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Abstract: LuAG:Ce (Lu3Al5O12:Ce) is one of the most important color converters in white lighting
industry. Especially, LuAG:Ce film attracts more attention due to the outstanding advantages, such
as the efficient heat dissipation, the saving of rare earth, and so on. Here, LuAG:Ce film on sapphire
was successfully prepared by the ultrasonic spray pyrolysis process. The phase, microstructure and
photoluminescence of LuAG:Ce films were investigated. LuAG:Ce films had a thickness of around
5 µm, which were well crystallized at 1000 ◦C in air atmosphere to form the typical garnet structure.
Under the protection of CO atmosphere, increasing the annealing temperature greatly enhanced the
photoluminescence performance. After annealing at 1500 ◦C for 5 h in CO atmosphere, 3.0 mol.%
Ce3+ doped LuAG:Ce film exhibited the highest emission and excitation intensity. The emission
intensity of 3.0 mol.% Ce3+ doped LuAG:Ce film annealed at 1500 ◦C in CO atmosphere increased up
to five times, when compared with the best LuAG:Ce film annealed at 1000 ◦C in air atmosphere.
The effects of Ce3+ doping concentration on the photoluminescence were also examined. As the Ce3+

doping concentration increased from 0.2 mol.% to 7.0 mol.%, the color of LuAG:Ce films changed
from yellowish green to greenish yellow. When coupling the 3.0 mol.% Ce3+ doped LuAG:Ce film
with a 0.5 W 450 nm blue laser, the formed device successfully emitted white light.

Keywords: LED; ultrasonic spray pyrolysis; film; LuAG

1. Introduction

Phosphor-converted white light-emitting diodes (LEDs), as the new generation solid
lighting device, have been widely used in the field of display backlighting, streetlamps,
headlamps and indoor illuminations, due to their high efficiency, long lifetime and en-
ergy conservation features [1–5]. LEDs are the most popular solid lighting device, which
are composed of blue GaN chips and yellow YAG:Ce phosphor dispersed in organic
resin [6–8]. However, organic resin or silicone has clear disadvantages, such as the ex-
tremely low thermal conductivity (~0.1 W m−1 K−1), and the thermal-induced drop in
lighting efficiency [3,9,10]. Therefore, to develop high power and high efficiency LEDs,
phosphor-converted materials, with high conversion efficiency, high thermal conductivity
and excellent thermal stability, are the most urgent pursuit in the field of phosphor research
and display industry [11–13].

Phosphor ceramics are thought to be the favorable choices to replace phosphor-in-
silicon color converters [14,15]. LuAG:Ce ceramics not only have a broad emission band
between 500 nm and 700 nm, but also possess excellent thermal stability and high luminous
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efficiency, which are regarded as the most promising color converters for high-power
LEDs [16–20]. Xu et al. synthesized LuAG:Ce translucent ceramics (TC) by spark plasma
sintering technique [20]. The obtained LuAG:Ce ceramics have wonderful thermal conduc-
tivity (6.3 W m−1 K−1) and high reliability (1.9% decrease after 1000 h at 85 ◦C and 85%
humidity) [20]. Zhang et al. prepared Al2O3-LuAG:Ce composite ceramic phosphor (CCP)
by vacuum solid-state sintering method [17]. They found that Al2O3 greatly improves the
CCP’s thermal conductivity (18.9 W m−1 K−1) and thermal stability (the luminescence loss
of only 3.2% at 200 ◦C) [17]. Clearly, LuAG:Ce ceramics are the excellent color converters.
However, for use as the color converters, LuAG:Ce ceramics must be carefully machined
and polished to the thickness of around 0.2 mm. During the time-consuming cutting and
polishing processes, a large amount of LuAG:Ce is wasted.

To solve the problem, LuAG:Ce film on sapphire is a wonderful choice, which ef-
fectively combines the high thermal conductivity of sapphire and the high luminous
efficiency of LuAG:Ce phosphor. The synthesis methods of film mainly include the sol-gel
method [21], ultrasonic spray pyrolysis method [22], and liquid phase epitaxy (LPE) growth
technology [23]. This work aims to prepare LuAG:Ce film on sapphire by the ultrasonic
spray pyrolysis method. Sapphire is chosen as the substrate due to its high thermal con-
ductivity (~30 W m−1 K−1) [24]. LuAG:Ce film on sapphire substrate can be directly used
as the color converter, without needing the extra cutting and polishing process. LuAG:Ce
films with different Ce3+ doping concentrations were prepared. Their phase compositions,
microstructure and photoluminescence properties were investigated.

2. Materials and Methods
2.1. Synthesis of LuAG:Ce Films

The chemicals used were Lu2O3, Al(NO3)3·9H2O, Ce(NO3)3·6H2O and HNO3. All
chemical reagents were of analytical grade, which were purchased from Sinopharm Chemi-
cal Reagent Corporation (Shenyang, China) and used as received. The solution of Lu(NO3)3
was prepared by dissolving Lu2O3 with proper amount of nitric acid. The spray solution
was composed of Lu(NO3)3, Ce(NO3)3 and Al(NO3)3. The molar ratio of rare earth to Al
was 3:5, and the total concentration of rare earth ions was 0.01 mol/L. 3 wt.% PVP was
added as the surfactant. To investigate the effect of Ce3+ doping concentration on the
photoluminescence, the spray solutions with different Ce3+ concentrations (0.2–7.0 mol.%)
were prepared. The sapphire substrates (diameter of 20 mm, Beijing Xintian Borui Photo-
electric Technology Co., Ltd., Beijing, China) were ultrasonically cleaned with deionized
water, acetone and ethanol. The experimental setup for ultrasonic spray deposition was
shown in Figure 1. The spray atomizer and an ultrasonic generator (UAC120, 120 K) were
purchased from Cheersonic Ultrasonics Equipments Co., Ltd., Hangzhou, China. The
atomizer controlled the average aerosol droplet size, which was fixed on the X-axis of a
motion platform. The spray solution and a director gas were introduced into the atomizer.
This director gas controlled the velocity of the droplets to arrive at the heated substrate.
The distance between the atomizer and substrate was fixed to 140 mm. The flow rate of
director gas, air in this case, was maintained at 2 L/min. The liquid feed rate was 1.5 mL
per minute. The heating stage was controlled at 145 ◦C and fixed on the Y-axis of a motion
platform. During the spray process, the atomizer and heating stage moved along the X-axis
and Y-axis of the motion platform, respectively. The deposition time for each LuAG:Ce film
was 15 min.

2.2. Characterization Techniques

The phase compositions of thin films were determined by X-ray diffraction (XRD,
Panalytical, Almelo, The Netherlands), utilizing Cu-Kα radiation (1.54056 Å). The mi-
crostructure was observed by scanning electron microscopy (SEM, JSM-7001F, JEOL, Tokyo,
Japan). The photoluminescence (PL) and photoluminescence excitation (PLE) were ana-
lyzed at room temperature using an FP-8600 fluorospectrophotometer (Jasco, Tokyo, Japan)
equipped with a 60 mm diameter integrating sphere (Model ISF-834, Jasco) and a 150 W
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Xe-lamp for excitation. The thickness of films was measured by a stylus profiler (DEKTAK
150, Veeco, New York, NY, USA).

Figure 1. Experimental setup used for ultrasonic spray deposition.

3. Results and Discussion
3.1. Phase Evolution of LuAG:Ce Films

The effects of annealing temperature, annealing atmosphere and Ce3+ contents on
the phase compositions of LuAG:Ce films were investigated. The results are shown in
Figure 2. After annealing at 400 ◦C for 5 h in air atmosphere, the films are all amorphous
substances, as shown in Figure 2a. Increasing the annealing temperature to 1000 ◦C, all
films crystallized and exhibited the diffraction patterns of cubic Lu3Al5O12 (PDF#18-0761).
Upon annealing below 1000 ◦C in air atmosphere, the Ce3+ doping concentration has no
significant influence on the phase compositions of films. Besides, it is known that Ce3+ can
be easily oxidized to Ce4+, resulting in the decrease in luminescence intensity. In order
to improve the luminous intensity, LuAG:Ce films were further annealed at 1500 ◦C for
5 h in CO atmosphere. Their XRD patterns are shown in Figure 2c. It can be seen that
after annealing at 1500 ◦C for 5 h in CO atmosphere, the films are still composed of cubic
Lu3Al5O12 (PDF#18-0761) phase, and the crystallinity of films is significantly improved, as
evidenced by the sharp diffraction peaks. In addition, Ce3+ (1.143 Å) has a larger radius
than Lu3+ (0.977 Å). Therefore, introducing Ce3+ into the lattice of Lu3Al5O12 increases the
interplanar spacing. According to the Bragg equation, the strongest diffraction peak would
shift to the lower 2θ side. Figure 2d shows the enlarged diffraction patterns including the
strongest diffraction peaks. As can be seen, the strongest diffraction peak shifts from 33.62◦

to 33.59◦ as the Ce3+ doping concentration increases from 0.2 mol.% to 5.0 mol.%. Due to
the large amount of Ce3+ was incorporated into the Lu3Al5O12 lattice, unknown phase was
observed, as shown in Figure 2d.

3.2. The Microstructure of LuAG:Ce Films

The FE-SEM images of 1500 ◦C CO atmosphere-annealed LuAG:Ce films with different
Ce3+ doping concentrations are shown in Figure 3. All the films show a flat and dense
microstructure. Grain boundaries are clearly observed. A few pores are found, which
situate at the triangular grain boundary region. Ce3+ doping concentration has significant
influence on the microstructure and grain shape. For the Ce3+ doping concentration of
0.2 mol.%, 0.5 mol.% and 1.0 mol.%, the average grain size is 400 nm, 650 nm and 850 nm,
respectively. Obviously, Ce3+ doping significantly improves the grain growth. The average
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grain size is even up to 1.0 µm when 2.0 mol.% Ce3+ was doped. The grain shape is
also affected by the Ce3+ doping. As the Ce3+ doping concentration increases to above
1.5 mol.%, the grains become rounded. The 7.0 mol.% Ce3+ doped film exhibits a peculiar
microstructure, whose crystal grains are rounded and isolated.

Figure 2. The effects of annealing temperature, annealing atmosphere and Ce3+ contents on the phase
compositions of LuAG:Ce films: (a) 400 ◦C air atmosphere, (b) 1000 ◦C air atmosphere, (c) 1500 ◦C
CO atmosphere, (d) enlarged XRD patterns around 2θ of 30◦.

3.3. The Photoluminescence Properties of LuAG:Ce Films

The annealing temperature and atmosphere significantly influence the photolumi-
nescence properties of LuAG:Ce films. The photoluminescent spectra of LuAG:Ce films
were measured at room temperature, as shown in Figure 4. The excitation spectra mainly
consist of two bands. One is a weak band with a maximum at 340 nm. The other is a
strong broad band ranging from 400 nm to 480 nm, with a maximum at around 450 nm.
These excitation bands arise from the absorption of the incident radiation by Ce3+ ions,
which leads to the electronic transition from the ground state (2F5/2, 2F7/2) to the excited
5d levels. The emission spectra consist of a broad band ranging from 490 nm to 650 nm,
with the maximum at around 520 nm, which are ascribed to the electronic transitions of
Ce3+ from the lowest 5d level to the 4f ground state. After annealing at 1000 ◦C for 5 h in
air atmosphere, 1.5 mol.% Ce3+ doped LuAG:Ce film exhibits the highest emission and
excitation intensity. Improving the crystallinity and inhibiting the oxidation of Ce3+ could
greatly enhance the photoluminescence properties. Upon annealing at 1500 ◦C for 5 h in
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CO atmosphere, 3.0 mol.% Ce3+ doped LuAG:Ce film exhibits the highest emission and
excitation intensity. Compared with the 1.5 mol.% Ce3+ doped LuAG:Ce film annealed at
1000 ◦C in air atmosphere, the emission intensity of 3.0 mol.% Ce3+ doped LuAG:Ce film
annealed at 1500 ◦C in CO atmosphere increases up to five times. Further increasing the
Ce3+ doping concentration above 3.0 mol.% declines the emission intensity of LuAG:Ce
films, which may be due to the effect of concentration quenching.

Figure 3. FE-SEM images of the 1500 ◦C CO atmosphere-annealed LuAG:Ce films with different
Ce3+ doping concentrations: (a) 0.2 mol.%, (b) 0.5 mol.%, (c) 1.0 mol.%, (d) 1.5 mol.%, (e) 2.0 mol.%,
(f) 3.0 mol.%, (g) 5.0 mol.%, (h) 7.0 mol.%.

3.4. Chromaticity Coordinates and Color Purity of LuAG:Ce Films

The corresponding chromaticity coordinates of LuAG:Ce films were obtained. The
coordinates were calculated from the luminescence spectral data shown in Figure 4, and
plotted in the 1931 chromaticity diagram, as shown in Figure 5. It is observed that the
color changes from the yellowish green towards greenish yellow, as the Ce3+ doping
concentration increases from 0.2 mol.% to 7.0 mol.%. After coupling the 3.0 mol.% Ce3+

doped LuAG:Ce film with a 0.5 W 450 nm blue laser, the formed device emits white
light, as shown in Figure 5. The specific color coordinates and CCT of each LuAG:Ce film
are presented in Table 1. As can be seen, the CCT shifts from the “cool white” region
to the “neutral white” region, as the cerium concentration increases from 0.2 mol.% to
7.0 mol.% [25].

In order to further determine the photoluminescence properties of LuAG:Ce films, the
color purity was investigated. The color purity can be calculated according to the following
formula [26]:

C =

√
(x − xi)

2 + (y − yi)
2√

(xd − xi)
2 + (yd − yi)

2
, (1)

Here, (x, y) are the CIE coordinates of LuAG:Ce film. (xi, yi) stands for the color
coordinates of standard white light, while (xd, yd) are the color coordinates of the dominant
wavelength. The calculated color purity of LuAG:Ce films is plotted in Figure 6. The highest
color purity is up to 75%, which is ascribed to the 5.0 mol.% Ce3+ doped LuAG:Ce film.
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Figure 4. Photoluminescence properties of LuAG:Ce films with Ce3+ doping concentration ranging
from 0.2 mol.% to 7.0 mol.%: (a) 1000 ◦C PL spectra, (b) 1000 ◦C PLE spectra, (c) 1500 ◦C PL
spectra, (d) 1500 ◦C PLE spectra, (e) PL intensity vs. Ce3+ concentration, (f) PLE intensity vs.
Ce3+ concentration.

Table 1. CIE color coordinates and CCT of LuAG:Ce films.

Ce3+ Concentration Coordinate (x) Coordinate (y) CCT (K)

0.2 mol.% 0.3268 0.5649 5693
0.5 mol.% 0.3258 0.5520 5714
1.0 mol.% 0.3370 0.5514 5499
1.5 mol.% 0.3355 0.5497 5527
2.0 mol.% 0.3473 0.5523 5307
3.0 mol.% 0.3547 0.5514 5171
5.0 mol.% 0.3670 0.5449 4941
7.0 mol.% 0.3700 0.5401 4878
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Figure 5. CIE color coordinates of 1500 ◦C CO atmosphere-annealed LuAG:Ce films with Ce3+ doping
concentration ranging from 0.2 mol.% to 7.0 mol.% (excited at 448 nm). The insets are the digital
images of blue lase (left) and lighting effects (right, lighting by the device composed of 3.0 mol.%
Ce3+ doped LuAG:Ce film and a 0.5 W blue laser).

Figure 6. Color purity of 1500 ◦C CO atmosphere-annealed LuAG:Ce films with different Ce3+

doping concentrations.

3.5. The Appearance and Thickness of LuAG:Ce Films

The appearance of 1500 ◦C CO atmosphere-annealed LuAG:Ce films with different
Ce3+ doping concentrations are shown in Figure 7. The LuAG:Ce films are all translu-
cent, thus the fonts “NEU” beneath the samples are clearly seen. As the Ce3+ doping
concentration increases from 0.2 mol.% to 7.0 mol.%, the color of LuAG:Ce films changes
from yellowish green to greenish yellow, which agrees well with the results of CIE color
coordinates analysis. The thickness of LuAG:Ce film is also examined. Figure 8 shows the
thickness of 3.0 mol.% Ce3+ doped LuAG:Ce film, which was annealed at 1500 ◦C for 5 h in
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CO atmosphere. As can be seen, 3.0 mol.% Ce3+ doped LuAG:Ce film has a thickness of
around 5 µm.

Figure 7. The appearance of 1500 ◦C CO atmosphere-annealed LuAG:Ce films with different Ce3+

doping concentrations: (a) 0.2 mol.%, (b) 0.5 mol.%, (c) 1.0 mol.%, (d) 1.5 mol.%, (e) 2.0 mol.%,
(f) 3.0 mol.%, (g) 5.0 mol.%, (h) 7.0 mol.%.

Figure 8. The thickness of 1500 ◦C CO atmosphere-annealed LuAG:Ce film with 3.0 mol.% Ce3+

doping concentration.

4. Conclusions

LuAG:Ce films were successfully prepared by the ultrasonic spray pyrolysis process.
The film thickness was around 5 µm. After annealing at 1000 ◦C in air atmosphere, LuAG:Ce
films were well crystallized to the typical garnet structure. Improving the crystallinity
and meanwhile inhibiting the oxidation of Ce3+ greatly enhanced the photoluminescence
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properties. After annealing at 1500 ◦C for 5 h in CO atmosphere, 3.0 mol.% Ce3+ doped
LuAG:Ce film exhibited the highest emission intensity, which increased up to five times
when compared with the emission intensity of the best LuAG:Ce film annealed at 1000 ◦C
in air atmosphere. Coupling the 3.0 mol.% Ce3+ doped LuAG:Ce film with a 0.5 W 450 nm
blue laser, the formed device successfully emitted white light.
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