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1. Introduction

Biomass is EarthQs most abundant renewable resource and
has been a source of energy to mankind since the Stone Age.
Today, our economy depends on fossil fuels, which are derived
from ancient biomass. With the gradual consumption of these
non-renewable resources and problems associated with CO2

emission, finding a sustainable source of energy is imper-
ative.[1] H2 is a promising energy carrier for a post-fossil era,
but current H2 production relies on fossil fuel reforming and is
thus not sustainable.[2] Generating H2 fuel directly from waste
biomass without the timescales of fossilization has the
potential to afford renewable energy at large scale and low
cost, without competition with food production.

Lignocellulose is the most abundant form of biomass. It
has a multi-component structure, evolved to provide mechan-
ical and chemical stability (Figure 1).[3] Its primary compo-
nent, cellulose, forms strong, poorly soluble fibrils comprising
linear glucose b-1,4-homopolymer chains linked by hydrogen
bonds. Cellulose fibrils are cross-linked by hemicellulose,
a branched co-polymer of different pentose and hexose
sugars. The major non-carbohydrate component, lignin, is
a polyether derived from different phenol monomers in
varying compositions. It cross-links the fibril structure and
protects it from UV damage.[4] Lignocellulose utilization is

therefore kinetically challenging, as it requires disruption of
this robust structure.

A number of strategies have been developed to produce
fuels directly from biomass.[5] Alcohol production from
combined cellulose saccharification and fermentation is a field
of intense research,[6] but cellulose hydrolysis is slow and

Photocatalytic reforming of lignocellulosic biomass is an emerging
approach to produce renewable H2. This process combines photo-
oxidation of aqueous biomass with photocatalytic hydrogen evolution
at ambient temperature and pressure. Biomass conversion is less
energy demanding than water splitting and generates high-purity H2

without O2 production. Direct photoreforming of raw, unprocessed
biomass has the potential to provide affordable and clean energy from
locally sourced materials and waste.

Figure 1. The structural components of lignocellulose.[3]
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separation of the resulting alcohol is uneconomical at low
concentrations. Thermochemical processes such as biomass
gasification and reforming require high temperatures and
pressures, and the generated H2 contains impurities that must
be removed before use.[7]

2. Photocatalytic Reforming of Biomass

Photocatalytic reforming (PR) of biomass uses the photo-
excited state of a semiconductor to drive reforming at
ambient conditions (Figure 2A). When the semiconductor

absorbs light of energies greater than its band gap, an electron
is excited from the valence band (VB) to the conduction band
(CB). CB electrons are highly reducing and can promote the
fuel-forming hydrogen evolution reaction [HER, Eq. (1)],
while the oxidizing holes left in the VB can drive the biomass
oxidation reaction [BOR, shown for glucose in Eq. (2)].

H2 generation from water splitting [Eqs. (3) and (4)] has
a large thermodynamic barrier (DE0 =@1.23 V) due to the
energy-demanding oxygen evolution reaction [OER,
Eq. (3)]. It also generates explosive mixtures of H2 and O2.
In contrast, the overall biomass reforming reaction [Eq. (5)] is
almost energy neutral (DE0 =+ 0.001 V),[8] meaning energy is
only needed to overcome activation barriers. In theory,
biomass PR is therefore possible using low-energy photons
(visible and IR light), which are highly abundant in the solar
spectrum (Figure 2B).

Throughout this Minireview, catalyst performance is
compared on the basis of the PR rate [mmolH2

gcat
@1 h@1] and

external quantum efficiency (EQE). H2 production is given as
yield [mmolH2

gbio
@1].

3. PR of Lignocellulose Components

Photocatalytic conversion of biomass to CO2 and H2 was
first reported in 1980 using TiO2 modified with Pt and RuO2

as hydrogen evolution and biomass oxidation co-catalysts,
respectively.[9] The field has progressed significantly since
then, but the majority of studies are still performed with TiO2-
based photocatalysts.[10] While these materials are robust and
inexpensive, their large band gaps (3.2 eV) limit solar light
utilization to the UV region (Figure 2B). PR studies initially
focused on generating H2 from biomass-derived feedstocks.
The higher solubility and reactivity of these feedstocks
facilitate reaction kinetics,[10] but they are valuable chemicals
themselves, and thus biomass PR must focus on using inedible
waste material without any additional processing.

3.1. Sugars

Sugars have been widely studied as model substrates for
biomass photoreforming, since the majority of lignocellulose
is based on saccharide monomers (cellulose and hemicellu-
lose).

Glucose PR is most established using Pt/TiO2.
[11] These

UV light-absorbing photocatalysts achieved performances up
to 1.15 mmolH2

gcat
@1 h@1,[12] and 8.5% EQE.[11a] Other co-

catalysts (Rh,[13] Ru,[13b, 14] Pd,[15] Au)[13b, 15b, 16] showed en-
hanced activity, with AuPd/TiO2 reaching 8.8 mmolH2

gcat
@1 h@1

and 17.5% EQE.[17] Non-precious co-catalysts (Ni,[15b, 18] Fe,[19]

Cu)[13a] gave up to 2.0 mmolH2
gcat

@1 h@1 and 59 mmolH2
gbio

@1

yield. Performing PR at elevated temperature (30–60 88C)
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Figure 2. A) Photocatalytic biomass reforming process. B) The solar
spectrum as it reaches the earth’s surface (AM 1.5G).
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improved activity[15a] and allowed quantitative H2 yield.[13b,20]

Moreover, heteroatom doping (B/N,[21] S,[22] F)[23] or sensitiza-
tion with upconverting Er:YAlO3 particles was employed to
improve the light absorption of TiO2.

[24] Pt/TiO2 also demon-
strated PR activity towards other sugars (fructose,[12c,17, 25]

galactose,[26] mannose,[26a] sorbose,[26a] arabinose,[25] xy-
lose[12d, 27]).

Visible-light driven glucose reforming was reported using
Pt/CdZnS with rates up to 0.485 mmolH2

gcat
@1 h@1,[28] whereas

a related ZnS/ZnIn2S4 solid solution offered a lower perfor-
mance.[29] Non-precious co-catalysts were shown to be
superior over Pt, with a MoS2/CdS composite[30] achieving
up to 55 mmolH2

gcat
@1 h@1 and 9.3 mmolH2

gbio
@1 and

81 mmolH2
gcat

@1 h@1 reported for Co/CdS/CdOx

quantum dots.[31] Narrow-band gap metal oxides, such
as Zn:Cu2O (3.82 mmolH2

gcat
@1 h@1)[32] and Fe2O3/Si

(4.42 mmolH2
gcat

@1 h@1)[33] have shown promising activities for
visible-light driven glucose PR. Other suitable materials
include LaFeO3,

[34] BixY1-xVO4,
[35] CaTa2O6,

[36] La:NaTaO3,
[37]

and SrTiO3.
[38]

3.2. Oligosaccharides and Polysaccharides

Disaccharides (cellobiose,[25,26] maltose,[26b, 34b] sucro-
se,[9, 11a,12a,b,13b, 21, 26a, 39] lactose)[26b] generally gave lower PR
rates than monosaccharides, with a maximum activity of
3.69 mmolH2

gcat
@1 h@1 reported for sucrose PR over Pt/

B,N:TiO2 and a maximum yield of 20 mmolH2
gbio

@1 over Pd/
TiO2.

[13b] PR of soluble polysaccharides proceeded at even
lower rates,[9, 12c,26b] presumably due to their higher molecular
weights and stable hydrogen-bonded structures. Soluble
starch gave 3.14 mmolH2

gcat
@1 h@1 and 26 mmolH2

gbio
@1 yield

over Pd/TiO2
[13b] and 1.8% EQE over Pt/TiO2.

[11a] Visible-
light driven PR of polysaccharides has only been investigated
for hemicellulose with Co/CdS/CdOx, with a rate of
2.04 mmolH2

gcat
@1 h@1.[31]

3.3. Cellulose

Only a handful of examples have demonstrated cellulose
PR. While the thermodynamics of cellulose reforming are
similar to that of oligosaccharides,[40] the kinetics are more
challenging due to the compact tertiary structure of cellulose.

Direct cellulose PR was first demonstrated using Pt/TiO2/
RuO2 at low activities (0.012 mmolH2

gcat
@1 h@1);[9] comparable

performance was achieved with Pt/TiO2.
[11a] Improved cellu-

lose solubility at alkaline conditions led to enhanced activity
(0.041 mmolH2

gcat
@1 h@1) and 1.3 % EQE.[9, 11b] Optimization of

catalyst loading, cellulose concentration, and pH further
increased the performance of Pt/TiO2 to
0.223 mmolH2

gcat
@1 h@1.[41] Remarkably, cellulose photore-

forming proceeded with comparable activity under natural
sunlight, demonstrating real-world applicability. Immobiliz-
ing cellulose on the photocatalyst surface enhanced the rate of
photocatalysis and produced 67 mmolH2

gbio
@1 under UV light;

14 mmolH2
gbio

@1 yield were produced under natural sun-
light.[42] Further enhancement was reported upon raising the

reaction temperature (0.61 mmolH2
gcat

@1 h@1 at 40 88C).[26b] An
inexpensive Ni/TiO2 photocatalyst achieved a performance of
0.12 mmolH2

gcat
@1 h@1 at 60 88C.[15b] Visible-light driven cellu-

lose PR was reported at Co/CdS/CdOx in alkaline solution
with rates up to 4.9 mmolH2

gcat
@1 h@1 and 7.4 mmolH2

gbio
@1.[31]

3.4. Lignin

Although lignin is considered a promising renewable
feedstock,[43] it has received little attention as a PR substrate.
Lignin PR is hampered by its redox stability and brown color,
limiting light absorption by the photocatalyst. Pt/TiO2 gen-
erated 0.026 mmolH2

gcat
@1 h@1 from lignin under UV light

(0.6% EQE).[44] Visible-light driven lignin PR was reported
using CdS/CdOx (0.26 mmolH2

gcat
@1 h@1)[31] and C,N,S-doped

ZnO/ZnS.[45]

4. Raw Biomass PR

Direct PR of unprocessed biomass is highly desirable to
lower H2 production cost, but is hampered by low substrate
solubility. Light is scattered from insoluble biomass and
absorbed by colored components. The recalcitrance of raw
biomass causes a large overpotential for the BOR reaction,
requiring strongly oxidizing VB holes.

PR of various plants (Table 1) was first shown over Pt/
TiO2 at rates comparable to pure cellulose (0.004–
0.018 mmolH2

gcat
@1 h@1).[11a, b] Enhanced performance was ach-

ieved in alkaline solution, or upon addition of the OER
catalyst RuO2 (0.058 mmolH2

gcat
@1 h@1). Elevated tempera-

tures (60 88C) allowed PR of Fescue grass over Pt/TiO2 at
0.061 mmolH2

gcat
@1 h@1, albeit only after removal of chloro-

phyll.[15b] Natural sunlight-driven PR of plant matter proceeds
in neutral water at rates up to 0.095 mmolH2

gcat
@1 h@1 over Pt/

TiO2.
[41] H2 yields were found to vary widely across the

different types of biomass (Table 1), with aquatic plants
generally demonstrating higher rates and yields than terres-
trial plants under similar conditions, presumably due to their
lower lignin content. 3.3 mmolH2

gbio
@1 were produced from

laver with 3.3% EQE.[11a] A visible-light absorbing Co/CdS/
CdOx photocatalyst showed high PR activity under simulated
sunlight.[31] Bagasse, wood, grass and sawdust gave H2

production rates and yields of up to 5.3 mmolH2
gcat

@1 h@1 and
0.49 mmolH2

gbio
@1. Strongly alkaline conditions enhanced

biomass solubility and photocatalyst stability.
Biomass solubility is crucial for high PR performance.

Adding detergents was shown to enhance the PR rate of
castor oil at aqueous Pt/TiO2.

[46] PR of cotton subjected to
hydrothermal liquefaction (250 88C, 40 bar)[47] was 50 times
faster than with untreated cotton under similar conditions,[11b]

but the overall H2 yield was lower. Dilute acid hydrolysis of
pinewood (160 88C, 10 bar) gave a hydrolysate suitable for
high-yield PR over Pt/TiO2 (0.813 mmolH2

gbio
@1).[48] Alterna-

tively, raw biomass can be digested at mild conditions using
natural enzymes. PR of various cellulase/xylanase-treated
grasses[27, 49] over Pt/TiO2 achieved rates up to
1.9 mmolH2

gcat
@1 h@1 and a yield of 34.6 mmolH2

gbio
@1. Protease
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A-digested chlorella produced 30 mmolH2
gbio

@1 at rates up to
0.234 mmolH2

gcat
@1 h@1[50] in neutral water (cf.

0.73 mmolH2
gbio

@1 and 0.024 mmolH2
gcat

@1 h@1 for untreated
chlorella under these conditions).[11a] Although the yields and
rates of pre-treated biomass compare favorably to PR without
pre-treatment, pre-processing adds considerable cost and
time to the overall process.

5. The PR Mechanism

Photoreforming consists of two separate half-reactions
(see Section 2). HER is substrate-independent, and typically
proceeds at metal co-catalysts such as Pt. This co-catalyst acts
both as a Schottky barrier that suppresses charge recombina-
tion and as a HER catalyst. PR in D2O has shown that the
generated H2 originates from the aqueous solvent rather than
the biomass.[11, 31]

BOR is a more complex multi-step process that directly
involves the substrate. PR rates with various substrates differ

depending on the substratesQ adsorption to the photocatalyst
surface.[11c,12a, 13b, 28b,42, 51] This is consistent with the Langmuir-
type kinetics observed for glucose PR on TiO2.

[13b, 15a] Infrared
(IR) spectroscopy,[51a] electron energy loss spectroscopy
(EELS)[51a] and X-ray absorption near edge structure
(XANES)[52] measurements confirm that glucose chemisorbs
on TiO2. Improving this binding by changing the ionic
strength,[28b] using a-glucose instead of b-glucose,[53] or
immobilizing the substrate[42] enhances the PR rate. Chemi-
sorption promotes electronic interactions such as substrate-
photocatalyst charge transfer,[51a] shifting the flat band
potential[11c,12a] and hole trapping at the substrate.[54] BOR is
therefore believed to involve direct hole transfer to the
chemisorbed substrate (Figure 3A),[51b, 52,54] generating sur-
face-bound radicals on the sub-ns timescale, as evidenced for
glucose by transient absorption spectroscopy (TAS)[52] and
electron paramagnetic resonance (EPR)[55] spectroscopy.
Fragmentation of these radicals leads to C@C bond cleavage
starting from C1,

[55] resulting in a step-wise degradation of
glucose to arabinose, erythrose etc. with concomitant formic

Table 1: Selected examples of photocatalytic reforming of unprocessed lignocellulose.

Substrate Catalyst Rate
[mmolH2

gcat
@1 h@1]

Yield
[mmolH2

gbio
@1]

EQE
[%]

Conditions Light source Reference

cherry wood 4% Pt/TiO2 0.049 0.296 (10 h) 1.1 5 m KOH Xe [11b]
wooden branch Co/CdS/CdOx 5.31 0.49 (24 h) n/a 10 m KOH, 25 88C AM 1.5 [31]
sawdust Co/CdS/CdOx 0.75 0.070 (24 h) n/a 10 m KOH, 25 88C AM 1.5 [31]
Dutch clover 4% Pt/TiO2 0.047 0.284 (10 h) 1.1 5 m KOH Xe [11b]
goldenrod 4% Pt/TiO2 0.018 0.11 (10 h) 0.4 5 m KOH Xe [11b]
rice plant 5% Pt/TiO2 0.058 1.75 (10 h) 1.3 5 m KOH Xe [11a]
rice husk 0.5% Pt/TiO2 0.095 n/a n/a H2O sunlight [41]
alfalfa stems 0.5% Pt/TiO2 0.100 n/a n/a H2O UV [41]
turf 5% Pt/TiO2 0.033 0.98 (10 h) 0.74 5 m KOH Xe [11a]
fescue grass 0.2% Pt/TiO2 0.061 0.076 (3 h) n/a H2O, 60 88C Xe [15b]
grass Co/CdS/CdOx 1.0 0.093 (24 h) n/a 10 m KOH, 25 88C AM 1.5 [31]
bagasse Co/CdS/CdOx 0.37 0.034 (24 h) n/a 10 m KOH, 25 88C AM 1.5 [31]
water hyacinth 4% Pt/TiO2 0.034 0.202 (10 h) 0.7 5 m KOH Xe [11b]
wakame seaweed 4% Pt/TiO2 0.055 0.332 (10 h) 1.2 5 m KOH Xe [11b]
chlorella algae 5% Pt/TiO2 0.090 2.7 (10 h) 2.0 5 m KOH Xe [11a]
laver 5% Pt/TiO2 0.111 3.32 (10 h) 3.3 5 m KOH Xe [11a]

Figure 3. Mechanism of biomass PR on metal-oxide surfaces. A) Mechanistic pathway depending on the substrate reproduced from Ref. [51b] with
permission from Elsevier. B) Mechanistic proposal for glucose reforming on TiO2 reproduced from Ref. [55] with permission from the ACS.
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acid formation (Figure 3 B).[13c] Metal co-catalysts can be
involved in BOR, presumably by interaction with chemi-
sorbed intermediates.[51c]

Alternatively, involvement of OHC radicals has been
suggested[15b, 30, 34a,41] on the basis of spin-trapping EPR experi-
ments in the absence of biomass.[14, 23,29] However, biomass PR
is known to proceed on photocatalysts incapable of generat-
ing OHC radicals.[13c,31]

6. Biomass PR Beyond H2 Generation

The low market value of H2 renders alternative PR
products desirable and, consequently, the selective photo-
catalytic transformation of renewable feedstocks into valua-
ble organic products is a field of intense research.[56] The
radical nature of glucose PR over M/TiO2 gives rise to
a number of trace by-products such as CO,[12e,14] CH4,

[14, 19,22]

formic acid[16] and others.[19] PR of cellulose or raw biomass
over Pt/TiO2 generated traces of C2H6, ethanol and aceto-
ne.[11b] Polymorph-dependent selectivity control was observed
in glucose PR over Rh/TiO2. Rutile showed preferred
decarboxylation of glucose to give arabinose and erythrose,
while further oxidation to CO2 was suppressed.[13c] LaFeO3

produced only H2 and gluconate,[34b] because further oxida-
tion was slow on the less oxidizing VB compared to TiO2.
Impregnating Pt/TiO2 with cellulose promoted glucose,
cellobiose and formic acid formation during PR.[42] The
produced glucose could be further photoreformed at Pt/TiO2

to hydroxymethyl furfural.[41] Accumulation of formate was
seen during cellulose PR at CdS/CdOx,

[31] as formic acid PR
was slower than cellulose PR. Formic acid could be further
photoreformed at CdS to H2 or CO.[57]

Alternatively, reducing equivalents generated upon bio-
mass photo-oxidation can be used for organic transformations
instead of H2 generation. Photocatalytic conversion of
glucose to arabinose and erythrose over Pd/TiO2 could be
coupled with the reduction of nitroarenes and aldehydes to
anilines and alcohols, respectively, thus producing high-value
products from both half-reactions.[58] This approach was
recently adapted using lignin as both reductant and oxi-
dant.[59] Photo-oxidation of lignin alcohol moieties to ketones
with simultaneous reductive C@O bond cleavage in the lignin
backbone resulted in an overall transfer hydrogenolysis of
lignin to substituted phenols.

7. Conclusion and Outlook

Biomass PR is a promising approach to sustainably
generate fuels and feedstock chemicals. The simplicity of this
room-temperature process to produce clean H2 fuel is of
considerable advantage over thermochemical methods, but
efficiencies are yet to match conventional processes. This field
has historically focused on materials and catalysts designed
for solar water splitting, limiting photocatalytic activity to UV
light. Future work should focus on designing narrow band-gap
materials specifically for biomass PR to enhance the perfor-
mance under natural sunlight. Tailor-made biomass oxidation

catalysts will be needed to lower the required driving force
and to improve the selectivity towards high-value products.
Ultimately, integrating PR with other solar fuel production
systems by utilizing low-energy photons unsuitable for water
splitting may be the key to translate PR into a scalable and
economically viable process.
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