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Structural order as a genuine control parameter
of dynamics in simple glass formers
Hua Tong 1 & Hajime Tanaka 1*

Glass transition is characterised by drastic dynamical slowing down upon cooling, accom-

panied by growing spatial heterogeneity. Its rationalisation by subtle changes in the liquid

structure has been long debated but remains elusive, due to intrinsic difficulty in detecting the

underlying complex structural ordering. Here we report that structural order parameter

characterising local packing capability can well describe the glassy dynamics not only mac-

roscopically but also microscopically, no matter whether it is driven by temperature or

density. A Vogel-Fulcher-Tammann (VFT)-like relation is universally identified between the

structural relaxation time and the order parameter for supercooled liquids with isotropic

interactions. More importantly, we find such an intriguing VFT-like relation to be statistically

valid even at a particle level, between spatially coarse-grained structural order and micro-

scopic particle-level dynamics. Such a unified description of glassy dynamics based solely on

structural order is expected to contribute to the ultimate understanding of the long-standing

glass-transition problem.
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Despite the use of glasses for thousands of years, the nature
of glass and the glass transition remains probably the
deepest and most interesting unsolved problem in con-

densed matter physics and materials science1–8. In contrast to
crystallisation whose solidity is a consequence of the emergence
of long-range periodic order, the drastic dynamical slowing down
towards the glass transition, either by cooling or densification,
does not involve obvious change in the structure that is seen by
two-point density correlators accessible through diffraction and
scattering experiments4,7. Therefore, glasses are often considered
as the epitome of a completely disordered state of materials. For
example, the glass transition is described as a purely dynamical
phenomenon in kinetically constrained models6. On the other
hand, the physical scenarios which posit a growing static order
and hence a thermodynamic origin behind the slowing down of
glassy dynamics have regained popularity since the discovery of
the so-called dynamic heterogeneity in 1990s2,9–11. The spatially
correlated domains which move significantly faster or slower than
the average are proposed to be the long-sought-after coopera-
tively rearranging regions (CRRs), which is the core concept of
the Adam-Gibbs theory of glass transition12 and its modern
version, i.e., the random first-order transition (RFOT) theory5,13.
Meanwhile, a growing static correlation length characterising the
extent of heterogeneous dynamics is also suggestive of a similarity
between glass transition and the critical phenomena14–17. How-
ever, since the dynamic heterogeneity is not always accessible
through static structural variables, the crucial physical mechan-
ism is still not established, namely a quantitative characterisation
of the glassy structural order and its link to dynamics. This fact
precludes a decisive underpinning to the (thermodynamic) nature
of the glass transition. It is also a fundamental question whether
the microscopic dynamic heterogeneity can be understood toge-
ther with macroscopic slowing down on an equal footing within a
unified physical picture.

One typical approach to look for key structural features
responsible for glassy dynamics is to consider specific physical
aspects of the local atomic environment, e.g., free volume,
potential energy, and spatial symmetry. The free volume
approach18,19 and the inherent potential energy based on the
potential energy landscape (PEL) formalism20 enjoyed early
success showing a clear macroscopic correlation (that is, for
globally averaged quantities) with dynamics, but not micro-
scopically for particle-level dynamics21–23. Therefore, more
efforts have been devoted to the identification of locally favoured
structures (LFSs) based on symmetry considerations. For
instance, icosahedral24,25, crystal-like orders14–16,26,27, or low-
energy topological clusters28,29 are identified and suggested as the
origin of slow dynamics in different glass-forming liquids, but
unfortunately with varying degrees of success30. This situation
may arise from the system-dependent nature of locally low free-
energy configurations16,27. Soft vibrational modes are also found
to show a clear correlation with relaxations in supercooled
liquids31,32, but one may still wonder what the geometric features
underlying the soft structures are. Another approach developed
by Cubuk et al. recently is to define some structural quantity,
“softness”, based on machine-learning methods33,34. The strong
correlation observed between softness and structure relaxation
suggests that important structural features are successfully cap-
tured by this method. However, softness is defined in a high-
dimensional space with more than 100 structure functions,
making a clear identification of glassy structural order difficult.
For both theoretical and practical purposes, it is desirable to find
a simple physical order parameter capturing the structural
characteristics of glass-forming liquids.

In this article, we seek a direct quantitative relation between
structural order and slow glassy dynamics. The fundamental

question of interest is whether the macroscopic slowing down and
the microscopic dynamic heterogeneity in apparently different
glass formers, either driven by temperature or density, can be
understood in a unified manner from a structural perspective. To
this end, we construct structural order parameters X detecting
sterically favoured structures, namely Θ in 2D and Ω in 3D, in the
instantaneous liquid states (see Methods section). Unlike the
previous structural order parameters defined for inherent struc-
tures23, our new order parameters are defined for instantaneous
structures of a liquid. The crucial point is that such inherent states
are never visited in a real liquid under thermal fluctuations, which
are intrinsically under a strong influence of anharmonic effects.
Surprisingly, we find that the new structural order parameters
have a linear scaling relation with the intensive thermodynamic
variables such as temperature T and the inverse of density ρ, for
sixteen different glass formers in their supercooled states. This
linear relation initiates around the onset temperature Ton of the
super-Arrhenius dynamics and continues towards the ideal glass
transition point T0, but is practically ceased by the dynamical
glass transition Tg (here we mention only temperature but the
discussions also apply for density). We further establish a direct
quantitative relation between structural order parameters X and
structure relaxation time τα in the Vogel-Fulcher-Tammann
(VFT) form, indicating that ταðT; ρÞ is a universal function of
XðT; ρÞ alone [the ðT; ρÞ-dependence of the former is through the
ðT; ρÞ-dependence of the latter]. This further suggests the struc-
tural/entropic origin of slow glassy dynamics in line with the
Adam-Gibbs scenario12. More interestingly, based on a nonlocal
excitation scenario and a new calculation of microscopic relaxa-
tion time, we confirm that such an intimate structure-dynamics
correlation is statistically valid even microscopically at a particle
level. These findings suggest that the structural order serves a
genuine control parameter of dynamics both globally and locally,
and the cooperativity of dynamics is a result of the spatial cor-
relation of structural order. Therefore, our results may provide an
essential piece in the microscopic theoretical description of the
long-standing glass transition problem from a structural
perspective.

Results
Models. We perform molecular dynamics simulations of sixteen
glass formers, covering the degrees of freedom in terms of spatial
dimensions, interaction potentials, compositions, and also state
points in the phase space controlled by temperature T or density
ρ (see Methods section and Supplementary Note 1). Therefore,
our study touches upon most of the essential physical factors
affecting the glass transition behaviours, whose effects, to the best
of our knowledge, have never been described in a unified manner
within the same structural perspective. For simplicity, we focus
mainly on polydisperse (PM) and binary mixtures (BM) of par-
ticles with harmonic potentials in both 2D and 3D as typical
examples in the main text (Figs. 1–4). Central results for systems
with Lennard-Jones, Weeks-Chandler-Andersen and purely hard
interactions are included in Fig. 5. Since liquid structures are
complex and temporally fluctuating, in the following, we start
from a correlation between globally averaged quantities and then
move on to a severer test of the structure-dynamics correlation by
investigating their microscopic correspondence.

Structure ordering towards glass transition. Figure 1a shows the
temperature evolution of structural order Θ in both instantaneous
states and the corresponding inherent ones side by side, in 2D
PM with Δ ¼ 13% for different cooling rates (see Supplementary
Figs. 5 and 6 for the other systems). Hereafter instantaneous and
inherent structures are always the corresponding ones. Three
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regimes are clearly identified, i.e., the high-temperature simple-
liquid, supercooled, and low-temperature glass states, separated
by the onset temperature Ton of the super-Arrhenius dynamics
(Supplementary Fig. 3) and the dynamical glass transition tem-
perature Tg (where the system falls out of equilibrium upon
cooling). For inherent states, we see no change in the structure in
the simple-liquid and glass regimes. It is consistent with the
physical picture that the system gets influenced by the underlying
PEL only below Ton, and finally trapped in the basins (metastable
states) after a dynamical glass transition at Tg

3,35. Accordingly, in
the simple-liquid and glass regimes, the evolution of Θ in
instantaneous states is a pure consequence of thermal fluctuations
controlled by temperature. Only in the supercooled regime, the
glassy structural order grows, leading to a non-trivial linear
scaling relation between Θ and T :

ðΘ� Θ0Þ=Θ0 ¼ κðT � T0Þ=T0: ð1Þ

Here Θ0 is the structural order parameter Θ at the hypothetical
ideal glass transition point T0, which is input from the VFT
fitting of τα (Supplementary Fig. 2), and κ is a proportional
constant. The same scaling relation is found in 3D for Ω (Sup-
plementary Fig. 6). Thus, this relation between our structural
order parameter (X ¼ Θ or Ω) and an intensive thermodynamic
variable (T or 1=ρ) is universal, at least for the systems studied. It
is important to emphasise that the structural ordering in the
instantaneous states controlling glassy cooperative dynamics is an
integrated consequence of not only the structural change in the
inherent states but also the thermal fluctuations. Reflecting this
feature, as shown in Eq. (1), our order parameter behaves as an
effective intensive thermodynamic variable, and thus serves as a
genuine control parameter of dynamics. This further leads to the
VFT-like relation between the structural relaxation time ταðT; ρÞ
and our order parameter XðT; ρÞ [see Eq. (2)]. Therefore, even
though it might appear as a minor change that we switch from
inherent states to instantaneous (thermalized) ones to define the
structural order parameter, the inclusion of thermal fluctuations
is the key for the order parameter to be a physical quantity that
directly controls the slow glassy dynamics (see also Supplemen-
tary Figs. 7 and 8 and discussions accordingly). While such
structural ordering with a direct link to slow dynamics can be
clearly detected by our order parameter, it is invisible through
usual two-point correlators, e.g., the static structure factor SðkÞ
(Fig. 1b, c). This fact suggests that many-body correlations are
essential to detect the subtle structure ordering in glass-forming
liquids16.

Macroscopic relation between structural order and dynamics.
Here we seek a direct quantitative relation between our structural
order parameter X and the structural relaxation time τα. Figure 2
shows τα as a function of X for six different glass formers in both
2D and 3D. We find a universal scaling relation in the VFT-like
form between τα and X for all the systems in the (orange)
supercooled regime:

τα ¼ τ0 exp D2X0=ðX � X0Þ½ �; ð2Þ
where X represents Θ or Ω in 2D and 3D, respectively, and τ0 and
D2 are fitting parameters. The same scaling relation is also found
in systems with different interactions. Actually, Eq. (2) can be
deduced from the equation of state based on X [i.e., Eq. (1)]
together with the well-established VFT temperature dependence
of τα (Supplementary Fig. 2), and the fittings of the data with
Eq. (2) in Fig. 2 further confirm such a relation. The slight
deviations above Ton (left end) are a consequence of the crossover
from the VFT to Arrhenius behaviour around Ton

16 (see also
Fig. 1a on the crossover). Equation (2) states that the drastic
slowing down of glassy dynamics below Ton is intrinsically con-
trolled by the structural change of the liquid, no matter whether it
is driven by temperature or density, which is well characterised by
our order parameter incorporating the influence of thermal
fluctuations. As the structure order evolves towards a certain
perfect one, τα steeply increases and tends to diverge towards the
ideal glass transition point. This result crucially establishes a
direct quantitative relationship between structure and dynamics,
thus providing a strong underpinning on the thermodynamic
nature of glass transition, more specifically its entropic origin,
even though the ideal glass transition is never accessed and thus
hypothetical (e.g., ref. 16). In this context, it may be interesting to
note the similarity between Eq. (2) and the standard Adam-Gibbs
relation12 τα ¼ τ0 expðA=TSconf Þ (A: a constant). This similarity
suggests that the configurational entropy Sconf is controlled by the
degree of structural disorder measured by our order parameter,
which provides a direct structural insight into the understanding
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Fig. 1 Structure formation during cooling. a Evolution of structural order Θ
in instantaneous (filled circles) and inherent states (open circles) in a 2D
PM (Δ ¼ 13%). Dotted data are shown for different cooling rates γ. The
onset temperature (Ton ¼ 0:00276) and dynamical glass transition
temperature for the slowest cooling rate (Tg ¼ 0:00135) are indicated,
allowing us to separate the simple-liquid (light blue), supercooled (orange),
and glass regimes (light green) in a clear manner. For instantaneous states,
the temperature dependence of Θ can be fitted with a linear function in the
supercooled regime ðΘ�Θ0Þ=Θ0 ¼ κðT � T0Þ=T0 (solid line), and
changes the behaviour at lower (dash-dotted line) or higher temperatures
(dashed line). The big open circles indicate equilibrium data from
independent simulations. For inherent states, Θ stays constant in both
simple-liquid and glass regimes (horizontal lines). Note that smaller Θ
means higher order. See Table 1 for the fitting parameters and
Supplementary Table 1 for the other systems. b, c Static structure factor
SðkÞ for different temperatures at γ ¼ 10�10 (panel b) and different cooling
rates at T ¼ 0:0015 (panel c). The same colouring scheme in the
background is also applied in Fig. 2, for the ease of visualising different
temperature regimes.
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of configurational entropy. In the Supplementary Figs. 9–11, we
have analysed the behaviour of Sconf and preliminarily established
its connection with our structural order parameter.

Microscopic relation between structural order and dynamics.
Now we move one step forward to seek a microscopic relation
between structural order and dynamics. First of all, we point out
that a strong microscopic correspondence is essential to establish
a concrete structure-dynamics correlation, which relies on the
critical many-body information captured by a proper structural
order parameter. To this end, it is worth mentioning that many
structural quantities, e.g., free volume and potential energy, show
a correlation with macroscopic relaxation when globally aver-
aged18–20, but do not show obvious correlation with microscopic
dynamics at a particle level21–23. In order to achieve a meaningful
measurement of microscopic relaxation, we have performed
simulations in the isoconfigurational ensemble21,31,36 and acces-
sed the characteristic structure relaxation of each particle (see
Methods section). In Fig. 3a, we plot the self-intermediate scat-
tering function Fsðk; tÞ for individual particles together with its
global average. Evidently, many particles relax significantly faster
or slower than the average, directly indicating strong particle-level
heterogeneity in the dynamics. This is also visualised via the
contour plot of microscopic relaxation time τiα, defined as
Fi
sðk; τiαÞ ¼ e�1 for particle i, as shown in Fig. 3c. We note that

local τiα probes the tendency of local structure around particle i to
relax, which is directly linked to the free-energy barrier to local
structural rearrangements ΔGi as τiα � expðΔGi=kBTÞ. Thus, it
provides an effective measurement of particle-level structural
relaxation and facilitates a direct comparison between structure
and dynamics at a microscopic level, as will be discussed later in
Fig. 4. The common approach to identify a microscopic structural
feature responsible for the heterogeneous dynamics is to look at
the spatial distribution of a specific local structural quantity.
Figure 3d shows such a plot of Θ, which exhibits its highly

fluctuating character so that only moderate correlation with
microscopic τα can be seen in comparison with Fig. 3c. This weak
correlation is a natural consequence of the fact that glassy
dynamics is not a purely local caging of particles by their
neighbours. The fundamental and unavoidable conclusion is that,
if there is a spatial correlation in the structure controlling
dynamics, we need to take this fact into account systematically to
reveal an intrinsic structure-dynamics relationship. Considering
that there exists certain structural order that is correlated over the
correlation length of ξ, it is reasonable to expect that such
structural order would affect dynamics in a correlated manner.
More specifically, in a region of high packing capability, particles
cannot move independently and have to move cooperatively. If its
characteristic size is ξ, local structural relaxation should also be
correlated over ξ. Therefore, to best capture the structure-
dynamics correlation, one needs to access the structure infor-
mation nonlocally over ξ. Based on this physical picture, we seek
a nonlocal structural approach for microscopic relaxation,
through a systematic spatial coarse-graining to detect the corre-
lated nature of structural ordering (see Methods section)23. Fig-
ure 3b shows the cross-correlation Cr between microscopic τα
and structural order as functions of coarse-graining length L. Cr
significantly increases upon coarse-graining and exhibits a peak
of very high values at a temperature-dependent length scale,
which is identified as the characteristic static correlation length ξ
of the underlying structure (see Supplementary Figs. 13–15 for
other systems). We note that such correlation is significantly
stronger than that from the structural order in the corresponding
inherent state (specifically, here the peak correlation at the lowest
temperature reaches �0:87, which is more than 20% higher than
that based on inherent states, see Supplementary Fig. 8 for a
comparison). This fact strongly supports our claim that it is the
instantaneous structure rather than the inherent one that controls
the particle dynamics. The critical point is that the inherent
structure is a state that is never really visited by a system in a
liquid state. This fact can naturally be understood by noting that a
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liquid at finite temperatures inevitably suffers from strong
anharmonic effects. So the structural order parameter defined in
instantaneous structures (including thermal fluctuations) should
be regarded as a true measure of the liquid structure that directly
controls dynamics.

The enhancement of structure-dynamics correlation through
spatial coarse-graining over ξ is further illustrated by the spatial
distribution of coarse-grained order parameter field ΘCG, as
shown in Fig. 3e, which displays remarkable resemblance to the
one of microscopic τα in Fig. 3c. This result is a clear illustration
that the microscopic relaxation at a particle level is actually
controlled by the structure in a nonlocal manner, consistent with
the common belief of cooperative relaxations in supercooled
liquids5,7,12,13,37. A deep link between our structural order
parameter and local structure entropy15 is discussed in Supple-
mentary Fig. 12 in this context.

We further investigate quantitatively how the microscopic
structure relaxation is related to the structural order. In Fig. 4a, c,
microscopic τα of each particle are plotted as functions of bare
structural order parameters Θ and Ω in 2D and 3D, respectively,
for a range of temperatures from slightly above Ton to deeply
supercooled regime. Roughly, longer τα is seen for more ordered
particles (with smaller values of Θ or Ω), with an overall tendency
of structure ordering and dynamical slowing down upon cooling.
However, the correlation is rather weak, as can be seen from
largely scattered data.

We then apply spatial coarse-graining to the structural order at
its characteristic static correlation length ξ as determined by
Fig. 3b (see also Supplementary Figs. 13–15 for the other
systems), and replot the data in Fig. 4b, d. Besides, the data sets of
macroscopic τα versus the global structural order are shown on

top. Overall, the very much scattered data points in Fig. 4a, c now
shrink horizontally. This tendency is much stronger at lower
temperatures, giving rise to a stronger structure-dynamics
correlation. In 2D, the microscopic data from three different
glass formers collapse nicely onto each other and form a universal
thin strip, which further coincides with the macroscopic VFT-like
relation (Eq. (2)) between structural order and relaxation (Fig. 4b).
This is surprising, because the dynamical difference between any
two state points is controlled by the intensive thermodynamic
variable (here, which is temperature or/and density), whereas the
difference between particles in the same state point is controlled
by thermal fluctuations; therefore, inherent difference might be
expected for these two cases. Here we note that such coincidence
is better at lower temperatures: larger deviations in the slope can
be observed at higher temperatures. Such deviations are more
significant in 3D, where a pronounced coincidence is accessed
only at the lowest temperatures under study (Fig. 4d). The
physical factor behind this trend is the much shorter static
correlation length in 3D than 2D (ξ ¼ 1 � 3:1 in 3D compared
to 1:4 � 5:1 in 2D, see Supplementary Fig. 15) at comparable
τα. Note that the relation τα ¼ τ0 exp½Dðξ=ξ0Þd=2�, where d is the
spatial dimension and D is the so-called fragility index, is
established in previous studies including the systems studied
here23, which is consistent with Ising-like critical15–17 or
RFOT5,13 scenarios of glass transition. This relation suggests a
much faster increase of τα, or the activation energy, with the
growth of ξ for d ¼ 3. Consequently, the domain size of
cooperatively relaxing regions is considerably larger even under
moderate supercooling for d ¼ 2 than d ¼ 3, and hence the
coarse-graining over this size more effectively brings the self-
averaging effect. This means that for d ¼ 3, we need deeper
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supercooling (meaning longer τα) to have the same level of the
effect. We also note that the microscopic VFT-like relation
between structure and dynamics should be understood in a
statistical sense, due to the inherently stochastic nature of thermal
fluctuations (see Supplementary Fig. 17).

Universal relationship between structural order and dynamics.
We have so far found a universal linear scaling relation between
structural order parameter (X) and an intensive thermodynamic
variable (T or 1=ρ) and thus established a universal quantitative
VFT-like relation between X and τα in the supercooled liquid
state of simple glass formers, no matter whether it is driven by
temperature or density. To highlight this point, we show in Fig. 5
the structure-dynamics relations for all the sixteen systems stu-
died, covering both binary and polydisperse glass formers in
different state points (in the ρ–T phase space), for 2D and 3D,
and for the four types of interaction potentials, all of which
collapse nicely onto the VFT-like relation. This strongly suggests
the universality of the VFT-like relation between X and τα at least
for systems interacting with isotropic additive interactions, which
we call ‘hard-sphere-like’ systems. The link between structure and
entropy in this type of systems further indicates a universal
thermodynamic nature of the glass transition, in line with the
Adam-Gibbs scenario. Furthermore, we establish a nonlocal
mechanism for structure relaxation, which facilitates the identi-
fication of a microscopic VFT-like relation between spatially
coarse-grained structural order and relaxation at a particle level.
These findings lead to an intriguing physical picture that unifies
the macroscopic slowing down (driven by an intensive thermo-
dynamic variable such as temperature or density) and the

microscopic dynamic heterogeneity (induced by thermal fluc-
tuations), which apparently look independent with each other,
under a simple structural approach. Since the structural and
dynamical information necessary in our methodology can be
easily accessed in modern colloidal experiments38,39, we call for
experimental verification of our findings.

Here, it is worth mentioning the indication of our results on
the roles of the attractive and repulsive pair forces in the dynamic
behaviours of WCA and LJ liquids. Previously, the same structure
as measured by pair correlation functions but very different
dynamics were found between the two systems40,41. This led to
vivid discussions on the mysterious effect of attractive forces on
dynamics in supercooled liquids40–42. Our characterisations of
WCA and LJ systems, however, provide a simple yet appealing
solution. We find that the structure measured by our structural
order parameter is actually quite different between the two
liquids; however, the dynamics is controlled commonly by the
structure order parameter following the same physical scenario
(Fig. 5). This result clearly indicates the essential significance of
many-body correlation in the physical description of supercooled
liquids, which is captured by our structural order parameter but
missed by pair correlation functions. Considering that such
intricate structural ordering at many-body level is also influenced
by long-range attraction, this finding suggests a direction for
improvement of the standard van der Waals picture of liquids43.

The general observation of a VFT-like relation between
structural order and relaxation shown in Fig. 5 is surprising, at
least at first sight. This is related to the linear scaling relation [see
Eq. (1)], to a good approximation, between our structural order
parameter and intensive thermodynamic variables in supercooled
liquids. Considering that the order parameters we defined closely
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measure the deviation from the most efficiently packable local
structures, with the same spirit in 2D and 3D, the observed linear
scaling relation as the first-order approximation might be
understandable. However, a strict demonstration is lacking at
this moment due to the difficulty associated with the many-body
nature of the order parameters. This issue remains for future
research. Here we emphasise that such a universal VFT-like
relation can only be established based on structural order in the
instantaneous states, which is a true measure of the liquid
structures including thermal fluctuations really visited at finite
temperatures. Moreover, we note that in Eq. (2) the dynamics is
controlled only by the structural order parameter X (meaning
that temperature or density is implicit), suggesting a purely static
picture for slow glassy dynamics, i.e., its thermodynamic origin.
The collapse of the data of the sixteen systems in Fig. 5 is also
suggestive of hidden similarity among apparently different
systems. A possible connection between our observation and
the existence of isomorph in simple liquids42,44,45, namely a class
of equivalent state points in the phase diagram that have the same
structure and dynamics in reduced units, is an interesting
direction to explore in the near future.

Discussion
The microscopic relaxation, which we characterise using τα of
individual particles, is found to be nonlocally correlated with the
structural order. Such a nonlocal mechanism of structure
relaxation is expected to constitute an essential piece for a

complete understanding of glass transition, which should be
accounted in general in theoretical approaches. The fact that we
have the local VFT-like relation between structural order para-
meter and dynamics only after spatial coarse-graining of the
former suggests that the cooperativity of dynamics is a direct
consequence of the spatial correlation of structural order. In
particular, it provides the physical mechanism connecting a
growing length scale with the dynamical slowing down at a
particle level (which is not the case in ordinary critical
phenomena).

Finally, we note that the structure of hard-sphere glasses is
driven by the entropy alone, or the packing effect, since there is
intrinsically no energy term in the free energy. We use ‘hard-
sphere-like’ to categorise glass formers whose structure ordering
is also dominated by the entropy, or the packing effect, which can
be captured by our structural order parameter. We stress that
many model glass formers with simple isotropic interactions, e.g.,
those studied in the present work, as well as most of the previous
numerical simulation studies, fall into this category27. In the
absence of obvious density inhomogeneity beyond the particle
size, which is the case for these glass formers, the energy term
does not play a role in the selection of locally favoured stable
structures23, although it may take effect as a global constraint as
discussed above. Alternatively, we can also understand the
structural ordering as a result of steric repulsion at finite tem-
perature. As a counter-example, strong liquids like silicon and
water46, local structures of which are dominated by the direc-
tional bonding, i.e., the energy, are not hard-sphere-like. In those
systems, the loosely-packed tetrahedral structure is preferred, and
we actually find a negative correlation between Ω and dynamics
(meaning that particles with small Ω tend to be mobile). Hitherto,
we have used the term ‘hard-sphere-like’ in a somewhat loose
manner. Similar to the categorisation of a ‘simple liquid’ in the
isomorph theory42,44,45, which depends on not only the interac-
tion potentials but also the part of the phase diagram of interest, a
clear categorisation of ‘hard-sphere-like’ would require further
investigations. We note that these two categorisations may not
necessarily be the same, although overlap is expected. Such a
categorisation is expected to simplify the description of various
glass formers, which are apparently different but may follow the
same physical scenario that the underlying structural ordering
controls slow glassy dynamics through a nonlocal mechanism.
Different physical scenarios may also be rationalised accordingly
for glass formers that fall out of this categorisation.

Methods
Models and simulation methods. We perform molecular dynamics simulations of
sixteen hard-sphere-like model glass formers with four types of interactions. In the
main text we focus on polydisperse (PM) and binary mixtures (BM) of harmonic
particles in both 2D and 3D, and use temperature as the controlling intensive
thermodynamic variable. The interaction potential between particles i and j is given
as VðrijÞ ¼ ϵ ð1� rij=σ ijÞ2Θð1� rij=σ ijÞ=2 for rij < σ ij , where rij is the separation
between particles i and j, σ ij is the sum of their radii, and ΘðxÞ is the Heaviside step
function. These models have been widely studied as canonical glass formers
which show behaviours as quasihard particles47,48. For the polydisperse case,
the particle size is extracted from a Gaussian distribution with polydispersity

Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hσ2i � hσi2

q
=hσi. Two polydispersities are implemented in both 2D and

3D, to introduce different degrees of geometric frustrations against crystallisation
to the systems16. For the binary case, we mix the equal number of large and small
particles, whose diameter ratio is 1:4. The unit of length is set to the averaged
diameter hσi and the small particle diameter σs in PM and BM cases, respectively.
For all cases, the particles have the same mass m. The energy, time and temperature
are in units of ϵ,

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mσ2=ϵ

p
(σ represents hσi or σs) and ϵ=kB, where kB is the

Boltzmann constant. The volume fraction (hence, the density) is fixed at ϕ ¼ 0:91
in 2D, and ϕ ¼ 0:66 and ϕ ¼ 0:67 for 3D BM and PM cases, respectively, so that
the systems have a well-defined inherent state at zero temperature. The total
number of particles is N ¼ 10; 000 for the PM of Δ ¼ 11% in 2D and Δ ¼ 8% in
3D, and N ¼ 4096 for all the rest. We have also studied 2D PM with Lennard-
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Fig. 5 Universal relationship between structural order and dynamics.
Macroscopic structure relaxation time τα as a function of the rescaled
structural order ðX � X0Þ=D2X0 for sixteen different systems in the
supercooled regime. Filled symbols: 2D BM and PM (Δ ¼ 11% and 13%),
and 3D BM and PM (Δ ¼ 8% and 13%) with harmonic interactions; and 2D
polydisperse mixtures (Δ ¼ 13%) with WCA, LJ and purely hard
interactions. For these nine major systems, both macroscopic and
microscopic properties are studied. Open symbols: seven additional
systems controlled by temperature T (2D-T1,2 with fixed volume fractions
ϕ ¼ 0:88 and 0.86, respectively; 3D-T1 with ϕ ¼ 0:72; and 3D WCA and
LJ) or density ρ (2D-ρ1,2 at fixed temperatures T ¼ 10�3 and 10�4,
respectively). If not specified, the interaction is harmonic repulsion. Only
macroscopic characteristics are studied for these seven systems. Error bars
are comparable to the symbol size and hence not shown. Here, X
represents averaged Θ and Ω in 2D and 3D, respectively. X0 is the
structural order at the hypothesised ideal glass transition, τ0 and D2 are
system-dependent parameters given in Table 1 and Supplementary Table 1.
The black curve is given by Eq. (2). Note that the glass transition is driven
by density (or pressure) in hard disk and 2D-ρ1,2 systems whereas by
temperature in the others. The collapse of all data of different systems to a
single curve suggests the structural order as a genuine parameter that
controls the slowing down of glassy dynamics, no matter whether it is
temperature-driven or density-driven.
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Jones, Weeks-Chandler-Andersen, and purely hard interactions49, and the
numerical details are given in the Supplementary Note 1.

In addition to the above mentioned nine major systems in which both
macroscopic and microscopic properties are characterised (see below), we have
studied another seven systems in different conditions only for macroscopic
characteristics, as detailed in Supplementary Table 1. Overall, we have accessed the
degrees of freedom in terms of spatial dimensions, interactions, compositions, and
also regimes in the phase space controlled by temperature or density, and
confirmed consistent results.

We employ molecular dynamics (MD) simulations since the focus here is to
understand the relationship between structure and glassy dynamics. Swap Monte
Carlo method50 is attractive in the sense that it allows us to access static
information in a more deeply supercooled state, but does not provide realistic
dynamical information. Simulations are performed in square boxes for 2D and in
cubic boxes for 3D in the NVT ensemble with a Berendsen thermostat49,51. We
employ periodic boundary conditions. More details on the equilibration and the
isoconfigurational ensemble21,36 are given in the Supplementary Note 1.

Characterisations of structure. A set of structural order parameters, Θ in 2D and
Ω in 3D, is constructed to characterise sterically favoured configurations with high
local packing capability in hard-sphere-like glass formers, such as polydisperse and
binary mixtures, in a unified manner23. They are designed to measure the deviation
of a local packing from the perfect arrangement for which neighbouring particles
can be most efficiently packed around the central particle. Such a perfect reference
is automatically determined for each particle taking into account the particle sizes,
the number and arrangement of neighbours, which does not require a prior
knowledge of what kind local structure or symmetry would be preferred. Therefore,
the advantage of our order parameters lies in their ability to detect exotic amor-
phous order in an order agnostic manner, which distinguishes them from the
common bond orientational order parameters25,27.

The critical point here is that the structural order is measured in the
instantaneous states at a real liquid temperature. This differs from previous works
where the structure is measured in the inherent states at zero temperature23,34.
Although it might appear as a minor change, it has a very fundamental physical
significance that is crucial to establish a quantitative relationship with the
dynamics. This fact can be understood from the fact that the inherent structure is a

state that is never really visited by a system in a liquid state. In the absence of
obvious density inhomogeneity beyond the particle scale, the sterically favoured
structures provide more room for particles to move vibrationally through better
arrangements and hence higher correlational (or, vibrational) entropy, leading to
lower local free energy.

2D case.—A typical local configuration in 2D disk systems, which consists of a
central particle o and its neighbours, is shown in Fig. 6a. All through our analyses,
we define the neighbouring particles by using the radical Voronoi tessellation in
order to handle the particle size differences52. For each pair hiji of neighbouring
particles next to each other, we measure the angle between roi and roj , which we

denote as θð1Þij . Such triangles of three neighbouring particles are regarded as
fundamental structural units in 2D. In Fig. 6b, we illustrate the corresponding
reference configuration of these three particles perfectly just in touch. Here we

indicate the central angle as θð2Þij . The structural order parameter for particle o is
then defined as

Θo ¼ 1
No

X

hiji
jθð1Þij � θð2Þij j; ð3Þ

where No is the number of pairs of neighbours, which is the same as the number of
neighbours of particle o, and the summation runs over all pairs of neighbours that
are next to each other. Θ is a measure of the deviation from sterically favoured
structures, i.e., the deviation of a local packing from the configuration in which
neighbouring particles can be most efficiently packed around the central particle.
Larger Θ means more significant deviation from the sterically favoured
configuration, and hence more disordered.

3D case. —A typical local configuration in 3D sphere systems, which consists of
the central particle o and its neighbours, is shown in Fig. 6c. Note that we identify
the neighbour shell by using the radical Voronoi tessellation52. Then, we select all
sets of three neighbours that form a tetrahedron together with the central particle.
We note that these three particles contribute to a vertex of the Voronoi cell of the
central particle. We show an example of such selection in Fig. 6c. We denote the
lengths of each edge of this tetrahedron as roi , roj , etc. Similarly to the 2D case, we
construct the corresponding reference tetrahedron consisting of the four particles
that are perfectly just in touch, as shown in Fig. 6d. We denote the edge lengths as
σoi , σoj , etc. Then, we quantify the imperfection of a tetrahedron of the original

(1)
ij
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�

i
j

(2)
ij

o

�

i j

i

j

k

o
i

j
k

o

a c db

Fig. 6 Definition of the structural order parameter. The panels a and b are for a 2D disk system. a A typical local particle configuration consisting of a
central particle, o, and its 6 neighbours. We denote two of the neighbours next to each other as i and j. b The reference configuration corresponding to that
in panel a, where the three particles i, j, and o, just touch with each other. We define the central angles of configurations in panels a and b and denote them
as θð1Þij and θð2Þij , respectively. The panels c and d are for a 3D sphere system. c A typical local particle configuration consisting of a central particle, o and its
14 neighbours. We denote three of the neighbours next to each other as i, j, and k. d The reference configuration corresponding to that in panel c, where the
four particles, i, j, k, and o, just touch with each other. We describe the detailed definition of the structural order parameter for the instantaneous liquid
states in the main text.

Table 1 Fitting parameters.

Θ0 or Ω0 T0ð10�4Þ or ρ0 τ0 D D2

2D, harmonic, binary 0.0892 6.47 3.95 8.66 1.59
2D, harmonic, Δ ¼ 11% 0.0735 9.50 0.677 10.9 4.05
2D, harmonic, Δ ¼ 13% 0.0784 8.02 1.57 10.1 2.64
3D, harmonic, binary 0.0907 2.24 3.09 15.0 0.889
3D, harmonic, Δ ¼ 8% 0.0884 5.21 3.84 5.33 0.629
3D, harmonic, Δ ¼ 13% 0.0882 4.67 2.81 6.70 0.710
2D, WCA, Δ ¼ 13% 0.0822 608.0 0.352 19.1 2.14
2D, LJ, Δ ¼ 13% 0.0775 1300.0 0.169 13.3 2.82
2D, hard disk, Δ ¼ 13% 0.0829 1.01 0.205 0.301 2.04

Here we list the fitting parameters used in the plots according to Eqs. (1) and (2) and in the VFT fitting of the α relaxation time (Supplementary Fig. 2) for nine major systems under study. The glass
transition of hard disk systems is driven by density ρ (or pressure) increase, whereas by temperature T decrease for the rest. Note that the coefficient in Eq. (1) can be deduced as κ ¼ D2=D. Fitting
parameters for additional seven systems used in Fig. 5 are given in Supplementary Table 1
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configuration as

ωhoijki ¼
P

habijrab � σabjP
habiσab

: ð4Þ

Here habi runs over the six edges of the tetrahedron hoijki. Finally, we obtain the
structural order parameter of particle o as

Ωo ¼ 1
N tetra

o

X

hoijki
ωhoijki; ð5Þ

where N tetra
o is the total number of tetrahedra including the central particle o as a

member and the summation runs over all these tetrahedra. Similarly toΘ for 2D, Ω is
a measure of the deviation from the sterically favoured configuration, i.e., the
deviation of a local packing from the most efficiently packable configuration around
the central particle. Larger Ω means more significant deviation and more disordered.

The coarse-graining of order parameter X (here X stands for Θ or Ω) for
particle i is calculated by taking its average over all particles within a distance L:
XiðLÞ ¼ P

jXjPðjrj � rijÞ=
P

jPðjrj � rijÞ. An exponential core PðxÞ ¼
expð�x=LÞ is employed by assuming that the influence of the local structure on the
dynamics decays exponentially in space. We emphasise that an order parameter
that is able to capture the important many-body correlation is essential for
revealing the structure-dynamics correlation, and the spatial coarse-graining is
purely a static operation to uncover it.

Characterisations of dynamics. The dynamics in 2D is characterised using relative
positions rjðtÞ ¼ rjðtÞ �

P
krkðtÞ=nj , where the summation runs over all neighbours

of particle j. This removes the long-wavelength vibrational motions, known as
Mermin-Wagner fluctuations, which are not relevant to structure relaxations53–56,
and recovers general features of glassy dynamics as in 3D (by using the original
positions). To be simple, notions of the original positions are used in the
following. We measure the self-intermediate scattering function
Fsðk; tÞ ¼ hPj expðik � ½rjðtÞ � rjð0Þ�Þ=Ni, where k ¼ jkj takes values at the first
peak of the static structure factor and h�i denotes time average. The macroscopic
structure relaxation time τα is defined by Fsðk; ταÞ ¼ e�1. Detailed results are shown
in Supplementary Figs. 1–4. Based on the macroscopic τα , we employ the VFT fitting
to extract the ideal glass transition temperature T0. The onset temperature of slow
glassy dynamics Ton is defined as a temperature where the temperature dependence of
τα switches from Arrhenius to non-Arrhenius behaviour. The dynamical glass tran-
sition temperature Tg is defined as a temperature where the system falls out of
equilibrium upon cooling, and thus it depends on the cooling rate. In Fig. 1, we
indicate Tg for the slowest cooling rate where τα ¼ 106 for simplicity.

For the measurement of microscopic relaxation, we perform simulations in the
isoconfigurational ensemble21,36. The important point here is that, unlike previous
studies, the instantaneous states thermalized at fast-β time scale (hence the
structure is not relaxed) are defined as the initial configurations (t ¼ 0) of
the isoconfigurational ensemble, and used for characterisations of structure
and dynamics. Similar treatment can be found in ref. 57. We define Fj

sðk; tÞ ¼
hexpðik � ½rjðtÞ � rjð0Þ�Þiiso for particle j, and the microscopic τα is deduced from

Fj
sðk; τjαÞ ¼ e�1. Here h�iiso stands for the isoconfigurational average.

Correlation between structure and dynamics. We emply the Spearman’s rank
correlation coefficient to quantify the correlation between structure and micro-
scopic dynamics, which is a sensitive measurement of the monotonic relationship
between two variables without floppy parameters23,58. First, we sort the particles in
terms of the structural order (the microscopic τα) with the disordered (the mobile)
ones in front, and assign the ranks Oi (Qi) to each particle i. The correlation is then
calculated as Cr ¼ 1� 6

P
iðOi � QiÞ2=NðN2 � 1Þ. Cr ¼ 1 indicates a perfect

monotonic relation, whereas Cr ¼ 0 indicates the absence of the correlation.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The codes that are used to generate results in the paper are available from the
corresponding author upon reasonable request.
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