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Abstract

Background: Perfusion CT is a technology which allows functional evaluation of tissue vascularity. Due to this
potential, it is finding increasing utility in oncology. Although since its introduction continuous advances have
interested CT technique, some issues have to be still defined, concerning both clinical and technical aspects. In this
study, we dealt with the comparison of two widely employed mathematical models (dual input one compartment
model – DOCM - and maximum slope – SM -) analyzing their robustness to the noise.

Methods: We carried out a computer simulation process to quantify effect of noise on the evaluation of an
important perfusion parameter (Arterial Blood Flow – BFa) in liver tumours. A total of 4500 liver TAC, corresponding
to 3 fixed BFa values, were simulated using different arterial and portal TAC (computed from 5 real CT images) at
10 values of signal to noise ratio (SNR). BFa values were calculated by applying four different algorithms, specifically
developed, to these noisy simulated curves. Three algorithms were developed to implement SM (one
semiautomatic, one automatic and one automatic with filtering) and the last for the DOCM method.

Results: In all the simulations, DOCM provided the best results, i.e., those with the lowest percentage error
compared to the reference value of BFa. Concerning SM, the results are variable. Results obtained with the
automatic algorithm with filtering are close to the reference value, but only if SNR is higher than 50. Vice versa,
results obtained by means of the semiautomatic algorithm gave, in all simulations, the lowest results with the
lowest standard deviation of the percentage error.

Conclusions: Since the use of DOCM is limited by the necessity that portal vein is visible in CT scans, significant
restriction for patients’ follow-up, we concluded that SM can be reliably employed. However, a proper software has
to be used and an estimation of SNR would be carried out.

Keywords: Computed tomography (CT), Liver perfusion, Maximum slope method, Dual-input one-compartment
model, Noise robustness
Background
Quantitative measurements of hepatic perfusion can give
important information in detection, assessment and man-
agement of various liver diseases. Particular important is
the measurement of blood flow within the liver, since
changes in tumour vascularisation are significant indica-
tors of treatment response of hepatic cancers [1]. Different
methods of quantification have been proposed but
generally are either invasive or remain controversial [2].
In the last decade, this awareness, the introduction of
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multidetector CT systems (MDCT) and the availability
of perfusion commercial software have stimulated the
clinical interest in perfusion CT technique [3]. This
technique consists of sequential acquisitions of images
during the intravenous injection of a contrast agent
bolus. It provides parameters correlated to tumour
vasculature and represents an in vivo marker of tumour
angiogenesis [4,5].
Hepatocellular Carcinoma (HCC), the most common

malignant liver tumour, is characterized by an increased
arterial vascularisation. An accurate assessment of arter-
ial perfusion is then crucial to evaluate HCC response to
treatments. Besides, primitive liver tumour diagnosis, as-
sessment and staging are critical because PET (Positron
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emission tomography), that represent the gold standard
functional technique, is not a useful tool in the diagnosis
and follow up of HCC, because metabolism of glucose in
primitive liver tumour is not different from the surround-
ing liver parenchima. So, liver perfusion CT studies are
increasingly advocated as a means to assess the grade of
vascularisation in HCC patients and to evaluate variations
in perfusion parameters following locoregional treatments
or antiangiogenic drugs. However, although since its
introduction continuous advances have interested CT
technique, in its use some problems remain still open.
They concern both clinical and technical aspects, related,
for example, to radiation dose, optimum volume and
speed of bolus of contrast material injected, characteristics
of the employed CT system and image processing [6-9].
About models to be adopted in assessment of perfu-

sion parameters, currently three models are the most
used, the maximum slope (SM) method, the dual-input
one-compartment model (DOCM) method and the de-
convolution method (DC) [8]. The SM method was in-
troduced by Miles et al. [10] and, because its underlying
principle is relatively simple, it has come to dominate
the field of hepatic perfusion measurement. In contrast,
this method can underestimate hepatic perfusion, espe-
cially portal perfusion, when the “no venous outflow”
assumption is violated [11]. This assumption states that
washout of contrast medium should not occur prior to
the peak time of the initial slope of the tissue time attenu-
ation curve (TAC). Thus, a high injection rate of contrast
medium is a prerequisite for accurate perfusion measure-
ments. To overcome this drawback, a new method of
perfusion analysis, the DOCM method, was proposed by
Materne et al. [2]. In theory, hepatic perfusion can be
estimated correctly with this method regardless of the
injection rate. Nevertheless, its use is time-consuming and
limited by the necessity to include in the images also the
portal vein. Cuenod et al. [12] used a deconvolution tech-
nique to evaluate hepatic perfusion. This method provides
more robust analysis without a high injection rate, and the
estimated perfusion values are theoretically independent
from cardiac output, from possible delay of bolus or from
other extrahepatic factors such as age or sex [8]. However,
the calculation is complex and, mainly, the results are
affected by the hemodynamic model used, which makes it
unsuitable for the liver [8].
Despite to some encouraging results obtained with these

models, there is currently no agreement regarding the
optimal analytic method in hepatic CT perfusion and
standardization in the use of model is still an open issue.
Recently, different authors [8,13] have dealt with this

topic. These studies have shown that no consensus has
been reached about the choice of the best model; besides,
they do not consider important aspects such as image
noise. Noise in perfusion images is related to different
aspects. A greater number of images results in more data
points on the time attenuation curve (TAC), and therefore
higher reliability of perfusion measurements. Similarly, a
larger tube current results in less photon noise within
each image. Image noise can also be reduced by using
thicker image slices and lower resolution reconstruction
filters but at the expense of spatial resolution [3]. Anyway,
once the protocol is defined, there is always an unavoid-
able amount of noise which could heavily affect perfusion
parameters estimation.
In this work, we focused on the comparison of the two

most employed mathematical models (DOCM and SM)
analyzing their robustness to the noise by means of com-
puter simulations; in particular we quantified the effect
of noise on evaluation of an important perfusion param-
eter (Arterial Blood Flow – BFa) in HCC lesions.
Methods
Patients
Five subjects (4 women and 1 man; age range, 70 – 77 years;
mean, 74.2 years) with multiple or single hypervascular
HCC lesions and without cardiac complications were en-
rolled for this study, by choosing in our database the images
in which portal vein was visible. The diagnosis of HCC
tumour was achieved on the basis of AASLD (American
Association for the Study of Liver Disease) criteria using
established techniques (RM, MDCT and CEUS) or by
means of liver biopsy. Other relevant clinical informa-
tion and weights were collected for all patients. A target
untreated lesion was selected on the basal CTscan (with-
out contrast). Then, a perfusion CT study was performed
for each patient.
The project was approved by the scientific technical com-

mittee of the hospital (National Cancer Institute “Pascale
Foundation”, Naples, Italy) as part of an internal research
project with note DSC/1957 of 2009 and all patients gave
informed consent to undergo investigation.
CT perfusion imaging
Perfusion CT was performed by means of a commer-
cially available scanner (Philips Brilliance 16 slices). The
perfusion protocol comprised 30 scans (90 kVp, 250
mAs, 4 × 6 mm slice thickness, 1 second gantry rotation
time, 3 s acquisition time), which were obtained in
correspondence of tumour lesion. A 70 ml bolus of con-
trast agent (Iomeron 400 mg/ml) was injected (injection
rate 4 ml/s) into an antecubital vein at the beginning of
the CT data acquisition. The participants were advised
to breathe slowly during the examination to reduce
motion artifacts.
Images were exported for successive analysis by means

of DICOM protocol and then were processed off-line
using Matlab version 7.12.0.
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Mathematical methods
Maximum slope (SM)
The principle of the SM is quite simple, which made it a
very attractive method. It is a derivation of Fick principle
allowing the separate evaluation of dual liver blood sup-
ply component, i.e. arterial blood flow (BFa) and portal
blood flow (BFp). BFa is calculated like the maximum
slope of the liver TAC in its early phase divided by peak
aortic attenuation (Eq.1). The time of peak splenic
enhancement is used as cut-off point to separate arterial
and portal components. BFp is calculated by dividing the
maximum slope of the liver TAC in its late phase (after
peak splenic) by peak aortic attenuation [5,11]. Because
advanced HCC is practically not nourished by portal
blood flow, blood flow in the tumour consists almost
exclusively of arterial flow alone [14,15], therefore BFa is
here chosen as perfusion parameter. In the following
equation (1), Cl(t) is TAC of tumour or liver parenchyma
and Ca(t) is aorta TAC.

BFa ¼
dCl tð Þ
dt max

Ca tð Þmax
ð1Þ

Although its simplicity, the application of this method
involves the choice of different processing techniques. In
literature [16-18], different TAC processing have been an-
alyzed and different algorithms have been developed for
the application of this method but details are generally
missing and no consensus has been reached about the
most reliable algorithm to compute the maximum slope
[16]. In particular, in literature it is not defined a method
to identify starting and end points of the up-slope calcula-
tion [16].

Dual-input one compartment model (DOCM)
With this method, hepatic perfusion parameters are
calculated using all TAC points [19]. When this model is
used, the differential equation describing the kinetic
behaviour of the contrast agent is [1,2,13]:

dCl tð Þ
dt

¼ k1a Ca t−τað Þ þ k1p Cp t−τp
� �

− k2Cl tð Þ
ð2Þ

where Cl (t), Ca (t) and Cp (t) are the concentrations of
contrast agent at time t (TAC in the region of interest –
ROI – ) in the liver, hepatic artery and portal vein,
respectively. τa and τp represent the transit time of con-
trast agent respectively from the aorta and portal vein
ROI, to the liver ROI. The minus signs before τa and τp
occurs because the arrival times of the contrast agent
to the liver ROI through the hepatic artery and portal
vein are generally delayed compared with those to the
aorta and portal vein ROI respectively. The parameters
k1a, k1p and k2 are the rate constants for the transfers
of the contrast agent from the hepatic artery to the
liver, from the portal vein to the liver, and from the
liver to the blood.

Curves simulation
In order to compare different BFa estimation methods
and to test their robustness to noise, we carried out a
computer simulation process.
We computed noise-free Cl(t) starting from equation 2.

To solve this equation, we used the linear least-squares
method, according to Murase [1], with the assumption
that the initial conditions are zero [1]. Besides, we fixed
k1a, k1p and k2 values and used a discrete trapezoids
method for the integration.
Holding the hypothesis that in HCC only the arterial

flow contribution is significantly changed, as introduced
in the above section “Maximum slope”, values relative to
healthy subjects were chosen for k1p and k2 (respectively,
0.0133 and 0.0333 [1,13]).
k1a was fixed on the basis of a previous work about

HCC [6] (please, see the next Section).
Ca(t) and Cp(t) were obtained from real perfusion CT,

drawing circular ROI as large as possible on patients’
images.
Finally, τa and τp were assumed to be equal to zero for

simplicity [13].
In Figure 1 an example of the curves used for the

study is shown.

Noise simulation
To investigate the effect of noise on BFa estimation, we
added noise to the simulated Cl(t). Specific models of
noise should be adopted for the images here treated, but
there is no literature available about this particular topic.
Models employed in some research works about perfu-
sion or described in other medical applications generally
assume the noise to be additive, white and Gaussian
[1,13,20]. So, we computed the noise by generating nor-
mally distributed random numbers with null mean and
unit variance. Nevertheless, short sequences obtained
by Matlab noise generator could not have unit variance.
In order to ensure the unit variance of the noise, the
generated random sequence (for simplicity called rum)
was normalised with respect to its standard deviation.
Then, in order to obtain set signal to noise ratio (SNR),
we multiplied rum by the square root of the ratio
between signal power and the set SNR, according to
formula 3:

noise ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P signalð Þ
SNR

r
� 1
std rumð Þ � rum ð3Þ

where P(signal) is the power of the simulated Cl(t)
curve.



Figure 1 Example of TAC used for the study. An example of TAC used for this study (patient # 1, internal numbering). Dashed and dotted
lines represent respectively aorta and portal TAC obtained from real perfusion images. Black stars mark a Cl(t) (tumour TAC) estimated with the
simulation study.
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In Figure 2 it is shown an example of a simulated Cl

TAC and the corresponding noisy curve.
In order to obtain curves with different levels of noise,

SNR ranged from 10 to 100 (step 10, absolute values).
For each SNR value, the noise simulations were repeated
thirty times; so that we obtained 300 Cl noisy curves for
each Cl(t).

Simulation study
The procedure described in the previous Section (corre-
sponding to 300 simulations with the same Cl curve and
different signal noises, in the following also called patient
Figure 2 Simulated Cl and noisy curves. The thin line is the simulated C
added a noise signal such has to have SNR = 50.
study) was reproduced for each of the five patients (using
the corresponding real Ca and Cp curves).
Then, the whole simulation study (involving all pa-

tients, i.e. 1500 simulations) was repeated three times,
with different values of K1a (for a total of 4500
simulations).
In particular, as values for k1a were chosen 0.0146,

0.0096 and 0.0189. They were computed starting from
mean, minimum and maximum values of BFa experi-
mentally obtained in a previous work [6], making the
appropriate change of measurement units and rounding
to fourth decimal digit.
l TAC shown in Figure 1 and the thick line is the same curve with



Table 1 Acronyms

Acronym Meaning

BFa_DOCM BFa values computed with the DOC algorithm

BFa_SM_sa BFa values obtained with the SM semiautomatic
algorithm

BFa_SM_a BFa values provided by the SM automatic algorithm

BFa_SM_af Results of the SM automatic algorithm with filtering
(i.e. after Cl(t) smoothing)

Patient study Simulations carried out for one patient and for all ten
SNR values (for a total of 300 simulations)

SNR study Simulations carried out for one SNR value and for all
five patients (150 simulations)

Simulation study 1500 simulations (all patients and all SNR values)

BFa min Simulation study (five patients, ten SNR values, thirty
simulations, for a total of 1500 simulations) carried
out with the reference BFa set at the min value (57.6)

BFa mean Simulation study carried out with the reference BFa
set at the mean value (87.6)

BFa max Simulation study carried out with the reference BFa
set at the max value (113.4)

Acronyms used to illustrate results.

Romano et al. BMC Research Notes 2014, 7:540 Page 5 of 11
http://www.biomedcentral.com/1756-0500/7/540
BFa estimation
To use known perfusion units (ml ×min−1× 100 ml−1), ac-
cording to literature, all perfusion values were multiplied
by 60 s/min and by 100 ml (of blood)/ml (of tissue), where
we assumed a specific tissue gravity of 1.0 [11].
Experimental BFa values were estimated by applying

four different algorithms (described below) to the noisy
simulated Cl (t) curves. Three algorithms were developed
to implement SM and the last for the DOCM method.
The algorithms performances were evaluated by com-

paring the obtained BFa with the set value.
The set BFa values, used as reference in the three simu-

lation studies, were 87.6, 57.6 and 113.4 ml/min/100 ml
(obtained multiplying by 6000 the k1a values chosen for
the simulations).

SM semiautomatic algorithm
In this version, according to other algorithms proposed
in literature [13], the algorithm is based on the manual
selection of starting (S) and end (E) points of TAC range
on which to compute the maximum slope [21,22]. S and E
points can be selected on Cl (t) by the operator through a
simple interface, also developed with Matlab. The max-
imum slope was estimated as the slope of the straight line
that fits the curve samples, between the two selected
points, best in a least-squares sense.

SM automatic algorithm
According to literature [16], the simulated Cl (t) curve
was differentiated and an array (here named 1-D-diff ),
which represented the contrast time variations, was com-
puted. At this point, the search of the maximum element
was limited to the rise portion of the curve; in this case S
was set equal to 10 s and E was fixed at one third of Cl

length. Since, as mentioned, there are not references in
literature, we based this choice on simulated curves com-
puted by Bae [7] and on our experience. The largest elem-
ent between S and E in the 1-D-diff array (which of course
is positive) corresponds to the maximum contrast vari-
ation. Three consecutive data points of Cl curve, centred
around the identified element, were then considered. The
three consecutive points were fitted using a linear curve
fitting model, the best fitting was again chosen minimizing
the square mean error. The slope of the regression line
was considered as the maximum slope of the TAC.

SM automatic algorithm with smoothing
In this last version of the algorithm, as proposed in lit-
erature [17], we smoothed Cl(t), before automatic com-
putation of maximum slope, in order to reduce noise
contribute. For smoothing, we applied an average filter
(5th-order moving-average filter, cut-off frequency equal
to 0.1 Hz).
DOCM algorithm
In this case, to estimate the kinetic parameters and
consequently BFa, we solved the eq. 2 using the same
methodology described in the section “Curves simulation”
but, of course, leaving the k values unknowns.
Noise estimation
Assuming that the performances of the different signal
processing techniques depend on SNR, we implemented
a simple procedure for SNR estimation, to be applied on
real curves in order to establish if the actual SNR permits
the use of the proposed algorithms.
For assessing SNR, we computed the ratio between

the estimates of signal power and noise power. In
particular, the estimation of signal power was carried out
calculating the power of the whole noisy Cl(t) curve.
Then, we estimated noise contribution as power of the
curve in its final tract, where it is possible to assume that
the contrast enhancement reached an almost steady-
state plateau [7]; in this signal tract the computation of
noise power is possible simply after removing any
possible linear trend of the signal.
Results
For simplicity, in the following, the acronyms listed in
Table 1 will be used to indicate the results obtained.
In Figure 3, to provide a clear, visual example of the

software functioning, regression lines estimated from the
three different algorithms which implement SM are shown
superimposed on the simulated noisy Cl curve represented
in Figure 2 (DOCM algorithm is not reported because of



Figure 3 (See legend on next page.)
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(See figure on previous page.)
Figure 3 Example of behaviour of the algorithms developed for implementation of slope method. Behaviour of the algorithms developed
for implementation of SM. Estimated regression lines are shown superimposed on a simulated noisy Cl curve (the same reported in Figure 2).
From the top: a) semiautomatic algorithm, black stars represent start and end points selected from the operator; b) automatic algorithm;
c) automatic algorithm after smoothing. In b and c the black stars represent the point automatically recognised from the algorithm as sample at
maximum slope. In this case, computed BFa were respectively: 68.55, 78.30 and 123.81 ml/min/100 ml.
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course it computes a value of BFa without the necessity of
a regression line).
For the simulation shown in Figure 3 (one of the thirty

simulations carried out for the patient #1 with SNR = 50
in the simulation study BFa max), BFa computed with
DOCM algorithm was 116.90 (very close to the refer-
ence BFa) and the estimated SNR was 47.89.
The results obtained in the three simulation studies

(different reference BFa values) are reported as mean ±
standard deviation in Table 2. Each value of Table 2 was
computed considering all five patients. The BFa values
obtained in our simulation studies have shown a similar
behaviour for all studied patients.
In Figure 4 are shown, as average values, the results

of all thirty executions, at different SNR, correspond-
ing to the second patient, obtained in the simulation
study BFa mean.
Observing Table 2 and Figure 4, it is possible to do

some considerations (suitable for each condition –
different patient and/or simulation study).
BFa values obtained with DOCM and automatic max-

imum slope algorithm with smoothing (columns named
BFa_DOCM and BFa_SM_af) are the closest to the set
value; though the automatic algorithm after filtering fails
if SNR is at too low levels.
Manual selection of maximum slope (column BFa_

SM_sa) leads always to underestimate BFa values, none-
theless results are little variable, as it results more clearly
in Figure 4.
Finally, automatic algorithm (without any smoothing

processing), because the great effect of the noise on Cl(t),
provided always the worst results (column BFa_SM_a),
being the most variable and overestimating the set BFa in
each simulation study and for each SNR value.
To better highlight differences between the estimated

values of BFa and that set as reference (87.6 in this
simulation study), we computed also the relative per-
centage errors (formula 4).
Table 2 BFa mean values obtained in the three simulation stu

DOCM SM_

BFa min (57.6) 58.25 ± 6.71 39.63 ±

BFa mean (87.6) 88.69 ± 8.27 58.83 ±

BFa max (113.4) 113.66 ± 10.19 67.14 ±

Results obtained in the three simulation studies with the four algorithms (each pair
4500 simulations).
E ¼ 100 � BFa−BFa refj j
BFa ref

ð4Þ

where BFa is the computed value and BFa_ref is the
reference.
Values obtained for the simulation study with BFa

equal to 87.6 are shown in Figure 5, grouped for each
SNR study.
Mean and standard deviations of all these errors

computed for the three simulation studies (BFa min, BFa
mean, BFa max) are reported in Table 3, from which it is
clear that the DOCM method on average makes the
lowest error.
In Table 4, instead, we reported the average value of

the relative percentage errors for the automatic algo-
rithm with filtering computed for each SNR study, since
this parameter affects strongly the performance of this
software.
Results reported in Table 4 indicate that the relative

percentage error depends both on BFa value and SNR
level.
Considering then the semiautomatic algorithm (SM_sa),

it is possible to observe (Table 3 and Figure 5) that the
standard deviation of % error ois quite low, regardless
to SNR.
This result suggested us to compute a “modified” BFa

value starting from that estimated with the semiauto-
matic algorithm and using a correcting factor (CF), com-
puted as the overall mean percentage error, about equal
to 35, as in formula 5.

BFamodified ¼ 100 � BFaSM sa

100 − CF
ð5Þ

In this way, starting from the estimations obtained for
the different SNR studies (second, fourth and sixth col-
umn in Table 5), we obtained the BFa values reported in
dies

sa SM_a SM_af

6.53 142.53 ± 109.90 78.01 ± 29.31

10.53 192.67 ± 149.63 109.23 ± 41.24

16.70 208.54 ± 153.51 124.17 ± 39.63

of values corresponds to mean and standard deviation computed over



Figure 4 BFa mean values (over 30 simulations) computed with BFa reference set to 87.6 (second patient). BFa mean values (second
patient) computed with the four algorithms for each set SNR (shown on the x-axis). Reference BFa was 87.6.
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Table 6 (third, fifth and seventh column), which are
much closer to the reference BFa value.
Finally, concerning SNR estimation, in Table 6 we

reported the mean values obtained in the 150 simulations
(30 for each patient) performed for each SNR study and
for each simulation study.
It is possible to observe that set and estimated values,

except in a few cases, are always very similar.

Discussion
Diagnostic imaging techniques provide limited evaluations
of tissue characteristics beyond morphology, whereas
quantifying reliably angiogenesis is very important for
Figure 5 Relative percentage errors relative to the different algorithm
mean values of BFa and the reference one. Each point corresponds to one
evaluation of tumour progression and monitoring of the
therapeutic response of HCC. CT perfusion has the po-
tential to achieve this objective [23,24]. This technique is
quickly spreading in the field of hepatic oncology, since it
is minimally invasive and can be quite simply incorporated
into routinely CT protocols providing precious informa-
tion about tumour grade and angiogenesis monitoring
“in vivo” [5-7]. However, consistent, routine clinical ap-
plication of perfusion CT requires a reliable employ of
the technique. At the moment of research starting, there
existed encouraging preliminary findings about repro-
ducibility of the methodology and intra- and inter-
observer variability but they did not regard the liver
s for each SNR study. Relative percentage errors between estimated
SNR study (SNR values are shown on the x-axis).



Table 3 Relative percentage errors obtained on average
for each simulation study

Err% DOCM Err% SM_sa Err% SM_a Err% SM_af

BFa min 8.27 ± 8.28 31.39 ± 10.79 182.82 ± 157.19 44.28 ± 43.40

BFa mean 6.74 ± 6.73 33.26 ± 10.81 153.21 ± 141.72 36.51 ± 38.64

BFa max 6.48 ± 6.23 40.81 ± 14.67 114.14 ± 111.05 25.47 ± 25.74

For each simulation study (1500 simulations), mean ± standard deviation of
relative percentage errors of BFa estimated with the four developed
algorithms with respect to the set value.
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[25]. Besides, some aspects of crucial importance are
still debated, for example effects of extra-hepatic factors
[7] and standardization and validation of the analytic
method to be employed [24], problem here faced. More-
over, although software packages involving perfusion
parameters computation were addressed as advanta-
geous in oncological applications [7], details of signal
processing are lacking in literature so making difficult
the procedures’ reproducibility.
Aim of this work was to compare two among the most

diffused methods, SM and DOCM, testing three differ-
ent algorithms for application of SM and one for DOCM
and studying noise effect on the estimation of BFa, since,
at the best of our knowledge, no study of this kind is
available in literature. In fact, for example, Kanda et al.
[8] have recently compared three analytic methods (SM,
DOCM and DC, in their work named by different acro-
nyms) but without considering noise contribution and
Murase et al. [1] investigated effect of noise but only in
the comparison of two computation methods for DOCM
use.
Since there is no a practical method to evaluate in a

reliable and accurate way perfusion parameters in vivo
that can be considered the gold standard [11], we carried
Table 4 Mean values (each by 150 simulations) of the
Err% for the semiautomatic algorithm with filtering

Err% SM_af

SNR BFa min BFa mean BFa max

10 98.95 88.45 61.77

20 65.05 55.16 34.80

30 53.22 42.27 29.29

40 42.88 33.22 23.98

50 39.06 31.82 20.35

60 32.14 29.56 18.64

70 31.88 21.94 17.92

80 29.24 22.28 18.97

90 23.45 22.38 15.67

100 26.90 17.99 13.32

Average value of the relative percentage errors computed for each SNR study,
here indicated by bold numbers, and for the different set BFa (each value is
the average of results obtained by 150 simulations).
out a computer simulation process comparing estimated
BFa with reference values.
In this study, according to literature, we considered a

SNR range between 10 and 100. The lowest values charac-
terise TAC computed using very small ROI or the pixel-
by-pixel analysis typical in maps generation.
In all the 4500 simulations (30 for each of the 10 SNR

values, 300 for each patient, 1500 for each simulation
study), DOCM provided the best results, i.e., those with
the lowest percentage error compared to the reference
value of BFa (see Table 3).
About SM, its application by means of the semiauto-

matic algorithm provided always results lower than both
the set BFa value and values estimated with the other
methods, as shown in Figure 4. This is not so surprising,
in fact other authors highlighted that perfusion parame-
ters computed with SM are lower than those obtained
with DOCM method, both in clinical studies and in
simulation analysis [8,11,13], though, there, technical de-
tails about signal processing are not given. Furthermore,
it is important to put in evidence that the semiautomatic
algorithm computes the linear interpolation of the TAC
between two points (start and end points) providing the
estimation of its slope, and in turn an estimate of the
average slope, while the automatic algorithm estimates
the slope of the curve at its maximum slope point (over-
estimated in presence of noise). Of course, the mean
slope value is surely lower than the maximum slope.
However, results got with the semiautomatic algorithm

are quite stable, in the sense that they show a standard
deviation of the percentage error (Table 3, column
named Err% SM_sa) very low and not dependent on
SNR. Hence, we propose to use a correcting factor (for-
mula 4) to compute the BFa value starting from that in
output of the software. Here, we imposed CF equal to
35 (mean percentage error), obtaining satisfactory results
(please refer to Table 5); however, a deepened study,
carried out on a more numerous set of images would be
useful in order to set this parameter in a more general and
reliable way.
Concerning the application of SM with automatic

algorithm following a smoothing filtering, obtained re-
sults are not so far from the set value, confirming that it
is useful to attenuate the irregularities of TAC before
assessing perfusion parameters, as reported also in
literature [17]. Nevertheless, this is valid only until SNR
is over 50 (please refer to Figure 5 and Table 4), beyond
this value the percentage error increases up to about
40%. Therefore, in order to apply this algorithm, is
necessary to know the SNR of the image under analysis.
Since, of course, in clinical practice this value is not
known, we proposed a simple procedure for its estima-
tion. As shown in Table 6, obtained results are satisfac-
tory. So it could be possible to include this procedure in



Table 5 Mean BFa values obtained after correction (starting from results provided by the semiautomatic algorithm)

SNR

BFa min (57.6) BFa mean (87.6) BFa max (113.4)

SM_sa SM_sa_mod SM_sa SM_sa_mod SM_sa SM_sa_mod

10 37.97 58.41 57.82 88.96 64.99 99.98

20 38.96 59.93 58.68 90.27 68.08 104.75

30 38.90 59.84 56.26 86.55 65.56 100.87

40 40.14 61.75 59.30 91.23 67.71 104.17

50 39.11 60.17 59.29 91.21 64.46 99.17

60 39.58 60.90 60.70 93.39 66.25 101.92

70 40.63 62.50 59.18 91.05 68.27 105.03

80 40.45 62.22 59.15 91.01 67.00 103.07

90 40.70 62.62 59.68 91.81 69.09 106.30

100 39.91 61.40 58.23 89.58 70.04 10 7.75

BFa values obtained starting from estimations provided by the semiautomatic algorithm - SM_sa - and using the correcting formula - SM_sa_mod – (each value is
the average of results obtained by 150 simulations), for each SNR study (bold numbers).
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the image processing when an automatic algorithm is
preferred.
Summarising, DOCM seems to be more reliable but it

to be taken into account that for its use it is necessary
that portal vein is visible in CT scans. This can be an
important limitation, in fact portal vein is not always
observable even using 64 slices CT. In our study, for
example, only images recorded by five patients, in a
database populated by 17 patients’ images, satisfy this
requirement. The constraint is even more important for
patients’ follow-up.
Reliability of patient follow-up evaluation is very im-

portant in medicine, and in particular in oncology, for
assessment of therapy response of tumours [26]. Never-
theless, in the choice of the method, to be employed for
estimation of perfusion parameters, no agreement has
been reached and, according to Kanda et al. [8], it is not
possible to interchange results obtained with different
methods (SM, DOCM, DC). So that it can be crucial to
Table 6 Mean estimation of SNR values

SNR BFa min BFa mean BFa max Mean

10 11.18 11.43 11.66 11.42

20 21.62 21.80 21.61 21.68

30 30.97 30.63 31.84 31.15

40 40.51 42.33 40.89 41.24

50 48.48 49.69 50.63 49.60

60 58.29 60.64 63.84 60.92

70 67.98 69.11 71.13 69.41

80 76.10 77.83 82.48 78.80

90 85.95 86.08 94.22 88.75

100 91.80 96.11 101.91 96.61

Mean SNR values estimated with the proposed method. In bold set and
overall mean SNR.
employ always the same methodology for BFa assess-
ment. In this case, our results suggest that SM can be
reliably used but with attention to the particular pro-
cessing employed.
Conclusions
Perfusion CT, a technology which allows functional evalu-
ation of tissue vascularity, is finding increasing utility in
oncology and it is more and more often used as a means
to assess the grade of vascularisation in HCC patients.
Nevertheless, the best model to be adopted in assessment
of perfusion parameters has not been yet established. On
the basis of results shown in this work, and according with
great part of literature, we found that DOCM provides the
best assessment of perfusion, in particular of BFa, here
estimated in a computer simulation process. However, the
use of DOCM is limited by the necessity that portal vein
is visible in CT scans, significant restriction mainly in
patients’ follow-up, for which it is necessary to use always
the same methodology. In these cases, we suggest that SM
can be a useful and reliable alternative but a proper soft-
ware for TAC processing has to be used and an estimation
of SNR would be carried out before its use.
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