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Type 1 diabetes genome-wide association studies: not
to be lost in translation

Flemming Pociot1,2,3

Genetic studies have identified 460 loci associated with the risk of developing type 1 diabetes (T1D). The vast majority of these

are identified by genome-wide association studies (GWAS) using large case–control cohorts of European ancestry. More than

80% of the heritability of T1D can be explained by GWAS data in this population group. However, with few exceptions, their

individual contribution to T1D risk is low and understanding their function in disease biology remains a huge challenge. GWAS

on its own does not inform us in detail on disease mechanisms, but the combination of GWAS data with other omics-data is

beginning to advance our understanding of T1D etiology and pathogenesis. Current knowledge supports the notion that genetic

variation in both pancreatic β cells and in immune cells is central in mediating T1D risk. Advances, perspectives and limitations

of GWAS are discussed in this review.
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Type 1 diabetes (T1D) is a chronic immune-mediated disease causing
attrition and death of the insulin-producing pancreatic β cells,
resulting in a life-long requirement for exogenous insulin. The
progressive loss of β cells is mainly owing to autoimmune
inflammation.1 Worldwide 420 million people are afflicted with
T1D. By 2015, more than half a million children are estimated to be
living with T1D and ~ 86 000 children develop T1D each year (www.
diabetesatlas.org). In most countries T1D incidence is increasing by
~ 3–4% every year, most notably in children and adolescents.2 Five
million people in the USA are expected to have T1D by 2050,
including ~ 600 000 youth.3,4 Existing treatments do not relieve the
disease burden, for example, severe hypoglycemia is common5,6 and
470% of patients are unable to maintain a healthy HbA1c.7,8 Life-
expectancy is reduced by up to 13 years; even with good HbA1c
control, life expectancy is reduced by ~ 8 years.9

Fifteen percent of newly diagnosed T1D patients have a first-degree
family member with T1D. The T1D concordance rates are in the range
of 30–70% in monozygotic twins and 3–13% in dizygotic twins.10–12

This non-Mendelian inheritance pattern is characteristic for multi-
factorial diseases and results from the contribution of several genes
each having only a minor influence on disease development.13 In
addition to genetic predisposition, environmental and epigenetic
factors impact the disease susceptibility.14,15

In this review, only studies of genetic architecture of T1D are
discussed with focus on the translation of genetics into biology. For
the last two decades, genome-wide approaches to map the genetic risk
have been prevailing. First, as linkage studies using affected sib-pairs
and subsequently as genome-wide association studies (GWAS) using a
case–control design. Whereas the initial genome-wide linkage studies

(GWLS) mainly confirmed established associations (HLA, INS and
CTLA4) from previous candidate-gene studies,16–20 more recent and
larger GWLS also provided novel information on the genetic predis-
position to T1D.21–23 Nevertheless, very few of the novel loci identified
from these 1st, 2nd and 3rd generation GWLS have been replicated
and confirmed in more recent GWAS data sets. This is mainly owing
to the inherited limitations in GWLS, which include limited power to
narrow down risk variants and to detect risk variants with only minor
contribution. An example of a novel region associated with T1D
identified by GWLS and subsequently confirmed by GWAS, is the
UBASH3A region on chromosome 21.24

T1D GENETICS–THE PRE-GWAS ERA

Genetic studies have had an essential role in understanding T1D
biology.25 The first reports of genetic association to T1D were for the
human leukocyte antigen (HLA) region.26–28 As this discovery,
researchers have tried to understand the underlying mechanisms by
which alleles of HLA-encoding genes are responsible for the T1D
association. Although much has been learned about the effects of
certain HLA alleles on T1D risk, the exact biological mechanism of
HLA-conferred susceptibility remains elusive. The extreme poly-
morphism of the HLA locus makes association analyses complicated.
In addition, the strong linkage disequilibrium in the region makes
assessment of individual risk variants challenging. The HLA region is
the most polymorphic observed in the human genome, with 17 166
unique alleles reported as of July 2017 (http://www.ebi.ac.uk/imgt/hla/
stats.html). The genetic risk for T1D in Caucasians is conferred mainly
by combinations of HLA-DR and -DQ genes, for example, those
encoding DR4-DQ8 (that is, DRB1*04, DQA1*03–DQB1*03:02) and
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DR3-DQ2 (that is, DRB1*03, DQA1*05–DQB1*02), and particularly
those present in HLA-DQ2/DQ8 heterozygotes are associated with
high susceptibility to T1D. In contrast, a particular DQ6 molecule,
encoded by HLA-DQA1*01:02–DQB1*06:02, is associated with strong
protection from the disease, even in the presence of high-risk HLA
alleles and/or T1D-associated autoantibodies.29 Today, 460 loci
associated with T1D have been identified. However, the HLA
association remains the strongest by far, with reported odds ratios
ranging from 0.02 to 411 for specific DR-DQ haplotypes.30 After
HLA, the strongest T1D genetic association comes from polymorph-
ism in the promoter region of the insulin gene (odds ratios= 2.4).13

Only two other loci, PTPN22 and IL2RA, have consistently reported
odds ratios greater than 1.5; most others are in the range of 1.05–1.25
underscoring the importance of the HLA region compared with other
loci.13 Thus, all studies of T1D genetic susceptibility should take HLA
into account when interpreting association data for any other
candidate loci.31

GWAS STUDIES

During the past decade, GWA studies have represented a paradigm
shift in strategies for identifying risk genes for complex (multifactorial)
human diseases, including T1D. In GWAS a large number (up to
millions) of variants are tested in a hypothesis-free context. The first
successful GWAS was published in 2005. It investigated patients with
age-related macular degeneration and found two SNPs with signifi-
cantly altered allele frequency compared to healthy controls.32 Today,
43000 GWAS publications are catalogued by the National Human
Genome Research Institute (NHGRI) and the European Bioinfor-
matics Institute (EMBL-EBI).33 The Catalog is a quality controlled,
manually curated and literature-derived collection of all published
GWAS assaying at least 100 000 SNPs and all SNP-trait associations
with P-valueso1.0× 10− 5 are reported.34 The GWAS Catalogue
reports 64 SNP-trait associations for T1D, but notably the disease-
causing variants and genes are still largely unknown. The leading role
in these studies belongs to International Consortia, which possess
individual DNA samples from various cohorts; among the main
leaders have been the T1DGC (International Type 1 Diabetes Genetics

Consortium),35 and the WTCCC (Welcome Trust Case Control
Consortium).36 Noteworthy, GWAS do not necessarily identify the
specific gene or genes in a given locus responsible for the observed
disease association, and do not typically inform the wider context in
which the disease genes operate.37,38 Thus, GWAS on their own
provide limited insights into the molecular mechanisms driving
disease. Numerous GWAS have been performed in T1D, Table 1,
and identified several genomic regions associated with increased risk to
T1D. There is a significant overlap in study populations between the
studies, for example, the WTCCC-, T1DGC-, as well as other cohorts
are included in several of the GWAS. Notably, all study populations
were of European ancestry.
The principle has been to ‘name’ these GWAS regions after the gene

closest to the strongest associated marker (the lead SNP) or,
alternatively, after gene(s) with (some) biological significance for the
disease pathology. However, almost all T1D GWAS-associated regions
contain multiple genes and thorough fine mapping is therefore
essential to narrow down the causal variant(s). The most extensive
fine mapping has been performed by the Immunochip study,39 which
was designed to make genetic comparisons across autoimmune
disorders as informative as possible. The Immunochip genotyping
confirmed and narrowed down most GWAS identified risk loci and
also identified new T1D-associated regions (Po5× 10E-8).
The heritability obtained from twin and sibling studies ranges from

0.4 to 0.92.10,12,40–42 That is, assuming the heritability estimates are
correct. This may not always be the case as GWAS have been
performed in outbred populations with little evidence of familial
clustering of the disease. It is thus quite possible that we have
overestimated heritability, which often is inferred from twin or family
studies. The familial clustering of T1D, in contrast to most other
complex diseases, can be explained almost completely by the multiple
common variants identified by GWAS. The estimated proportion of
heritability explained by currently identified loci is 480%.43

As most variants identified through GWAS contribute to only
modest effects to disease risk, it is likely that a combination of variants
will better capture effects of clinical relevance. The impact of multiple
variants on disease prediction and progression has been evaluated in

Table 1 Type 1 diabetes genome-wide association studies (GWAS) reported in the GWAS Catalogue (www.ebi.ac.uk/gwas)

Study Sample description (cases/

controls)

Replication sample (cases/

controls)

Platform (SNPs

passing QC)

Significant associations

(P⩽5×10E-8)

WTCCC36 1963/2938 Affymetrix (469 557) 10

Todd et al.102 2000/3000 4000/50 002 997 trios Affymetrix (NR)a 12

Hakonarson et al.103 561/1 143 467 trios 1333/390 trios Illumina (543 071) 4

Cooper et al.104 3561/4646 6225/69 463 064 trios Affymetrix (335 565) 14

Hakonarson et al.105 561/1 143 467 trios 946/1 098 364 trios Illumina (543 071) 1

Barrett et al.87 7514/9045 4267/4 6704 342 trios Affymetrix/Illumina (841 622

(imputed))

38

Grant et al106 563/1 146 483 trios 3303/4673 Illumina (1 000 000) 5

Wallace et al.74 7514/9045 4840/26 705 766 trios Affymetrix/Illumina (2 600 000

(imputed))

2

Bradfield et al.107 9934/16 956 1120 trios Affymetrix/Illumina (2 540 000

(imputed))

9

Huang et al.108 16 179b (6 233 112) (imputed) 2

Onengut-Gumuscu.c39 6808/128 352 601 ASP 69

trios

Immunochip (138 229) 44d

The main type 1 diabetes genome-wide association studies listed with sample sizes for initial discovery and replication, analysis platform and number of significant observations.
aNot reported.
bThis study used 1000 Genomes-based imputation to identify associations from the Wellcome Trust Case Control Consortium phase 1 Data.36
cThis study is a fine mapping study using the Immunochip.67
dP⩽3.23×10E−7 (Immunochip Bonferroni-corrected Po0.05).
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candidate gene-based studies,44–46 and more recently using a genome-
wide approach.47,48 Taken together these studies demonstrate that
combining information from several loci in a T1D genetic risk score
accurately can identify young adults with diabetes.47

PREDICTION OF LIKELY TARGETS

To identify the underlying causal disease mechanisms it is important
to prioritize among the many GWAS signals. This is often done by
integration of other data sets. A common initial step is to overlap
genomic features, such as expression quantitative trait loci (eQTLs),
transcription factor-binding sites, DNase hypersensitive sites and
histone modifications, with SNP position.49 This is considered a
biologically plausible approach and has provided important insight—
especially from the combination of genetic data with expression data.
SNPs that influence gene expression are called expression quantitative
trait loci (eQTL), and it has been demonstrated that complex trait-loci
are enriched for eQTLs.50

This appears to be the case also for T1D.51 A potential limitation is
that eQTLs often are tissue specific and studies have often used
lymfoblastoid cell lines as a proxy for the autoimmune process in T1D.
However, even between immune cell populations eQTLs vary.51,52

Non-synonymous SNPs change amino-acid composition or truncate
the protein sequence by introducing a stop-codon. Synonymous SNPs
may affect splicing sites resulting in alternative mRNA isoforms.
Structured variations as indels may have the same consequences.
Although several non-synonymous SNPs have been identified in T1D
risk genes, these missense SNPs are as such not enriched in T1D loci
and have, with the exceptions of HLA and PTPN22, not been
convincingly demonstrated to be causal. Identification of differential
gene expression profiles in T1D cases and control subjects or in T1D
model systems may suggest disease mechanisms/pathways for follow-

up studies.37,53,54 Finally, it was recently demonstrated that GWAS
loci, including T1D loci, were enriched for SNPs mapping to
regulatory element.55,56 Thus, several approaches are used for prior-
ization of risk variants/genes for follow-up studies. In addition, there
are several computational tools available for prioritizing SNPs for
further downstream analysis (for example, see https://omictools.com/
snp-prioritization-category).

TARGET GENES SUBSEQUENTLY FOUND BY FUNCTIONAL

STUDIES TO INFLUENCE PATHOPHYSIOLOGY

Determining the mechanisms of action of T1D risk variants is
challenging, owing to interaction effects, cell type-specific gene expres-
sion, the local tissue milieu, the temporal course of gene expression and
complicating environmental factors. Great efforts over the last few years
have highlighted potentially functionally target genes that influence T1D
pathophysiology. These have mainly been studied in β cells or immune
cells. In T1D, the pancreatic β cells in the islets of Langerhans are
selectively destroyed by the immune system resulting in absolute insulin
deficiency. At least 40% of the genes in the T1D susceptibility loci are
expressed in human islets and β cells, where they according to recent
studies modulate the β-cell response to the immune
system.37,53,57-62 At least half of these are regulated by cytokines
in vitro,37,53,57 an often used model system for T1D pathogenesis. To
explore causality of these gene variants in β-cells, functional studies in
experimental models, for example, knockdown and overexpression
studies, is necessary. Furthermore, studies on knock-in and knock-out
mice will, in many cases, aid in the understanding of how the candidate
genes affect the disease pathogenesis and contribute to the risk of T1D.
This field is in its early stages, but recent studies (reviewed in58–62) have
identified candidate genes that affect β-cell function or survival in T1D
settings, Table 2.
Functional studies of immune cells support the potential impact of

T1D risk variants on gene regulation in immune cells.51,63,64 HLA has
a pivotal role as antigen-presenting molecules and as such in the
autoimmune process. For non-HLA T1D SNPs strongest evidence
comes from their role in regulating gene expression. A recent review
found close to 100 eQTLs in different immune cells for T1D risk
SNPs.63 Noteworthy, eQTLs vary between different immune cells, for
example, between CD4+ and CD8+ T cells, underlying the importance
of studying fractionated immune cell populations. Several studies
point to delineation of regulatory or effector pathways as autoreactive
CD4+ T cells as key immunological mechanisms affected by T1D
genetic risk.65,66

NEW INSIGHTS ARISING FROM GWAS

The wealth of data generated by GWAS has also informed our
biological understanding of disease processes. This comes from, for
example, identification of pleiotropic risk loci, by assessing both
disease susceptibility and protection, and by studying the potential role
of non-coding RNAs.
Overlapping etiological factors in autoimmune diseases have been

recognized for a long time due shared clinical and immunological
features. Also, T1D share genetic susceptibility loci with a number of
other IMD (immune-mediated diseases). This has been recognized for
the HLA region for a long time and more recently GWAS studies have
added a considerable number of pleiotropic susceptibility loci, that is,
SNPs that confer susceptibility to more than one IMD (reviewed in67).
Interestingly, T1D loci primarily show concordant overlap, that is,
same SNP allele confer risk, with other seropositive autoimmune
diseases (for example, autoimmune thyroid disease, rheumatoid
arthritis, celiac disease), whereas discordant association, that is, same

Table 2 Candidate genes affecting β-cell functions

Gene (Chromosome) Variant(s) Function/pathway affected Reference

INS (11p15.5) INS VNTR

class I

rs7111341

rs11564705a

β-cell expression level 70,71

IFIH1 (2q24.2) rs1990760

rs3747517

MDA5 signalling 73

GLIS3 (9p24.2) rs7020673 β-cell development

β-cell apoptosis

GLUT2 expression

109,110

PTPN2 (18p11.21) rs1893217

rs2542151a
Inflammation and virus-induced β-
cell apoptosis

111–113

CTSH (15q25.1) rs3825932

rs11856301a
Cytokine-induced apoptosis

Insulin transcription

99

BACH2 (6q15) rs11755527 Cytokine-induced apoptosis 114

TYK2 (19p13.2) rs2304256 Inflammation and virus-induced β-
cell apoptosis

75

CLEC16A

(16p13.13)

rs12444268

rs12708716

rs11865121a

Autophagy/mitophagy

Insulin secretion

115,116

Based on 85 is listed.
aT1D candidate genes where experimental studies support their functional significance in β
cells. Adapted from58,62 variant(s) shows the lead SNP identified in GWAS and in cases where
the lead SNP is not the most likely one to be functional then the potentially functionally SNP.
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SNP allele shows risk in opposite directions, is more common to
seronegative IMD, Table 3. The study of these pleiotropic risk variant
holds great potentials for unraveling the functional significance of
these variants.
It has been acknowledged for many years that whereas specific HLA

haplotypes confer the strongest genetic risk for T1D other HLA
haplotypes provide protection against T1D. The DR2-DQ6
(DQB1*06:02) haplotype is strongly protective against T1D29 and in
the rare T1D patients that are DQB1*06:02 positive, the autoimmune
process appears to be unique.68 Although the exact underlying
mechanism(s) for the observed HLA susceptibility is (are) not fully
understood, the basic function of HLA molecules, that is, peptide
presentation, is compliant with the observation of both predisposing
and protective HLA molecules in T1D risk. The second T1D
susceptibility gene identified in the pre-GWAS era, the insulin gene
(INS), also has both predisposing and protective variants.69 In this
case, the effect is ascribed to tissue specificity and expression level.70,71

Interestingly, fine mapping studies of GWAS-identified candidate
genes have demonstrated that in some cases rare variants with
opposite effect exist. For example, GWAS-identified non-synonymous
variants (rs1990760 and rs3747517) in the IFIH1 locus on 2q24.2
primarily mediate susceptibility through increased type I interferon
production.72 In addition to these common SNPs, Nejentsev et al.73

reported the presence of four rare SNPs associated with T1D
(rs35667974, rs35337543, rs35732034, rs35744605). These rare alleles
are associated with protection from T1D in contrast to the common
SNPs.73 The location of T1D-associated SNPs within the IFIH1
sequence suggests that these point mutations are either negatively or
positively affecting the IFIH1-encoded protein MDA5 signaling via a
mechanism involving the C-terminal end of the gene.73 Tyrosine
Kinase 2 (TYK2) is located on 19p13.2 and harbors a non-
synonymous SNP (rs2304256) that causes a missense mutation in
TYK2 associated with a lower risk of T1D.74 This is most likely caused
by changes in TYK2 expression that dampens the type I interferon
response in virus-infected β cells.75 However, reduced TYK2 expres-
sion caused by rare promoter mutations predispose to virus-induced
diabetes in rodents76 and in the Japanese population.77 Thus,
interpretation of association signals from GWAS should be cautious,

even when fine mapping has narrowed it down to a single
candidate gene.
Therefore, to fully understand disease pathogenesis from GWAS, it

is important to analyze the data in the context of complementary
datasets, such as transcriptomics, metabolomics, proteomics, under
conditions relevant for the disease. It has been advocated that analysis
at the pathway, network or protein complex level is the next step in
the process of GWAS data mining.78 Present evidence suggests genetic
risk variants for T1D are organized in pathways, physically interact
with one another, and are enriched for protein–protein interaction
network modules.37,79,80

To analyze high-throughput data different data filtering approaches
are often taken. Intrinsic data filtering uses information from the
dataset itself, such as filtering genetic variants based on linkage to
other variants of interest in that data set. Extrinsic data filtering is
based on information outside of the data set, such as the inclusion of
genomic annotations from separate studies such as ENCODE. At
present, both intrinsic and extrinsic data filtering are essential for
efficient characterization of T1D genetics. Often multistage and meta-
dimensional analysis approaches are used to explore relationships
between data sets. In brief, multistage analysis sequentially examines
relationships between each data set, and also between each data set and
the trait, for example, as the analysis of eQTLs, which includes analysis
of genetic variants and gene expression levels. Meta-dimensional
analysis takes advantage of simultaneous combination of multiple
data types into a single search space to construct a final model. This
form of analysis may use several types of data modelling and
integration strategies toward the final analysis.81 Clearly, there is a
need for further developing systems biology approaches to provide
new insight on T1D biology. We recently used such an approach to
construct protein interaction networks from all genes located in non-
HLA loci associated with T1D combined with tissue-specic transcrip-
tomic data to identify significantly regulated network.37,82–85. This
indicates that protein networks can add biological context to candidate
genes identified through GWAS.
Interestingly, 490% of disease-associated SNPs map within the

non-coding regions of the genome such as promoters, enhancers,
intergenic regions and ncRNA genes,82 suggesting a regulatory role.
This supports the concept that changes in regulation of gene

Table 3 Examples of pleiotropic non-HLA loci in type 1 diabetes and other immune-mediated diseases

IMD Loci

Alopecia areata 1p13.2, 11q13.1, 12q13.2, 12q24.12

Autoimmune thyroid disease 1p13.2, 2q33.2, 6q15

Celiac disease 2q33.2, 3p21.31, 4q27, 6q15, 6q23.3, 6q25.3, 12q24.12, 15q25.1, 18p11.21, 18q22.2

Crohn's disease 1p13.2, 1q32.1, 11q13.1, 16p11.2, 18p11.21, 19p13.2, 19q13.33

Inflammatory bowel disease 1q32.1, 2q24.2, 6q23.3, 18p11.21, 19q13.33

Juvenile rheumatoid arthritis 1p13.2, 12q24.12, 19p13.2

Multiple sclerosis 6q15, 6q25.3, 11q13.1, 12p13.31, 12q14.1, 16p13.13, 18q22.2, 19p13.2

Narcolepsy 15q25.1

Primary biliary cirrhosis 2q32.3, 6q23.3, 11q13.1, 12q24.12, 16p13.13, 17q12, 17q21.31, 19p13.2

Primary sclerosing cholangitis 12q24.12, 14q24.1

Psoriasis 2q24.2, 19p13.2

Rheumatoid arthritis 1p13.2, 2q11.2, 2q32.3, 2q33.2, 4p15.2, 6q15, 6q23.3, 10p15.1, 12q24.12, 17q12, 19p13.2, 21q22.3

Systemic lupus erythematosus 1p13.2, 1q32.1, 2q32.3, 6q23.3

Ulcerative colitis 1q32.1, 2q24.2, 4q27, 6q23.3, 18p11.21

Vitiligo 1p13.2, 2q24.2, 10p15.1, 12q24.12, 21q22.3

Abbreviations: AA, alopecia areata, ATD, autoimmune thyroid disease, CEL, celiac disease, CRO, Crohn's disease, IBD, inflammatory bowel disease, JRA, juvenile rheumatoid arthritis, MS, multiple
sclerosis, NAR, narcolepsy, PBC, primary biliary cirrhosis, PSC, primary sclerosing cholangitis, PSO, psoriasis, RA, rheumatoid arthritis, SLE, Systemic lupus erythematosus, T1D, type 1 diabetes,
UC, ulcerative colitis, VIT, vitiligo. Approximately half of the type 1 diabetes peak SNPs show association with another disease. Adapted from117
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expression are a key factor in T1D development. Our understanding of
the modes of action of most ncRNAs, excluding miRNAs, is still very
rudimentary.83 It is a major challenge to develop tools and models that
will capture the function of ncRNAs, especially the longer ones, where
function is executed by structured elements rather than defined by
linear sequences.84 Nevertheless, it is foreseen that a more in-depth
understanding of ncRNAs may in near future open new strategies for
diagnostics, classification and personalized therapeutic regiments in
T1D and other immune-mediated diseases.85

LIMITATIONS OF PUBLISHED GWAS, OTHER CHALLENGES

AND PRIORITIES IN THE FIELD

Although GWAS have a range of potentials as discussed above there is
a number of limitations and challenges as well. Missing heritability
owing to the undiscovered effect of rare variants and epistasis are two
key concerns.86 GWAS studies predominantly test for association of
common SNPs, that is, with minor allele frequency45%. Rare
variants do not seem to account for a major part of T1D susceptibility,
though it has been demonstrated that rare variant in, for example,
IFIH1 affect T1D risk.73 Epistasis is difficult to test properly, but most
studies suggest that this is not a major player in T1D
predisposition.20,87,88 However, it is possible that many GWAS SNPs
having low or moderate risk in themselves, that is, P-values just above
5× 10E-8, interact to confer a significant combined effect.
Epigenetics is the collectively heritable changes in phenotype due to

processes that arise independent of primary DNA sequence. Epigenetic
mechanisms include DNA methylation, histone modifications and
RNA interference. All of them are associated with regulation and
determination of the cellular transcriptome, thereby pivotal to cell
function.89 Because epigenetic modifications are inherited across
generations, but are not assayed by genotyping chips or by whole-
genome sequencing,90 it is difficult to exclude the possibility that
epigenetic alterations could account for a proportion of T1D risk
normally attributed to genetics.
Interestingly, accumulating evidence suggests that ncRNAs are

involved in T1D pathogenesis, see above, genetic association between
T1D and histone deacetylases exists,20 and histone deacetylases
inhibitors promote β-cell development, proliferation, differentiation
and function.91 Finally, increased DNA methylation variability in T1D
across different immune effector cell types has been reported.14

Nevertheless, at this time, estimates of epigenetic missing heredity
are not widespread for complex diseases. However, this is a major
research area to be explored to complete our understanding of T1D
genetic risk.
GWAS in T1D have been focused on populations of European

descent. However, the degree to which observation gained from these
studies is transferable to other populations has not been extensively
explored. Nevertheless, this has facilitated the success of GWAS owing
to more homogeneous populations being studied.92–94 It is essential to
perform genetic studies in non-European populations to bring medical
advances from genetic studies to populations worldwide. Also
characterizing risk variants beyond what can be achieved with
populations of European descent alone will be crucial. The motivation
for genetic studies in diverse populations is obvious as differences in
disease allele frequency and LD patterns, in phenotypic prevalence,
and in effect size as well as differences in rare variants exist. Several
observations suggest that no single population is sufficient for fully
uncovering the variants underlying T1D in all populations.
Common statistical analysis of GWAS data tests single-nucleotide

polymorphisms (SNPs) individually.95 However, single SNP analysis
may be underpowered, especially for low-frequency SNPs.96 Individual

genes, gene networks and pathways are all genetic entities that are
likely to have multiple SNPs that function simultaneously to affect
diseases and traits. Several novel methods for analyzing GWAS data
are being developed.97

A final restraint in GWAS is the classical case–control design. The
power of GWAS to identify a true association between a SNP and trait
is dependent on the phenotypic variance within the population
explained by the SNP. However, to date most GWAS of T1D have
identified risk loci by comparing cases versus controls independent of
heterogenic disease sub-phenotypes, persisting autoantibody positivity,
disease progression, for example, loss of β-cell function/mass, com-
plication status and so on. Studies are now emerging looking at genetic
risk for autoimmunity development before clinical onset,98 for decline
in β-cell function after diagnosis,99 for persistent autoimmunity100,101

among other T1D-related sub-phenotypes. Intriguingly, a number of
new associations are reported from these studies emphasizing that we
still have a lot to learn about T1D genetics.

CONCLUSIONS

This review summarizes some of the advances and challenges in
GWAS-identification of T1D-associated risk variants. GWAS have led
to the identification of 460 loci associated with T1D. Importantly,
these loci seem to explain most of the heritability of T1D, which is in
contrast to most other complex disorders. Thus, it is timely to dissect
and translate this genetic predisposition to a deeper understanding of
disease biology. Current genetic understanding is being leveraged by
complementary studies in epigenetics, transcriptomics, proteomics,
metabolomics and lipidomics of both β cells and immune cells. Novel
approaches as next-generation-sequencing of both DNA and especially
RNA with the ability to identify allelic imbalance, to quantify gene
expression in a transcript-specific manner, and to capture unexpected
alternative splicing, truncation and post-transcriptional modification
events hold great promises. The use of inducible pluripotent stem cells
holds great potential for functional studies of, for example, β-cells in
the context of relevant genetic risk profiles. A challenge not easily
accomplished by the use of human donor pancreatic islets. It is
expected that this genetic insight will transform the landscape of
common complex diseases such as T1D and lead to novel treatment,
preventive strategies and enable precision medicine based on genetic
profiling.
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