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a b s t r a c t 

DNA interstrand cross-links (ICLs) are extremely deleterious DNA lesions, which can block different DNA 

transactions. A major step in ICL repair involves strand cleavage activities flanking the cross-linking site, also 

known as unhooking. The cleavage generates a single-stranded DNA remnant attached to the unbroken strand, 

often referred to as the unhooked ICL repair intermediates. The unhooked ICLs are substrates for specialized DNA 

polymerases, leading to the eventual restoration of the duplex DNA structure. Although these repair events have 

been outlined, the understanding of molecular details of the repair pathways has been hindered by the difficulty 

of preparing structurally defined ICL repair intermediates. Here, we present a straightforward method to prepare 

model ICL repair intermediates derived from a ubiquitous type of endogenous DNA modification, abasic (AP) 

sites. AP-derived ICLs have emerged as an important type of endogenous ICLs. We developed the method based 

on commercially available materials without the requirement of synthetic chemistry expertise. The method is 

expected to be accessible to any interested labs in the DNA repair community. 
• The method exploits the alkaline lability of ribonucleotides and uses designer oligonucleotides to create ICL 

repair intermediates with varying lengths of the unhooked strand. 
• Strand cleavage at ribonucleotides is achieved using NaOH, which avoids the potential for incomplete 

digestion during enzymatic workup due to specific substrate structures. 
• The method is grounded on the high cross-linking yield between an AP lesion and a nucleotide analog, 

2-aminopurine, via reductive amination, developed by Gates and colleagues. 
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SPECIFICATIONS TABLE 

Subject Area; Biochemistry, Genetics and Molecular Biology 

More specific subject area; DNA repair 

Method name; Preparation of DNA interstrand cross-link repair intermediates 

induced by abasic sites 

Name and reference of original method; Jin Tang, Feng Tang, Linlin Zhao, Facile Preparation of Model DNA 

Interstrand Cross-Link Repair Intermediates Using 

Ribonucleotide-Containing DNA, DNA Repair, 2022, DOI: 

https://doi.org/10.1016/j.dnarep.2022.103286 

Resource availability; All materials are commercialized. 

Background 

The concept of using chimeric RNA/DNA oligonucleotides followed by the digestion of 

ribonucleotides to construct psoralen-induced ICL repair intermediates was first explored by Couvé

et al. [1] . Later, Semlow et al. also used a similar strategy to adjust the length of unhooked

intermediates to assess the repair capability of NEIL3 glycosylase [2] . Although these early studies

have laid the conceptual groundwork, the methods have not been carefully evaluated for semi- 

preparative scale synthesis and for additional ICL substrates. In addition, both methods rely on RNase,

and the efficiency and yield of enzymatic digestion-based methods are often limited by the cross-

linking chemistry, the spacing of rNMP residues, and steric hindrance. Here, we seek to develop a

chemical-based method based on the alkaline lability of rNMPs to generate strand cleavage at rNMPs

sites. The resulting cleavage sites provide convenient access to the ICL substrates harboring different

lengths of the unhooked strand. 

Method details 

Step 1: Generation of an oligodeoxynucleotide (ODN) containing an abasic (AP) site 

• Materials and apparatus 

1. Chemicals were from Sigma Aldrich or Fisher Scientific and were of the highest grade available.

2. Uracil-DNA glycosylase (UDG) and RNase HII were from New England Biolabs. 

3. DNA sequencing gel equipment, Bio-Rad Mini-PROTEAN gel casting and electrophoresis 

equipment set, and Milli-Q water 

4. ODNs containing modified nucleotides were purified by high-performance liquid 

chromatography (HPLC) and were from Integrated DNA Technologies. The sequences of 

DNA substrates described in this method are as follows: 

A 30-nt oligodeoxynucleotide containing a deoxyuridine was used as a precursor for AP site- 

containing substrates (hereinafter referred to as T1). 

T1: 5 ′ -/FAM/AGA CTG CAT /dU/AC GAA GCG AAT CCT TCC CCC 

FAM, 6-fluoresceine; dU, deoxyuridine 

Two 17-nt oligomers containing a 2-aminopurine and two flanking ribonucleotides were used for 

cross-linking and preparation of ICL repair intermediates with two DNA remnants of different sizes 

(hereinafter referred to as R1 and R2). 

R1: 5 ′ -CGC TTC rG TA /2AmPr/ T rG CAG TC 

R2: 5 ′ -CGC T rU C GTA /2AmPr/ TG C rA G TC rN denotes ribonucleotides; 2AmPr, 2-aminopurine 

• Buffers and solutions 

1. UDG reaction buffer (5X): 500 mM HEPES pH 7.7, 5 mM dithiothreitol, 5 mM EDTA

(ethylenediaminetetraacetic acid disodium salt) 

2. 1 M NaOH 

3. 1 M NaBH 4 

4. 5X TBE buffer: 445 mM Tris, 445 mM boric acid, 10 mM EDTA 

5. Milli-Q water 
• Procedure 
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Fig. 1. Representative denaturing PAGE analysis of the cross-linking reaction. Lane 1, T1. Lane 2, reaction products of AP- 

containing T1 after the NaOH cleavage reaction. Lane 3, cross-linking reaction products of AP-containing T1 with R1. Lane 4, 

cross-linking reaction products of AP-containing T1 with R2. Samples in lanes 3 and 4 contained 5-fold more materials relative 

to those in lanes 1 and 2. The gel image was adapted from the Fig. 1d of Ref [4] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Dissolve commercial ODNs in water to a final concentration of approximately 400 μM. 

2. To a total of 3 nmol T1, add 8 uL 5X UDG reaction buffer and 6 uL 5,0 0 0 unit/uL UDG. Dilute

to a total volume of 40 uL with water. Allow the UDG digestion for 6 hours at 37 °C. 

3. After the reaction, the formation of AP sites is confirmed by alkaline-mediated cleavage at AP

sites followed by denaturing polyacrylamide gel electrophoresis (PAGE) analysis. 

4. To an aliquot of 0.5 uL reaction mixture, add 2.5 uL water to dilute it 6-fold. The resulting DNA

concentration is 12.5 uM. 

5. Take 1 uL diluted reaction mixture, add 3.7 uL 1 M NaOH and 7.8 uL water, incubate at 65 °C
for 1 hour followed by neutralization with HCl. This reaction cleaves the AP-containing T1 at

AP sites and generates single-strand breaks. 

6. Take 1 uL diluted reaction mixture, add 1 uL 1 M NaBH 4 , 10.5 uL water and incubate on ice for

30 min. NaBH 4 quenches the reaction by reducing any unreacted AP sites. 

7. Analyze the reaction products using a 7 × 10 cm 18% denaturing PAGE. Recipe of the gel

solution: 18% acrylamide/bis-acrylamide (19:1), 7 M urea, 1X TBE solution. 

8. Relative to T1 ( Fig. 1 , lane 1), a faster-migrating band in the NaOH-treated sample,

corresponding to an ODN product from single-strand break, confirms the formation of AP sites

( Fig. 1 , lane 2). The yield of the UDG reaction can be calculated by dividing the band intensity

of the faster migrating band by the sum of band intensities from the same lane. The yield of

AP sites is over 95% using the reaction recipe described above. If a lower yield is observed,

consider extending the UDG digestion time or adding more UDG. 

Step 2: Purification of the AP-containing T1 from the UDG reaction mixture 

• Materials 

1. Bio-Spin® Columns with Bio-Gel® P-6 (catalog No. 7326227) 

2. Benchtop centrifuge 

3. Phenol/chloroform mix: UltraPure TM phenol:chloroform:isoamyl alcohol (25:24:1, v/v; catalog

No. 15593031) 

4. Thermo Scientific Savant SpeedVac DNA130 vacuum concentrator system 

5. Thermo Scientific NanoDrop 10 0 0 spectrophotometer 
• Procedure 

1. Add 40 uL phenol/chloroform solution to the UDG reaction mixture. Vortex for 20 s. Centrifuge

at 16,0 0 0 g for 5 min. Remove the bottom layer (phenol/chloroform), add another 40 uL

phenol/chloroform solution to the remaining solution. Vortex and centrifuge again. 

2. Transfer the upper layer solution to a clean centrifuge tube. 

3. Remove phenol and salt using a Bio-Rad P-6 column. Replace the buffer in the Bio-Rad P-6

column with water (follow the protocol from manufacture), and load the upper layer solution
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to a buffer exchanged P-6 column. Centrifuge at 1,0 0 0 g for 4 minutes. Now the AP-containing

T1 is in water. Measure the concentration with a NanoDrop spectrophotometer. Calculate the 

concentration based on the Beer-Lambert law. 

4. Dilute the AP-containing T1 to a concentration of 45 uM with Milli-Q water or reduce the

volume using a SpeedVac vacuum concentrator (without drying). 

Step 3: Preparation of DNA interstrand cross-links between AP-T1 and R1 (or R2) 

• Materials 

1. Bio-Rad C10 0 0 Touch Thermal Cycler 

2. DNA sequencing gel apparatus, Bio-Rad Mini-PROTEAN gel casting and electrophoresis 

equipment set 
• Buffers and solutions 

1. MES (2-( N -morpholino)ethanesulfonic acid) buffer (10X): 300 mM MES pH 6.5, 1 M NaCl, 10

mM EDTA 

2. M NaOAc pH 5.4 

3. M NaCNBH 3 

4. TBE buffer (5X): 445 mM Tris, 445 mM boric acid, 10 mM EDTA 

• Procedure 

1. Anneal an AP-containing T1 with R1 (or R2). To a solution of 26.7 uL 45 uM AP-containing T1

(1.2 nmol), add 1.44 nmol R1 (or R2), 4 uL 10X MES buffer, and water to a total volume of 40

uL. Mix the solution. Incubate the solution following a temperature gradient: 75 °C for 5 min,

75 to 40 °C at 1 °C/min, 40 °C for 10 min, down to 4 °C. 

2. Check the annealing efficiency using a 7 × 10 cm 18% native PAGE (recipe for gel solution:

18% acrylamide/bis-acrylamide (19:1), 0.35X TBE). Optimize the annealing procedure if the 

annealing efficiency is lower than 95% (see Note 1 for details). 

3. Cross-linking between an AP lesion and a nucleotide analog, 2-aminopurine, via reductive 

amination. To the solution containing annealed AP-T1/R1, add 2.5 M NaCNBH 3 and 1.5 M NaOAc

pH 5.4 to final conditions of 250 mM NaCNBH 3 and 750 mM NaOAc. Incubate the solution at

37 °C for 12-14 hr. 

4. Check the cross-linking efficiency using a 7 × 10 cm 18% denaturing PAGE. Fluoresceine signals

decrease after the overnight incubation, likely due to the change of pH. Approximately 5-fold

more cross-linked reaction products are needed to produce similar fluorescent signals relative 

to T1. The cross-linked products migrate slower than T1 ( Fig. 1 , lanes 3 and 4). The cross-linking

reaction yield is calculated by dividing the intensity of the slower migrating band by the sum

of the intensities from the same lane. Usually, the cross-linking yield is greater than 90% [3] . 

Step 4: Preparation of the unhooked ICLs 

• Materials 

1. A dry bath incubator with a heated lid 

2. Corning® Costar® Spin-X® centrifuge tube filters (catalog No. CLS8162) 

3. 3M Empore TM extraction disk cartridges (C18) (catalog No. 56221-502) 

4. Thermo Scientific Savant SpeedVac DNA130 vacuum concentrator system 

5. DNA sequencing gel equipment, Bio-Rad Mini-PROTEAN gel casting and electrophoresis 

equipment set 

6. Thermo Scientific NanoDrop 10 0 0 spectrophotometer 

7. shrimp alkaline phosphatase (New England Biolabs, catalog No. M0371S) 
• Buffers and solutions 

1. 5 M NaOH 

2. 1 M Tris pH 8.0 

3. 5% ACN (acetonitrile, HPLC grade)/H 2 O 

4. 95% ACN/H 2 O 

• Procedure 

1. To a solution of 100 uL with 10 uM AP-TA/R1 (or R2) ICLs, add 4.17 uL 5 M NaOH, incubate at

55 °C for 1 hour (set the dry bath temperature to 55 °C and lid temperature to 95 °C). 
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Fig. 2. Representative 7 × 10 cm denaturing PAGE analysis for monitoring the yield of unhooked ICLs. Lane 1, T1. Lane 2, AP- 

containing T1 after NaOH treatment. Lane 3, cross-linking reaction products of AP-containing T1 with R1. Lane 4, the sample 

from lane 3 treated with NaOH (ICL1 crude products). Land 5, the sample from lane 4 of Fig. 1 treated with NaOH (ICL2 crude 

products). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Monitor the reaction yield using a 7 × 10 cm 18% denaturing PAGE ( Fig. 2 ). Optimization of the

yield of unhooked ICLs by altering the concentration of NaOH, incubation time, and temperature

may be needed for different ICL substrates. With the ODNs used in this procedure, the highest

yield of ICLs was observed using 0.2 M NaOH at 55 °C for 60 min. The resulting unhooked ICLs

with a remnant of R1 or R2 are referred to as ICL1 and ICL2, respectively. 

3. Separate the reaction products using a 30 × 38 cm 0.75 mm 18% denaturing PAGE. 

4. Cut the desired gel bands containing ICL1 (or ICL2) using a clean razor blade. Freeze the gel

band in a -20 °C freezer. Crush the gel with a glass rod. 

5. Extract the unhooked ICLs with 1 mL 10 mM Tris pH 8.0 at 4 °C overnight. Remove the

gel particles with a Spin-X centrifuge tube filter by centrifuging at 16,0 0 0 g for 5 min. The

unhooked ICLs are in Tris and other components in the PAGE media. 

6. Clean ICL1 (or ICL2) by solid-phase extraction. Pre-condition the C18 cartridge by washing the

cartridge with 2 mL 5% ACN/H 2 O, 2 mL 95% ACN/H 2 O, and 2 mL 5% ACN/H 2 O. Load the sample

onto the C18 cartridge, wash the cartridge with 1 mL 5% ACN/H 2 O, and elute ICL1 (or ICL2)

using 500 uL 95% ACN/H 2 O. Remove the organic solvent using a SpeedVac vacuum concentrator.

Reconstitute the sample with 20 uL Milli-Q water, and measure the concentration using a

NanoDrop spectrophotometer. 

7. Check the purity of the unhooked ICLs with 30 × 38 cm 0.4 mm 18% denaturing PAGE ( Fig. 3 ).

Notes: 

1. AP-containing ODNs are heat labile, and a lower annealing temperature is desired to avoid

the formation of DNA strand breaks. The annealing procedures is optimized in terms of the

denaturing temperature, denaturing time, temperature gradient, annealing temperature, and

buffer com position and pH. The annealing yield is monitored by the native polyacrylamide gel

electrophoresis. 

2. ICLs generated using this procedure contain a mixture of phosphate-containing and

dephosphorylated 3 ′ -end of the “unhooked” strand (remnant of R1 or R2), as evidenced by

mass spectrometry and PAGE analyses. 1 If a homogeneous unhooked ICL substrate is desired,

an additional step to remove the phosphate group using alkaline phosphatase can be included

before PAGE purification. 1 unit of shrimp alkaline phosphatase completes the removal of a

phosphate group from1 pmol DNA in 30 min at 37 °C. 
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Fig. 3. Representative denaturing PAGE analysis of the ICLs after purification and alkaline phosphatase treatment. Samples in 

lanes 1 to 4 are the same as those in Fig. 2 . Lane 5, ICL1 after gel purification (95% purity based on the observed intensities). 

The major source of impurity may be the dissociation of the two cross-linked strands as evidenced by the presence of starting 

materials in lane 5. Lane 6, the sample from lane 5 treated with alkaline phosphatase. The experiment facilitates the assignment 

of multiple product bands in lane 5. Lane 7, the same as lane 5 in Fig 2 . Lane 8, the gel-purified ICL2 (99% purity based on the 

observed intensities). Lane 9 is the sample from lane 8 treated with alkaline phosphatase. 
3. Although ODNs and oligoribonucleotides bearing a 5 ′ -phosphate generally migrate faster 

than those with 5 ′ -OH, the 3 ′ terminal chemistry affects the migration differently. For 

oligoribonucleotides, those with a 3 ′ -OH terminus migrate slower than the phosphorylated 

counterpart [5] . This explains the usual migration pattern observed in the chimeric products 

(ICL1 and ICL2), with phosphorylated products migrating slower than their hydroxylated 

counterparts (lanes 5, 6, 8, 9 in Fig. 3 ). 
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ethod validation 

The molecular weight of the ICL substrates can be verified by mass spectrometry. However,

ubstrates with more than 30 nt tend to have poor ionization efficiencies. The signal can be enhanced

y injecting more materials onto the LC-MS system. For example, 30 pmol of ICL1 was loaded onto

n Agilent Zorbax SB-C18 column (0.5 × 250 mm, 5 μm in particle size) connected to a Thermo TLQ

ass spectrometer. Solvent A: water, and solvent B: methanol with 400 mM hexafluoroisopropanol.

amples were analyzed at 8 uL/min with a 50-minute gradient starting at 5% B and increasing to 20%

 in 5 min, then to 45% B in 45 min. Example mass spectrometric data are shown in Fig S3 of Ref

4] . The presence of the cross-linked remnant can also be verified using primer extension assays. ICLs

lock DNA replication and result in products corresponding to polymerase stalling at or prior to the

ross-linked nucleotide. An example is shown in Fig 3 of Ref [4] . 
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