ERþ in the associated clinical

data. Survival censoring was determined by the Vital Status label and if a

patient was not alive the Days to Death data was used, otherwise Days to

last known alive (if present) or Days to last follow-up were used. Both

IPLs and sample-specific link g-scores were filtered to the top 5% of

features by variance, and features were then z-score transformed to

normalize variance between the two types of values. The selection was

performed by using the cox method in the glmnet package (Friedman

et al., 2010; Simon et al., 2011) version 1.9-1 in R version 2.15.2 with a

maximum iteration of 100000 which completed without warnings.

3 RESULTS

We learned regulatory interactions on a dataset of 1936 TCGA
tumor samples with gene expression and copy number data, from

11 tissue types. We then assessed interaction significance by a

G-test and interaction sign with a correlation value. Of the 9139
interactions in the pathway model that regulate a protein, 7631

(83.5%) were found to be significant at an FDR of 0.05. A prin-

cipal component analysis (PCA) of the WPMI vectors for each
interaction learned across the entire TCGA cohort (Fig. 2)

reveals a gradient from strong inhibition to strong activation.

K-means clustering of the WPMI vectors found clusters along
this gradient representing canonical interaction types ranging

from strong activation to strong inhibition. Of 7631 significant

links, 78 (1%) were placed in a cluster where the centroid was
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going the opposite direction of how the link was annotated in the

pathway. The variety of WPMI vectors shows that EM was able

to learn new interaction regimes that resemble activators and

inhibitors as well more complex regulatory patterns.
Using correlation measure (see Section 2), we assessed each

interaction as activation or inhibition and compared with the

interaction type annotated in the pathway model. There were

7357 links with both significant correlation and g-scores and of

those the correlation of 219 links (3%) did not agree with the

direction of regulation in the pathway. This leaves 7138 (78%)

links that are significant by both tests and agree with the curated

links. We also found that that some links had high correlation

values but low significance from our g-tests; this usually hap-

pened in cases where either the parent or child distribution

greatly favored a single state.
We compared these results to what could be found by a

straightforward Pearson correlation of gene expression profiles.

Because we can not look at expression profiles for families and

complexes, we tried two different approaches for this compari-

son. First, we compared our results to the expression correlation

of links not involving complexes or families. Of the links learned

by Paradigm, 1197 had significant correlation and g-scores and

did not include complexes or families. For 51 of these links

(4.3%), the sign of correlation coefficient disagrees with the lit-

erature. On the other hand, looking only at gene expression pro-

files, we found 1058 non-complex non-family links with

significant correlation, but 470 (44%) disagreed with the sign

of the pathway entry. For our second comparison, we eliminated

complexes and families in our pathway by connecting all genes

that were components of families and complexes directly to any

gene regulated by those families and complexes. This flattening

procedure resulted in 200921 links. We found that 165 258 of

these links had significantly correlated gene expression profiles,

and that 81 558 of the links (49.4%) had correlation that dis-

agreed with the direction of the link in the pathway. These results

indicate that the links learned by paradigm are much more in

agreement with the direction of the links in literature than the

correlation of gene expression profiles is.
Running the PCA and clustering analysis on only WPMI

scores learned from TCGA Ovarian (OV) patients (N¼ 416)

and without complex and family activation regulation produced

very similar results to the PCA and cluster centers shown in

Figures 2A and C, but found fewer significant links and a

higher proportion of links that were annotated as activators,

and learned as inhibitors or vice versa (Fig. 3A). When we

used a flat initialization of PðXijYÞ ¼ 1=3 (Fig. 3B), we found

that the cluster centers again mapped to a gradient from activa-

tion to inhibition, and there were fewer significant links and

a higher proportion of link direction disagreements than with

initial settings that include direction information.
We expected the reduction in significant links between the

entire TCGA cohort and just OV samples because datasets

Fig. 2. (A) Principal component analysis of regulatory links in the TCGA cohort. Each point is the projection of the 9 WPMI scores for a link onto the

top two principal components. The convex hulls show the membership of k-means clustering performed on the (unprojected) WPMI scores, and the

cluster numbers are placed at the centroid of each cluster. (B) Cluster membership of significant links labeled as activation and inhibition in the pathway.

(C) Heatmaps of the WPMI values of the centroids of the clusters show a range from strong inhibition (1) to strong activation (5)
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with a larger number of samples have more evidence to support

even subtle interaction trends. The increase in proportion of links

in clusters that do not agree with their annotation could be ex-

plained by the difference in sample number because any outliers

would have less effect on probabilities calculated across the entire

dataset. In this setting, however, these changes of link signifi-

cance or direction are of interest because the TCGA cohort con-

tains many different diseases and tissue types. The pathway does

not include details about the tissue or disease in which a given

interaction was observed in the literature, so it is possible that in

a different tissue or disease state and interaction direction could

change either through mutation or some other mechanism. These

direction changes are worth studying because they may give us

some insight into the mechanism of the disease. Our tests with

flat initialization show that even without starting the link par-

ameters in linear activation/inhibition states, a gradient across

these linear relationships can be learned. Many of the links that

lose significance come from the middle cluster, which has little

positive or negative correlation, but we also lose most of the links

from the clusters with the strongest activation and inhibition

signals. This suggests that by not using prior knowledge about

link type, we lost some of our strongest interactions that could

have been biologically relevant and could also reduce the quality

of our final protein activity predictions.

To test the Naive Bayes independence assumption presented in

Figure 1, we ran PARADIGMwith both the independent and co-

dependent regulation models on the TCGA ovarian cancer sam-

ples. We tested the conditional independence assumption on the

expectations calculated at each EM step of the PARADIGM run

(Fig. 4A). At every step of training, fewer co-regulators were

found to be dependent upon each other. Because of small feed-

back loops in the pathway, such as a transcription factor that

regulates its own transcription, we expect that the independence

assumption will fail in some cases. Additionally, it is quite

common for two very similar complexes, differing by only one

molecule, to co-regulate the same child node, in which case we

also expect the conditional independence test to fail, despite there

being little conflict. Consequently, we divide the cases where two

co-regulators fail the independence test into ‘coherent’ and

‘incoherent’ classes, as shown in Figure 4B. Additionally, two

co-regulators may fail the independence test even if one of the
co-regulators is an insignificant regulator, owing to the strength of

the other regulator. We therefore also consider the subset of cases
where both co-regulators are significant on their own. Our tests
show that the initial parameters produced by the weighted vote

method cause almost 50% of child nodes to fail the conditional
independence test, but as the EMalgorithm learnsmore likely par-

ameter settings, fewer and fewer nodes fail the test. Combining all
of our tests shows that only�5% of child nodes are likely to have

codependent regulators in a meaningful way.
Using the ovarian cancer samples, we clustered the protein

activity predictions produced by the original PARADIGM and

those from both the co-dependent and independent regulation
models. We then performed Kaplan–Meier analysis on these
clusters to see whether they had significantly differential survival

profiles (Fig. 5). We found that the clusters produced using in-
dependent regulation model activity predictions were the most

separable by their survival (log-rank P¼ 2.0� 10�04). We also
performed this test using the independent regulation model with
a flat initial setting for the PðXijYÞ parameters and found that it

performed worse than the original PARADIGM model. Again,
this indicates that our learning method requires prior knowledge

about the type of interaction that is lost when using a flat initial
interaction setting.
Figure 6 shows tissue-differential link usage in the most

significant by coloring each interaction by its correlation score
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Fig. 4. (A) Percentage of unique child nodes that fail the following tests at

each EM step of a PARADIGM run learning a full conditional prob-

ability table: i. a test of the significance of conditional independence of

any two parents given the child. ii. test i and at least one of the parents

that fails is significantly linked to the child. iii. test i and the failing triplet

is incoherent. iv. tests i, ii and iii. (B) Examples of coherent versus inco-

herent triplets. The arrows correspond to correlation with a pointed head

for positive correlation (activation) and a flat head for negative correl-

ation (inhibition). The interactions between parents are not found in the

literature, so we use double sided arrows because we can not know the

direction of that interaction

Fig. 3. (A) Cluster membership bar plots for WPMI values of significant

links learned from the ovarian cohort using an informative prior.

(B) Clustering membership when starting with a flat prior. Cluster cen-

ters range from strong activation (blue) to strong inhibition (red) as in

Figure 2C
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in a tissue and setting its saturation proportional to its signifi-

cance. The strongest differential g-scores were seen for links
regulated by key cancer genes and complexes, including TP53,

MYC/MAX, HIF1A/ARNT, TAp73a, E2F1 and PPARA-

RXRA. Of particular interest are the links regulated by

PPARA-RXRA primarily different within GBM [brain and

KIRC (kidney)] and the TAp73a regulatory links in OV (ovar-

ian) and to a lesser degree in UCEC (uterine endometrioid).

Figure 7 shows a plot of the WPMI signals grouped by tissue

for the activating links from PPARA-RXRA and TAp73a,

where significantly increased weights are found on the activating

diagonal, indicating increased use of these links as activators

in those tissues. The signature of TAp73 activity potentially

indicates a female reproductive or hormonal pattern of patho-

genesis associated with p73 expression. TAp73 promotes the

expression of cell cycle inhibitors and inducers of apoptosis,

one of which is the tumor suppressor BAX, which acts as an

inhibitor of the activity of the oncogene BCL2. BCL2 is known

to be highly expressed in serous ovarian cancer, and our results

here show that although TAp73 is highly expressed and is a

strong promoter of BAX expression (and thus BCL2 inhibition),

it is nonetheless ineffective in retarding tumorigenesis, suggesting

that small molecule inhibition of BCL2 may be equally ineffect-

ive. Not surprisingly, single-agent treatments of ovarian cancer

with small molecule inhibitors of BCL2, despite high BCL2 ex-

pression in serous ovarian cancer, have not succeeded to date

(Simonin et al., 2013), suggesting a downstream blockade or

attenuation of TAp73-mediated activity in this type of cancer.

It is important to note that almost all of the serous ovarian

samples here bore mutations in p53, perhaps suggestive of an

upstream shunting of tumorigenesis as well that perhaps over-

comes TAp73 over-expression or increased activity. Other

groups have additionally shown the importance of PPARA-

RXRA activity in both GBM and KIRC and their sensitivity

to fenofibrate, a PPARA agonist (Giordano and Macaluso,

2012; Ganti et al., 2012). The tissue-specific signals identified

through this analysis appear to reiterate recent biological discov-

eries that appear to be unique when examined in the context of

the current TCGA dataset.
The most significant links learned across the entire TCGA

cohort (Table 1) are a number of known cancer genes including

the forkhead box transcription factor A1, p53 and estrogen re-

ceptor alpha. To perform a gene set enrichment with DAVID

(Huang et al., 2008; Sherman et al., 2009) on the genes involved

Fig. 5. Kaplan–Meier survival curves of 416 patients in the TCGA ovarian cohort clustered by Integrated Pathway Activity using (A) the original

PARADIGM implementation, (B) PARADIGM learning full conditional probability tables of regulatory nodes and (C) PARADIGM learning con-

ditional probability of single links and using a naive Bayes assumption

Fig. 6. Heatmap of the g-score ranks colored by link correlation, with red

tending towards activating and blue tending towards inhibiting. For visu-

alization purposes, interactions were filtered if they had a standard devi-

ation50.2 across all samples or did not have at least one tissue with a

score of �0.7, resulting in 211 interactions out of the original 10307
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in the 50 interactions with the highest G-scores, we replaced

families and complexes with their component genes. This pro-

duced 112 unique genes that were recognized by DAVID from

the top 50 links. These genes were significantly enriched (P51e-

7) for a number of relevant KEGG terms including ‘pathways in

cancer’, ‘apoptosis’, ‘Jak-STAT signaling pathway’ and ‘MAPK

signaling pathway’ as well as a number of different cancer type-

specific terms. We compared this result with what could be found

by only looking at gene expression correlation of the genes that

are linked in our pathway. We needed to take the top 200 gene

expression pairs by Pearson correlation from the flattened path-

way to get a set of unique genes of comparable size (N¼ 119) to

the set produced by Paradigm. Although both gene sets

produced similar enrichments for Gene Ontology terms for bio-

logical processes (GOTERM_BP_FAT), we found far fewer

KEGG terms by using gene expression correlation than by
using our learned links (20 versus 46 at FDR50.05) and the

FDR. The KEGG terms that overlapped between the two sets

had a lower FDR in the PARADIGM set. To ensure that the
flattening of families and complexes in the pathway was not

biasing these results, we repeated this analysis for non-family,
non-complex links in the pathway only and found similar results

(20 KEGG terms found for Paradigm links versus 3 for expres-

sion correlation at FDR50.05).
We compared the strength of links between subtypes of breast

cancer to get some insight into the regulatory differences between
the subtypes (Table 2). This comparison as well as other com-

parisons between tissues never found links that completely
switched direction from activation to inhibition. Instead, we

often observed that links turned off or on (e.g. changed from a

strong activator to neutral). Because direction rarely changes, we
found it informative to simply look at the differences between the

G-score significance of links. We used the rank difference of the
G-scores to allow us to compare between groups so as to adjust

for the G-score’s dependence on sample size. Many of the links

with the highest rank differences had the same parents, so
Table 2 shows the links with the highest rank difference on a

per parent basis and include the full table as Supplement 2. In 9

of the top 10 links that were stronger in Basal tumors, HIF1A
was the parent, and the top four links stronger in Luminal A

tumors had CEBPB as a parent.
To identify clinically relevant activities and link strengths, we

examined the estrogen receptor-postiive (ERþ) breast cancer pa-
tients. We performed a regularized Cox regression of TCGA

survival data on both link g-scores and IPLs to identify the op-

timal number of features to best split the cohort. At the min-
imum lambda, the coxnet model contained nine features that

best split the ERþ breast cancer patients (Table 3). Four of

Fig. 7. Boxplots of WPMI values across cancer types (A) WPMI values for links with PPARA:RXRA as a parent node. There is a stronger activation

signal in GBM and KIRC. (B) WPMI values for links with TAp73a as a parent node, showing activation in OV

Table 1. Regulatory links with the highest g test score across the entire

TCGA cohort

Parent Child g score Direction

FOXA1 SFTPA (family):txreg 3247.197 "

HNF1A HNF4A (family):txreg 3208.440 "

GATA1 alpha-globin (family):txreg 3065.885 "

ONECUT1 HNF1B (family):txreg 3008.945 "

p53 tetramer

(complex)

MDM2:txrega 2931.148 "

KLF4 Preproghrelin (family) :txreg 2914.620 "

PDX1 NR5A2 (family):txreg 2872.275 "

p53 tetramer

(complex)

SFN:txrega 2811.958 "

ER alpha

homodimer

(complex)

alpha tubulin (family):txreg 2781.369 "

FOXM1 CENPA:txreg 2739.028 "

P-values for all link are less than 1e-323.
aIntermediate node.
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the nine features were link g-scores, which illustrates the inde-

pendent utility of these scores as potential prognostic markers.
Additional work is needed to validate this model in an independ-
ent dataset before it can be considered a true prognostic signa-

ture in ERþ patients.
CEBPB and HIF1A/ARNT appeared in both Tables 2 and 3.

CEBPB is a transcription factor that has been associated with

tumor progression, poor prognosis and ER negative status
(Milde-Langosch et al., 2003). Furthermore, over expression of

HSP90B1, a heat shock protein regulated by CEBPB and found
in Table 2, has been associated with distant metastases and
decreased overall survival in breast cancer patients with other-

wise good prognoses (Cawthorn et al., 2012). HSP90B1 has
undergone clinical trials as an immunotherapy for melanoma
under the name vitespen (Testori et al., 2008). HIF1A/ARNT

overexpression is clinically relevant in ER� and PR� breast
cancer, where splice variants have been associated with reduced

metastasis-free survival (Dales et al., 2010). Because Basal
tumors are generally ER�, and Luminal A tumors are generally
ERþ, the differential link strength could be due to increased

occurrence of the splice variant in the Basal tumors. The top

two links by G-score rank difference between Basal and

Luminal are HIF1A/ARNT activating HK1 and HK2 (hexoki-

nases), HK2 is involved in glucose metabolism and apoptosis,

and has been associated with brain metastases from breast can-

cers as well as poor survival post craniotomy (Palmieri et al.,

2009). These findings indicate that we are able to find links

that are relevant both by contrasting between tumor subtypes

and by searching for links within a subtype that are predictive of

a clinical variable.

4 DISCUSSION

We have shown that by extending PARADIGM, we can com-

bine multiple -omics data to learn the strength and sign of regu-

latory interactions curated from the literature. The assumption

of conditional independence enables a reduction in model com-

plexity allows efficient estimation of regulatory parameters using

existing datasets, and further, and we show that the independ-

ence assumption is valid for the vast majority of regulatory pro-

grams. In addition, where the independence assumption does not

hold, future extensions would be able to replace the independent

factors with more complex factors that properly model a co-de-

pendent regulatory program. When these learned parameters are

applied, biological insight can be gained from simply looking at

the strongest links across a cohort of samples or by looking at

how interactions change between phenotypes of interest. This

regulatory learning improved PARADIGM’s overall protein ac-

tivity predictions, resulting in better separation of survival across

clusters of ovarian cancer patients.
We find that though cancer subtypes use different interactions,

an interaction generally has a consistent sign whenever it is used

in a particular tumor. This indicates that our current level of

knowledge of cofactors as able to account for the cases where

a gene switches the direction of activity. Further, the concord-

ance of our learned interaction sign and the interaction sign in

databases, despite the various ways that interaction sign is anno-

tated in the BioPAX language across pathway databases, indi-

cates that pathway databases have successfully and faithfully

cataloged of thousands of wetlab experiments in the literature.

Table 2. Regulatory links with adjusted P50.05 in either Basal (N¼ 92) or Luminal A (N¼ 218) breast cancer tumors, and the highest rank differences

in G-scores per parent

Parent Child P-value Basal P-value Luminal Rank difference Direction

HIF1A/ARNT (complex) HK1 1.61e-3 0.834 7826 "

E2F3/DP/TFE3 (complex) RRM1 9.20e-3 0.854 7632 "

MYB PPP3CA 3.09e-2 0.493 5203 "

E2F1/DP (complex) WASF1 3.48e-2 0.459 4924 "

E2F1/DP/PCAF (complex) TP73 6.59e-3 0.343 4225 "

CEBPB HSP90B1 0.879 9.65e-3 6275 "

JUN AChR (family) 0.833 0.0256 4742 "

SP1 CDKN2C 0.771 5.94e-4 4700 Not significant

DNA damage (abstract) SERPINB5 0.808 0.0300 4264 "

LEF1/beta catenin/PITX2 (complex) LEF1 0.775 9.18e-3 4250 "

Note: Adjusted P of all rank differences in this table was5 4.8e-4. All edges were annotated as transcriptional activators. Full table is Supplementary Material.

Table 3. Pathway features (edges and nodes) associated with survival in

ERþbreast cancer patients

Feature Cox hazard coefficient

GLI2A!GLI1 0.08484

HIF1A/ARNT (complex)!CP 0.07835

MYB!CEBPB 0.00462

E2F1/DP (complex)!SIRT1 �0.00072

p300/CBP (complex) �0.00204

SDC3 �0.04840

p300/CBP/RELA/p50 (complex) �0.11126

TAp73a (tetramer) (complex) �0.11301

TCF1E/beta catenin (complex) �0.16129

Note: Edges are identified by !, and all edges found are annotated as transcrip-

tional activators in the pathway.
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The independence of co-regulators provides computational

benefits for model inference and parameter learning, and also

aids in model interpretation. The factorability of regulation

models corresponds to log-linearity. However, a great number

of regulators in the model are complexes, and the complex

formation factor is a non-linear noisy-MAX function. Thus,

regulation nonlinearity can still be encoded in the factor graph

by representing physical complexes. This lends plausibility to a

physical interpretation of most regulation links in the pathway:

competitive binding of independent regulators should combine

linearly, as long as the truly independent physical entities have

been captured as complexes. If this physical interpretation

is true, then there should be a correspondence between relative

strengths of measured physical binding constants and

PARADIGM interaction scores. In cases where the independ-

ence assumption does not hold, it is likely that there is a latent

co-factor, which could be modeled by replacing PðYjX1ÞPðYjX2Þ

with a factor such as PðYjX1,X2Þ.
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