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Rapamycin reverses insulin resistance (IR)
in high-glucose medium without causing IR in
normoglycemic medium

OV Leontieva*,1, ZN Demidenko1 and MV Blagosklonny*,1

Mammalian target of rapamycin (mTOR) is involved in insulin resistance (IR) and diabetic retinopathy. In retinal pigment
epithelial (RPE) cells, insulin activates the mTOR pathway, inducing hypoxia-inducible factor-1a (HIF-1a) and HIF-dependent
transcription in serum-free minimum essential medium Eagle (MEM). Serendipitously, we found that insulin failed to induce the
HIF-1a-dependent response, when RPE cells were cultured in Dulbecco’s modification of Eagle’s medium (DMEM). Whereas
concentration of glucose in MEM corresponds to normal glucose levels in blood (5.5 mM), its concentration in DMEM
corresponds to severe diabetic hyperglycemia (25 mM). Addition of glucose to MEM also caused IR. Glucose-mediated IR was
characterized by basal activation of mTORC1 and its poor inducibility by insulin. Basal levels of phosphorylated S6 kinase (S6K),
S6 and insulin receptor substrate 1 (IRS1) S635/639 were high, whereas their inducibilities were decreased. Insulin-induced Akt
phosphorylation was decreased and restored by rapamycin and an inhibitor of S6K. IR was associated with de-phosphorylation
of IRS1 at S1011, which was reversed by rapamycin. Both short (16–40 h) and chronic (2 weeks) treatment with rapamycin
reversed IR. Furthermore, rapamycin did not impair Akt activation in RPE cells cultured in normoglycemic media. In contrast,
Torin 1 blocked Akt activation by insulin. We conclude that by activating mTOR/S6K glucose causes feedback IR, preventable by
rapamycin. Rapamycin does not cause IR in RPE cells regardless of the duration of treatment. We confirmed that rapamycin also
did not impair phosphorylation of Akt at T308 and S473 in normal myoblast C2C12 cells. Our work provides insights in glucose-
induced IR and suggests therapeutic approaches to treat patients with IR and severe hyperglycemia and to prevent diabetic
complications such as retinopathy. Also our results prompt to reconsider physiological relevance of numerous data and
paradigms on IR given that most cell lines are cultured with grossly super-physiological levels of glucose.
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Insulin resistance (IR) is the most common pathological
condition associated with age- and obesity-related diseases,
including type II diabetes, atherosclerosis, hypertension,
neurodegeneration and cancer.1 Furthermore, IR is asso-
ciated with aging in diverse species from humans to
Drosophila2,3 and Caenorhabditis elegans.4 One of the
explanations of this universal link is that both IR and aging
involve target of rapamycin.5 Mammalian target of rapamycin
(mTOR) is activated by numerous signals including insulin
and glucose.6,7 In turn, mTOR increases cellular metabolism,
protein synthesis, cellular growth7–9 and cellular senes-
cence.10–19 Insulin initiates activation of insulin receptor
substrate (IRS), AKT and mTOR and its target S6 kinase
(S6K; Figure 1), which in turn phosphorylates IRS, thus
limiting insulin signaling.20–25 This feedback loop can be
activated by signals that stimulate mTOR/S6K, including
nutrients, growth factors, hormones, oxygen, Ras and
oncogenic kinases.20–25 Overstimulation of mTOR leads not
only to IR but also to hypoxia-inducible factor-1a (HIF-1a)

expression and cellular senescence.26 Both strong insulin
signaling and IR can be associated with overactivation of
mTOR, which is a negative factor in aging and its diseases.27

The complex relationship was previously discussed in
detail.27

Previously, we described a simple cell model to measure
insulin response in retinal pigment epithelial (RPE) cells
transfected with HRE-Luc (HRE, HIF-responsive element).28

Insulin activates mTOR, which increases synthesis of HIF-1,
which in turn induces HRE-Luc. This process is completely
blocked by rapamycin, indicating that the signal transduction
from insulin to HIF-1 solely depends on mTORC1.28 HIF-1
may foster pathology including retinopathy, therefore, rapa-
mycin can prevent retinopathy.5,29,30

Accidentally, we found that, while robustly inducing HRE-
Luc in minimum essential medium Eagle (MEM), insulin did
not cause any significant response in RPE cells cultured in
Dulbecco’s modification of Eagle’s medium (DMEM). DMEM
and MEM media differ in glucose concentration: in MEM levels
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of glucose correspond to normal physiological levels in human
blood (100 mg/dl or 5.5 mM), whereas in DMEM levels of
glucose are five times higher, corresponding to untreated
severe diabetes. This accidental observation led to important
implications for the mechanism of IR, treatment of diabetes
and the use of anti-aging agents such as rapamycin to prevent
diseases. Although phenomenon of the loss of insulin
response in DMEM seems trivial, we investigated the
phenomenon in depth.

Results

Glucose-induced IR. In RPE cells, insulin activates mTOR
(Figure 1), which in turn increases translation of the HIF-1a
mRNA, transiently induces HIF-1a and the HIF-1a-dependent
transcriptional response.28 As shown in Figure 2a, both
insulin and serum induced the HIF-1a-dependent response in
serum-free MEM medium. In contrast, in DMEM, this
response is induced by serum but not by insulin
(Figure 2a). Next, we investigated whether the difference in
response to insulin in MEM versus DMEM could be due to
the difference in glucose concentrations. We cultured RPE
cells with increasing concentrations of glucose added to
MEM. Increasing concentration of glucose gradually
decreased the responsiveness of cells to insulin
(Figure 2b). Given that rapamycin also blocked HIF-1a-
dependent response,28 we next checked whether mTORC1
is inhibited in DMEM medium.

High basal phospho-S6 (pS6) and poor pS6 inducibility.
To determine the mTORC1 activity, we measured levels of
pS6, a downstream target of mTORC1/S6K, in DMEM and
MEM (Figure 3a). In MEM, levels of phospho-S6 (especially
at S235/236) were low and insulin dramatically induced S6
phosphorylation. In DMEM, basal levels of pS6 were high
and insulin only marginally increased pS6. Thus, high basal
levels of pS6 and blunted insulin response were associated

with glucose-induced IR. As a positive control for IR, cells
were cultured with high dose of insulin overnight, so that such
cells could not respond to acute stimulation with insulin. This
insulin-induced IR is a positive control for complete IR, which
was accompanied by highly phosphorylated S6 (Figure 3a)
and did not further rerespond to insulin.

Restoration of AKT signaling by rapamycin in DMEM-
induced IR. Next, we investigated the activation of Akt by
insulin. Akt is an upstream activator of mTOR. In MEM, basal
levels of phospho-AKT(T308) and phospho-AKT(S473) were
undetectable and insulin dramatically induced AKT phos-
phorylation on both sites (Figure 3). In the positive control for
IR (insulin-induced IR), induction of p-Akt-473 was impaired,
whereas p-Akt-308 was not induced at all. In DMEM,
induction of p-Akt, especially at T308 was impaired too.
Pre-treatment with rapamycin (either overnight or for
2 weeks) completely restored insulin-induced AKT phospho-
rylation in DMEM medium. Thus, insulin-induced AKT phos-
phorylation was reduced in glucose-induced IR and was
restored by rapamycin. Importantly, both overnight and chronic
treatment with rapamycin restored response of AKT to insulin.

Alterations in IRS1 phosphorylation. The phosphorylation
pattern of IRS1 in response to insulin was also changed in IR.
Using antibodies against phospho-S1101, we found lack of
phosphorylation of this residue in DMEM- and insulin-
induced IR (Figure 3a). In DMEM, rapamycin restored
phosphorylation of IRS1 at S1101. Rapamycin prevented
the mobility shift of IRS1 in response to insulin, indicating
block of phosphorylation of some other sites. One of such
sites is S636/639 (Figure 3b). Although the mechanism of
S1101 dephosphorylation in IR is unclear, the absence of
phospho-S1101 can be used as a marker of IR, which is
reversed by rapamycin. Rapamycin exerted a dose-response
effect on p-IRS1 (S1101). Rapamycin restored basal level of
S1101phosphorylation but prevented the mobility shift of
IRS-1 in response to insulin stimulation (Figure 4). Further-
more, this effect was also detectable at as low as 0.1 nM
rapamycin, which did not inhibit pS6 (Figure 4). Thus, at very
low doses that affected neither phosphorylation of S6K nor
phosphorylation of S6 and AKT, rapamycin detectably
affected phosphorylation of IRS1 S1101.

Phospho-IRS1 S636/639 in IR. Changes in phosphoryla-
tion of IRS1 at S1101 could serve as a marker of IR, which
is reversed by rapamycin. However, the mechanistic
significance of this phenomenon is not clear. We therefore
next investigated phosphorylation of IRS1 on S636/639,
which was reported to be phosphorylated in the S6K1
feedback loop. Like S6, IRS1-S636/639 was not phos-
phorylated in MEM (Figure 3b). In contrast, its level of
phosphorylation was increased in DMEM, whereas its
inducibility by insulin was weak (Figure 3b). In fact, in
positive control (insulin-induced IR), there was no response
(even paradoxical decrease of S636/639 phosphorylation in
response to insulin). Rapamycin decreased basal level of
p-IRS1 S636/639 in DMEM (Figure 3b). Thus, phospho-
rylation of IRS1 at S636/639 mirrored the phosphorylation
state of S6, suggesting that this IRS1 site is a substrate of
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Figure 1 The insulin/mTOR/HIF-1 pathway: a simplified schema. Glucose
activates mTOR, which in turn blocks insulin signaling (a feedback loop). The mTOR
pathway increases translation of the HIF-1a RNA. However, accumulation of the
HIF-1a protein is tightly limited by its degradation via a PHD-feedback loop under
normoxia.28,66 Red lines, inhibitory feedback loops
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S6K. As expected, rapamycin not only blocked basal level
of p-IRS1 S636/639 but also prevented its phosphorylation
in response to insulin.

S6K inhibitor restores Akt activation. PF-4708671, an
inhibitor of S6K,31 inhibited basal level of phospho-S6
(Figure 4). Unlike rapamycin, it did not block completely an
increase in pS6 in response to insulin. Importantly, PF-
4708671 restored pAKT induction in response to insulin. PF-
4708671 also decreased basal level of p-IRS1 S636/639 but
could not prevent phosphorylation of IRS1 in response to
insulin (Supplementary Figure 1). These data are in agree-
ment with the effect of PF-4708671 on S6 phosphorylation
(Figure 4), indicating that PF-4708671 more potently inhibits
basal level than inducible S6K activity.

Rapamycin does not cause IR. As shown in Figures 3 and 4,
rapamycin reversed hyperglycemia-induced IR. Next, we
examined whether rapamycin may still cause IR in normo-
glycemia. As expected, insulin caused phosphorylation of
AKT and S6 (Figure 5a). Although blocking phosphorylation
of the targets downstream of mTORC1 (such as p-S6,
p-IRS1-S636/639), rapamycin did not affect phosphorylation
of AKT at either S473 or T308. We next tested the effect of
Torin 1, a double inhibitor of mTORC1 and mTORC2. Like
rapamyicn, it blocked downstream targets of mTORC1,
phospho-S6K and phospho-S6. Unlike rapamycin, which
did not affect insulin-induced AKT phosphorylation, Torin 1
abolished phosphorylation of AKT by insulin. These effects
are consistent with inhibition of mTORC2 by Torin 1. We
conclude that both acute and chronic (a 2-week) treatment
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Figure 2 Induction of HRE-Luc in MEM, DMEM and MEMþ additional glucose. RPE cells was plated in either MEM or DMEM with FBS. After cell attachment, the medium
was changed to serum-free MEM or DMEM, as indicated. Cells were transfected with HRE-Luc (HIF-responsive-luciferase construct). After 1 day, cells were treated with 1mg/ml
insulin and 10% FBS as indicated. After 16 h, cellular luciferase activity was measured. (a) Comparison of MEM and DMEM. (b) Increasing concentrations of glucose (g/l) were
added to MEM medium
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Figure 3 Effects of rapamycin on insulin resistance in DMEM. Immunoblot analysis. (a) RPE cells were maintained in either DMEM (25 mM glucose) or MEM (5.5 mM
glucose). Cells were incubated in serum-free medium for 42–44 h and then were stimulated with 1 mg/ml insulin for 15 min and lysed. If indicated Rap, stimulation in the
presence of rapamycin. Rap, 10 nM rapamycin; o/n, rapamycin overnight before stimulation with insulin; chronic, rapamycin for 2 weeks before stimulation; IR, cells were
treated with 1mg/ml insulin overnight before stimulation; (b) RPE cell whole-cell lysates as in (a) were rerun in part and immunoblotting was performed with the indicated
antibodies
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with rapamycin neither inhibited mTORC2 nor caused IR in
RPE cells.

Rapamycin does not cause IR in immortalized mouse
myoblast C2C12 cells. C2C12 cells are often used to study
IR. In normoglycemic serum-free medium, insulin induced
phospho-AKT and phospho-S6 (Figure 6). Rapamycin (acute
and chronic) did not affect phosphorylation of AKT at T308.
Furthermore, 4 h pre-treatment with rapamycin even
increased insulin-induced phospho-AKT S473. Torin 1 also
inhibited phospho-S6. It also inhibited phosphorylation of
AKT at S473, especially at later time point (46 h). Pre-
treatment with Torin 1 also abrogated the mobility shift of
total AKT caused by insulin. We conclude that rapamycin did
not cause Torin-like impairment of AKT activation. In C2C12
cells, IRS1 phosphorylation at S1101 was not affected by
rapamycin and Torin 1, although both agents decreased the
mobility shift caused by insulin. This mobility shift depends on
feedback loop via mTOR in both RPE and C2C12 cells.

Discussion

Here we found that hyperglycemic medium caused IR in RPE
cells. IR was associated with phosphorylation of the S6K and

its substrates, S6 and IRS1 (S636/639). Chronic activation of
mTOR (by high glucose) results in diminished activation of
AKT in response to insulin. Even a lesser effect of insulin was
detected downstream of mTOR, including a complete loss of
the HIF-1a-dependent response. Thus, basal activation of
mTOR precludes the inducibility of its downstream targets.
Rapamycin restored phosphorylation of AKT at Threonine 308
and Serine 473 in response to insulin stimulation. At the same
time, rapamycin blocks activation of the targets downstream
of mTOR (Figure 7), thus preventing the negative conse-
quences such as induction of pseudo-hypoxic state, cellular
senescence and signal resistance.26 The inhibitor of S6K
reproduced effects of rapamycin on insulin-induced Akt
activation, albeit it did not completely prevent insulin-inducible
activation of S6K. We also addressed the controversial issue
of rapamycin-induced IR. Increased mTOR activity causes IR
in cell culture and in animals, including humans, reversible by
rapamycin and calorie restriction, which both inhibit
mTOR.21,32–42 However, it was reported that chronic rapa-
mycin treatment can cause either IR or glucose intolerance in
some conditions.43–48 Such metabolic alterations strikingly
resemble ‘starvation diabetes’ developed during starvation or
severe caloric restriction.49 Not co-incidentally, rapamycin is
caloric restriction-mimetic, causing a beneficial condition
named ‘beneficial pseudo-diabetes’.5,27

We demonstrated that acute and chronic rapamycin
treatment did not impair AKT phosphorylation in two cell
lines. In contrast, Torin 1 blocked AKT S473 phosphorylation
in both cell lines and AKT T308 phosphorylation in RPE cells.
In both cell lines, the effects of rapamycin did not mirror the
effects of Torin 1, suggesting that rapamycin did not inhibit
mTORC2, at least drastically. However, a modest decrease in
phospho-Akt levels in C2C12 cells was previously reported.50

As IR was also manifested by the lack of induction of targets
downstream of mTORC1 in response to insulin (such as pS6,
HIF1a and expression of HRE-Luc), and the same events
were prevented by rapamycin, one could conclude that
rapamycin might cause IR. However, this lack of insulin-
triggered induction of mTOR-dependent targets in the
presence of rapamycin is accompanied by the improvement
of the upstream insulin signaling (Figure 7b). This condition
could be defined as pseudo-resistance.

The effect of insulin, hyperglycemia and rapamycin on the
phosphorylation of IRS1 is extremely complex. Various
kinases, such as S6K1, mTOR, Akt, PKC, Erk1/2, p90Rsk,
each phosphorylate its numerous (more than 50 serine/
threonine residues) phosphorylation sites.51 Not only kinases
are redundant and overlapping, they are cell type- and
condition-specific.41,51–58 Without attempting to clarify the
mechanisms, we found that basal levels of phospho-IRS1
S1101 were decreased in IR cells. p-IRS1 S1101 levels were
restored by rapamycin, which also prevented the mobility shift
of IRS1 induced by insulin. One of the explanations could be
that rapamycin prevented a feedback phosphorylation of
IRS1, exemplified by S636/639 phosphorylation. The same
effect was caused by PF-4708671 and Torin 1. We suggest
that a feedback phosphorylation of IRS1 on several sites may
be blocked by rapamycin. Yet this did not decrease but even
increased AKT activation and ERK phosphorylation by insulin.
It is important to emphasize that knockdown of IRS1 in mice
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Figure 4 Effects of S6K inhibitor and dose-response to rapamycin. Immunoblot
analysis. RPE cells were maintained in either DMEM (25 mM glucose) or MEM
(5.5 mM glucose) complete medium. Cells were incubated in serum-free respective
medium in the absence or presence of rapamycin as indicated (in nM) or 10 mM
PF4708671 (inhibitor of S6K1 kinase) for 42–44 h and then were stimulated with
1mg/ml insulin for 20 min and lysed. Immunoblotting of membranes from two
separate gels
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improves health and extends lifespan in mice.59 This supports
the notion that neither the status of IRS1 per se nor IR actually
determines whether the effect on health is negative or

positive. Instead, it is the activity of mTOR that matters as
was previously discussed in detail.27 We can summarize that
rapamycin reverses, not causes, IR in cell culture. This occurs
even during chronic administration of rapamycin. In fact, the
improvement of metabolic parameters was observed in
chronic use of rapamycin in mice.60,61 Given that rapamycin
blocks the events downstream of mTOR, pseudo-resistance
could be diagnosed (if such parameters are measured),
however, such pseudo-resistance must have beneficial health
effects. For example, suppression of cellular aging, reduction
of HIF-1a and VEGF may prevent diabetic retinopathy. In fact,
rapamycin prevents retinopathy in animal models.5,29,30

Second, hyperglycemia causes IR.62,63 In diabetic patients,
this can be an obstacle, requiring high doses of insulin. High-
dose insulin therapy is associated with side effects as well as
insulin-induced IR.64 We suggest that pretreatment of such
patients with oral rapamycin will reverse IR. Then lower doses
of insulin would be effective in decreasing glucose levels. This
would avoid hypoglycemia or the danger of insulin overdosing.
Also pretreatment with rapamycin will abrogate harmful
activation of mTOR, whereas increasing the upstream effects
of insulin. Another aspect is that the S6K inhibitor PF-4708671
reproduced many effects of rapamycin on reversing IR. S6K
inhibitor potently blocked basal pS6 but did not completely
block inducible pS6. Thus, its effect would be milder and more
specific, given that S6K has less targets than mTOR does.

Materials and Methods
Cell lines and reagents. RPE, also known as ARPE-19, and immortalized
mouse myoblast cell line, C2C12, were obtained from ATCC (Manassas, VA,
USA). RPE cells were maintained in either MEM or high-glucose DMEM, both
media without sodium pyruvate, plus 10% FBS and C2C12 cells were cultured in
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high-glucose DMEM without pyruvate plus 10% FBS. Serum-free low-glucose
DMEM was used in some experiments. Rapamycin was obtained from LC
Laboratories (Woburn, MA, USA). Torin 1 was purchased from Selleckchem
(Houston, TX, USA). Insulin (as 10 mg/ml solution) and PF 4708671 were obtained
from Sigma-Aldrich (St. Louis, MO, USA). Stock solutions were prepared in
DMSO: rapamycin at 5 mM and 50 mM; Torin 1 at 3 mM; PF4708671 at 10 mM.

Immunoblot analysis. Immunoblotting was performed as described
previously.31 In brief, whole-cell lysates were prepared using boiling lysis buffer
(1% SDS, 10 mM Tris �HCl, pH 7.4). Equal amounts of proteins were separated
using Criterion or mini gradient polyacrylamide gels (Bio-Rad, Hercules, CA, USA)
and transferred to PVDF membranes. The following rabbit antibodies for:
phospho-S6 (S235/236), phospho-S6 (S240/244), phospho ERK½, phospho-Thr
389 p70S6K, phospho-AKT (S473) and phospho-AKT (T308), phospho-IRS1
(S1101), phospho-IRS1(S636/639), IRS1 and mouse anti-S6 antibody were from
Cell Signaling Biotechnology (Danvers, MA, USA). Rabbit anti-actin and mouse
monoclonal anti-GAPDH antibodies were from Sigma-Aldrich and Invitrogen
(Camarillo, CA, USA), respectively. Secondary anti-rabbit and anti-mouse HRP-
conjugated antibodies were from Cell Signaling Biotechnology.

Transient transfection and plasmids. The HIF-responsive HRE-Luc
plasmid was used previously.65 HRE–Luc was obtained by subcloning three
copies of a double-stranded 21-bp oligonucleotide (50-AGTGACTACGTG
CTGCCT-30) in the pGL3 promoter vector (Promega, Madison, WI, USA),
digested with KpnI and MluI. For the analysis of the expression of HRE-Luc,

50 000 cells were plated in 24-well plates either in DMEM or in MEM with 10%
FBS. Then medium was changed for serum-free DMEM or MEM, respectively, and
then transfected with plasmids by using TransFast transfection reagent (Promega)
according to the manufacturer’s recommendations. After 2 h of incubation with the
plasmid-lipid suspension, the medium was changed and cells were cultured for an
additional day. Then cells were treated with either 1 mg/ml insulin or 10% FBS, if
indicated. After 16 h, cells were lysed and analyzed for luciferase activity as
described previously.65
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