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INTRODUCTION

Hearing impairments were suffered by 360 million people 
worldwide in 2012, comprising 328 million adults and 32 mil-
lion children [1]. These numbers have been steadily increasing as 
the life expectancy increased with advancements in medicine 
and technology [2]. However, despite the overwhelming number 
of hearing-impaired people, market surveillance data show that 
only 1 in 5 adults have adopted hearing aids, and many hearing-
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Objectives. In an effort to improve hearing aid users’ satisfaction, recent studies on trainable hearing aids have attempted 
to implement one or two environmental factors into training. However, it would be more beneficial to train the de-
vice based on the owner’s personal preferences in a more expanded environmental acoustic conditions. Our study 
aimed at developing a trainable hearing aid algorithm that can reflect the user’s individual preferences in a more ex-
tensive environmental acoustic conditions (ambient sound level, listening situation, and degree of noise suppression) 
and evaluated the perceptual benefit of the proposed algorithm.

Methods. Ten normal hearing subjects participated in this study. Each subjects trained the algorithm to their personal pref-
erence and the trained data was used to record test sounds in three different settings to be utilized to evaluate the 
perceptual benefit of the proposed algorithm by performing the Comparison Mean Opinion Score test. 

Results. Statistical analysis revealed that of the 10 subjects, four showed significant differences in amplification constant 
settings between the noise-only and speech-in-noise situation (P<0.05) and one subject also showed significant dif-
ference between the speech-only and speech-in-noise situation (P<0.05). Additionally, every subject preferred differ-
ent β settings for beamforming in all different input sound levels.

Conclusion. The positive findings from this study suggested that the proposed algorithm has potential to improve hearing 
aid users’ personal satisfaction under various ambient situations. 
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impaired persons still hesitate to purchase hearing aids due to 
the high-cost and low satisfaction in various noisy situations [3]. 

When purchasing hearing aids, many people are unsatisfied 
with the settings prescribed by their audiologists because adjust-
ments made in a quiet clinic environment are often not optimal 
for real-life use [4-6]. People new to hearing aids may not be 
aware of what an optimal setting is for them, which would affect 
the effectiveness of the initial adjustment at the hospital [7]. In 
such cases, the device user has no choice but to revisit the hos-
pital to readjust the device settings as many times as needed un-
til satisfied with the tuning. However, if there is no relevant hos-
pital or tuning clinic near the user’s home or office, repeated 
visits can incur large time and financial burdens [8]. In addition, 
due to differences in personal preferences, a setting suitable for 
one environmental situation may not be suitable for others [5]. 
Some people prefer to have the directional microphone function 
enabled when listening to speech sounds in noisy environments, 
but disabled when listening to music in a music hall or speech 
sounds in a quiet room. Others prefer to leave the function en-
abled all the time, regardless of the ambient situation. Addition-
ally, many prefer to adjust the level of noise suppression de-
pending on the variations in the ambient noise, whereas others 
do not [4]. Further, it has been reported that audiologist-driven 
settings and patient-driven settings can be quite different [9,10]. 
For these reasons, a need exists for a hearing-support device 
that can auto-tune its internal parameters according to the user’s 
personal preferences under various ambient situations, and to 
meet this need, a trainable or self-fitting hearing aid was intro-
duced [7]. 

In the initial stage of research on trainable hearing aids, the 
main focus of training was only the relationship between the in-
tensity of ambient sounds (input sound level [ISL]) and the out-
put volume of the device (amplification constant [AMP]) 
[7,9,11,12]. Later research revealed that many other factors be-
sides the ISL affects human perception, such as listening situa-
tion (LS), type of ambient sound, and internal device factors 
such as the degree of noise suppression (DNS) [7]. For example, 
Chalupper et al. [4] demonstrated that the settings of a hearing 
aid, such as overall gain, compression parameters, noise-reduc-
tion strength, and activation/deactivation of the directional mi-
crophone, may be sensitive to personal preferences. However, 
even the recent studies on trainable hearing aids have reflected 
only one or at most two of these environmental factors into the 

device training [4,6,13,14], which limited the user satisfaction 
under various acoustic conditions. In other words, personal satis-
faction of the user would be greatly improved if the device is 
able to reflect the owner’s personal preference in a more expand-
ed environmental acoustic conditions, since the auditory percep-
tion is affected by surrounding complex acoustic conditions.

In this study, we propose a trainable hearing aid algorithm 
that reflects the user’s personal preferences in three environ-
mental acoustic conditions (ISL, LS, and DNS), and evaluate the 
performance of the proposed algorithm using 10 normal-hear-
ing subjects. 

MATERIALS AND METHODS

Algorithm implementation scenario
The scenario of the implementation of the proposed algorithm 
is as follows. Normally, for everyday or first-time use, the user 
sets the device to normal-operation mode, in which the device 
adjusts the internal parameters automatically while reflecting 
the user’s preference. Upon encountering an uncomfortable or 
unoptimized sound in a new environment, the user can train the 
device by selecting one or both of the two training modes, vol-
ume-training and β-training. In volume-training mode, the user 
can make manual adjustments to the overall output volume via 
the user interface to add or subtract a certain offset (in 1 dB 
steps) from the current volume to select an amplification (AMP, 
dB) value. In β-training mode, the user can select a β value of 
the beamforming algorithm that fits his or her personal prefer-
ence. Once training is complete for a specific environment, the 
user can store the preferred internal parameters selected during 
training–the outputs of the LS classifier and the ISL detector, 
which describes the specific environment training was per-
formed in, and the user-selected AMP and β values which are 
the values the user selected during training–in the database. The 
algorithm utilizes data gathered during training to better auto-
tune to the user’s preference. If training is performed in an envi-
ronment that was trained before (i.e., for the same LS and ISL), 
the most recent adjustment overrides the previous data. The al-
gorithm in normal-operation mode uses the user-trained data-
base and predetermined interpolation and extrapolation proto-
cols to automatically adjust the AMP, β, and activation or deacti-
vation of beamforming in real-time.

Structure and operation of the implemented algorithm
Fig. 1 shows the overall schematic of the proposed algorithm. It 
consists of three sub-blocks: a signal interface block, a user in-
terface block, and a database manager block. The following as-
sumptions were made for simplification: (1) The device contains 
two user-adjustable algorithms—beamforming, which adjusts the 
DNS using the β value, and an output volume adjustment, 
which adjusts the total output volume of the device using AMP; 

  �It would be more beneficial to train the device based on the 
owner’s personal preferences. 

  �We proposed a trainable hearing aid algorithm. 

  �The proposed algorithm has potential to improve hearing aid 
users’ personal satisfaction under various ambient situations.
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(2) The wide dynamic-range compression is always active and its 
channel gains are fixed at purchase; (3) Beamforming is enabled 
only in speech-in-noise situations and disabled in speech-only 
and noise-only situations; and (4) The ISL is limited to a 45–90 
dB of sound pressure level (dB SPL) range, considering the nor-
mal, everyday use presented by Chalupper et al. [4] and Walden 
et al. [15]. In this study, we used the differential microphone ar-
ray algorithm suggested by Teutsch and Elko [16] as the beam-
forming, and the neural network-based LS classifier suggested 
by Yook et al. [17] that was slightly modified as follows: (1) Ad-
ditional amplification in front of the classifier to ensure the 
proper ISL for stable classification performance and (2) Among 
the four situations classified in the original LS classifier, only 
three situations—speech-only, noise-only, and speech-in-noise—
were enabled (i.e., music-only was disabled).

When external sounds enter the embedded microphones, the 
average ISL of the most recent 2.5 seconds (which was deter-
mined to be the most optimal with respect to accuracy and abil-
ity to operate in real-time through repetitive trials) is measured 
by the ISL detector, and at the same time, the type of ambient 
situation is determined by the listening situation classifier. When 
the device is turned on (i.e., proposed algorithm is initiated), ini-
tial operation mode is set to normal-operation mode. When the 
user wants to further train the device, the user needs to change 
the operation mode to either volume-training or β-training 
mode. (In this study, we assumed that the user has the means to 

freely adjust the operation mode, the AMP, and the β; e.g., a 
three-step slider and a clickable dial on the surface of the device 
that enables the user to freely adjust the device setting manually 
during the training phase, a dedicated remote controller con-
nected to the hearing aid wirelessly that allows manual adjust-
ment, or a dedicated computer or smartphone application for 
this purpose). In volume-training mode, users can adjust the 
AMP to their preferences in different ambient listening situa-
tions in their normal daily lives. When an adjustment is made, 
the device records the value of the new AMP, the ambient situa-
tion detected by the listening situation classifier, and the ambi-
ent sound level detected by the ISL detector into the database. 
In β-training mode, users can select the DNS to their liking by 
adjusting the β among the three preset values (1.76, 2.65, and 
3.47) [18]. As in volume-training mode, the β value is recorded 
into the database along with the current LS and ISL values. 
When reverted back to normal-operation mode after training, 
the overall training-related functions are disabled, and the de-
vice automatically adjusts its internal parameters (AMP, beam-
forming on/off, and β) in accordance with the training data. In 
order to perform auto-tuning in normal-operation mode, the 
proposed algorithm monitors the outputs of the ISL detector 
and LS classifier in real time to search the database for a match-
ing condition. If an exactly-matched condition exists, the stored 
value of the parameters are used to auto-tune; however, if one 
does not exist, (1) the AMP is determined by linear interpola-
tion and extrapolation using the neighboring values in the data-
base, and (2) β is determined by selecting the closest value be-
tween the two adjacent values in the database. Since parameter 
outputs are very sensitive to ISL, preventative measures are tak-
en in normal-operation mode to ensure correct parameter out-
puts are implemented when the listening environment changes 
abruptly. Specifically, an ISL change of more than 5 dB is con-
sidered abrupt, and for such instants, implementation of the au-
to-tune parameter output is skipped one interval.

Subject recruitment and test sound preparation for evaluation
Ten normal-hearing subjects (7 males and 3 females; age range, 
21 to 30 years; median age, 25 years; mean age, 25.5 years) 
were recruited in accordance with the method approved by the 
Institutional Review Board of Hanyang University (HYI-15-011-
3). Written consents to participate were acquired from all partic-
ipants before the experiments, and they were compensated for 
their participation. 

The sound files for evaluation were recorded using a combina-
tion of 40 clean speech signals, 30 babble noise signals, and 30 
car noise signals [19]. Three types of sound files were recorded 
to simulate the three listening situations: speech-only, noise-only, 
and speech-in-noise. The recording took place in a nonreverber-
ant chamber located at Hanyang University using a KEMAR 
mannequin (Type 45BA; G.R.A.S. Sound & Vibration, Holte, 
Denmark) with two artificial ears (Type KB0060; G.R.A.S. 

Fig. 1. Overall schematic of the proposed algorithm for a trainable 
hearing aid that can reflect the variations in all of the ISL, LS, and 
DNS conditions. MIC, microphone; S/I, signal interface; U/I, user in-
terface; LS, listening situation; ISL, input sound level; DNS, degree 
of noise suppression; NO, normal operation; BF, beamforming; 
WDRC, wide dynamic-range compression; OVA, output volume ad-
justment; AMP, amplification constant in OVA; DB, database.
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Sound & Vibration) placed in the center of the chamber. Two be-
hind-the-ear type hearing aid mock-ups, shaped identically to 
the commercialized device (Canta7; GNReSound A/S, Ballerup, 
Denmark), were mounted on the two artificial ears to record the 
sound in separate files. Four identical speakers (HS50M; Yamaha 
Co., Hamamatsu, Japan) were each positioned 120 cm from the 
mannequin, surrounding it, in the 0°, 90°, 180°, and 270° direc-
tions. The four speakers were calibrated before the recording us-
ing a commercial sound-level meter (2250 Light; Brüel & Kjær 
Co., Naerum, Denmark) to make sure the outputs were the 
same for all the speakers. The originating direction of sound dur-
ing the recording for each listening situation were as follows: (1) 
speech-only: clean speech from 0°; (2) noise-only: identical 
noises from 0°, 90°, 180°, and 270°; and (3) speech-in-noise: 
clean speech from 0° and identical noises from 90°, 180°, and 
270°. The input signal-to-noise ratio of the mixed signals was 
fixed at 0 dB. For the recordings of each of the three situations, 
the overall ISL was adjusted from 45 to 90 dB in 5 dB steps. A 
total of 12 test sets were recorded for algorithm verification 
(PS_1 and PS_2), subjective training (TS_1), and subjective 
evaluation (TS_2) as listed below (10 sound clips per set; no du-
plication or overlap between CS_1–CS_5, BN_1–BN_3, and 
CN_1–CN_2). 

- �PS_1 contained one test set consisting of seven 1,000-Hz 
pure tone signals with 60, 65, 70, 75, 80, 85, and 90 dB SPL. 

- �PS_2 contained one test set consisting of six 1,000-Hz pure 
tone signals with 63, 67, 73, 77, 83, and 87 dB SPL.

- �TS_1 contained three test sets, each consisting of one clean 
speech set (CS_1) and one babble noise set (BN_1): one 
speech-only set (ES_1), one noise-only set (BN_1), and one 
speech-in-noise set (CS_1+BN_1).

- �TS_2 contained seven test sets, each consisting of three clean 
speech sets (CS_2, CS_3, and CS_4), two babble noise sets 
(BN_2 and BN_3), and two car noise sets (CN_1 and CN_2): 
one speech-only set (CS_2), two noise-only sets (BN_2 and 
CN_1), and two speech-in-noise sets (CS_3+BN_3 and 
CS_4+CN_2).

Evaluation of the implemented algorithm
Before evaluating the perceptual benefit of the proposed algo-
rithm, we verified the proper operation of the implemented 
blocks of the algorithm: first, the performance of the ISL detec-
tor was evaluated with PS_1; second, the interpolation perfor-
mance of the database manager was evaluated by training the 
algorithm with PS_1 in volume-training mode and evaluating 
the algorithm using PS_2 in normal-operation mode; and lastly, 
the performance of the LS classifier was evaluated using both 
TS_1 and TS_2.

Next, we evaluated the performance of the overall algorithm: 
first, an examiner trained the algorithm with TS_1 and adjusted 
the AMP and β values to his preferred setting for each test 
sound (each sound was repeatedly played until the examiner 

completed training). Then, the algorithm was switched to nor-
mal-operation mode, and TS_1 and TS_2 signals were sequen-
tially entered into the signal interface block in random order, 
and the automatically-adjusted AMP and β values were record-
ed. Each sound clip was repeated until five parameter outputs 
were recorded, and then the next clip was played. 

After the overall verification process of the algorithm was 
completed, the Comparison Mean Opinion Score (CMOS) test 
[20] was performed with 10 subjects to compare the differences 
in perceptual benefits among the three different parameter set-
tings. 

- �Fixed setting (T1 setting; representing a traditional hearing 
aid): fixed amplification constant and β value regardless of 
the variations in input signals (both the ISL detector and LS 
classifier were disabled).

- �User-trained setting without LS classifier (T2 setting; repre-
senting a traditional trainable hearing aid): automatically 
adapting the user-defined amplification constants and β val-
ues to the variations in the input sound level (only the ISL 
detector was enabled, and the LS classifier was disabled).

- �User-trained setting with LS classifier (T3 setting; represent-
ing the proposed algorithm): automatically adapting the us-
er-defined amplification constants and β values to the varia-
tions in both the input sound level and the listening situation 
(both the ISL detector and the LS classifier were enabled). 

TS_2 sounds were utilized to record test sounds for the 
CMOS test, and wide dynamic-range compression in Fig. 1 was 
disabled (bypassed) during recording because the test was per-
formed using normal-hearing subjects only.

To record test sounds for the CMOS test, the algorithm must 
be trained prior to the recording as the recording would be done 
with the auto-tuned internal parameters based on the trained 
data. Each subject was given thorough instructions regarding the 
experiment before being positioned in the middle of the nonre-
verberant chamber wearing a headset. Training for T1, T2, and 
T3 setting differed from each other: for the T1 setting: (1) Train-
ing-related algorithms were all disabled; (2) The β value was pre-
set to 3.1 [18]; (3) Each subject listened to a 1,000-Hz pure tone 
signal through the headset (70 dB SPL) and was asked to manu-
ally adjust the AMP to his or her preferred sound level (comfort-
able level); and (4) The subject-selected AMPs were recorded for 
all subjects. For the T2 setting: (1) The LS classifier was disabled 
(and the database manager was also adjusted to accommodate 
the T2 setting); (2) Each subject was asked to train (i.e., manual-
ly adjust the AMPs and β values to his or her preferred setting 
for each sound) the algorithm using TS_1; and (3) The subject-
selected parameters for each sound were recorded for all sub-
jects. For the T3 setting: (1) All algorithms in Fig. 1 were enabled; 
(2) Each subject was asked to train the algorithm using TS_1; 
and (3) The subject-selected parameters for each sound were re-
corded for all subjects. During training, each sound clip was re-
peated until the subject selected his or her preferred parameter 
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setting. After the training phase, the subject was given a break 
while the examiner recorded test sounds (output signals of the 
algorithm in normal-operation mode when TS_2 signals were 
entered into the algorithm with the recorded parameter settings 
for each subject) for the CMOS test. 

After recording the test sounds, the subject returned to the 
original position in the chamber and wore the headset again to 
proceed with the CMOS test. During the CMOS test, identical 
test sounds with two different settings (either T1 and T3, or T2 
and T3) were played sequentially, and the subject was asked to 
score the relative quality of the second sound (comparison au-
dio) compared to the first sound (reference audio), in the range 
of –3 to +3. For instance, if the comparison audio sounded much 
better than the reference audio, a score of 3 would be given or a 
–2 if the comparison audio was worse than the reference audio. 
Objective preference between two settings can be measured by 
comparing identical audio in different settings. The order of test 
sounds (from TS_2), and the selection of reference and compari-
son audio (e.g., T1 after T3 or T3 after T1), were all randomized 
(the total scores of the three parameter settings represent the to-
tal quality score of each setting). To minimize the expected 
learning effects from the duplicated use of test sounds (although 
it may not be as significant for a quality test compared to an in-
telligibility test), the order was carefully arranged to prevent 
same test sound from repeating within 5 trials. In addition, to 
reduce physical and psychological fatigue of the subject, resting 
intervals of 5 seconds were given between tests, and an addi-
tional resting interval of 2 minutes every 25 trials. 

Statistical analysis
In this study, repeated-measures analysis of variance (RM-ANO-
VA) test was performed to determine whether there was a sig-
nificant differences in each subject’s training result among the 
three listening situations: speech-only, noise-only, and speech-in-
noise. Post-hoc Tukey honest significant difference test was fur-
ther applied only when significant difference (P<0.05) was ob-
served. 

RESULTS

Table 1 provides the results of the ISL detection test and ISL in-
terpolation test. The implemented ISL detector could detect the 
intensity of the actual input signals with a 0.2%–4.6% error 
rate, and in addition, it could also interpolate the volumes of the 
input signals as intended with a 0.3%–4.2% error rate. 

Fig. 2 shows the AMP variation patterns when both training 
and verification were performed using TS_1. The AMPs in nor-
mal-operation mode followed the trained values in all situations 

Table 1. Results of the ISL detection and ISL interpolation tests

ISL detection test (dB SPL) ISL interpolation test (dB SPL)

Actual SL Detected SL Input SL Output volume

90 90.19 87 87.26
85 85.30 83 83.82
80 81.59 77 79.73
75 78.49 73 76.09
70 72.50 67 68.16
65 65.27 63 63.27
60 60.27 - -

Error rate for ISL detection test and ISL interpolation test was in the range 
of 0.2%–4.6% and 0.3%–4.2%, respectively. 
ISL, input sound level; SPL, sound pressure level; SL, sound level.

Fig. 2. Amplification constant (AMP) variation patterns when both 
training and verification were performed using TS_1 (unit: dB): (A) 
Speech-only. (B) Noise-only. (C) Speech-in-noise. Dotted line indi-
cates data collected during training. Solid line indicates amplifica-
tion output by the proposed algorithm. SPL, sound pressure level.
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with some amount of time delay, and parameter interpolation 
also operated properly when required. Errors between the 
trained and adjusted AMPs were 0.01–2.71 dB, 0–4.23 dB, and 
0–3.33 dB for speech-only, noise-only, and speech-in-noise re-
spectively.

Fig. 3 shows the AMP variation patterns when training was 
performed using TS_1 and verification using TS_2. The AMPs in 
normal-operation mode also followed the trained values in all 
situations, and interpolation operated properly. Errors between 
the trained and adjusted AMPs were 0.06–4.37 dB, 0.02–4.99 
dB, and 0–11.20 dB for speech-only, noise-only, and speech-in-
noise respectively.

Table 2 shows the user-selected AMP and β values during the 
training phase of the subjective test. RM-ANOVA results 
showed significant difference existed among the three listening 
situations for all ISL (in the order from 45 dB to 90 dB, F-value 
is 8.00, 15.81, 19.99, 14.75, 17.67, 11.58, 9.86, 9.06, 6.14, and 
4.70 respectively and P<0.05), and further, post-hoc analysis 
indicated that, in speech-in-noise conditions, subjects select sig-
nificantly higher AMP values compared to speech-only and 
noise-only in all ISL levels except 90 dB where this was the case 
only in noise-only (P=0.008, Bonferroni adjustment). 

Tables 3 and 4 give the results of the CMOS test for T1–T3 
and T2–T3, respectively. In both tables, higher score indicate 

Fig. 3. Amplification constant (AMP) variation patterns when training was performed using TS_1 and verification using TS_2 (unit: dB): (A) 
Speech-only. (B) Noise-only. (C) Speech-in-noise. Dotted line indicates data collected during training. Solid line indicates amplification output 
by the proposed algorithm. SPL, sound pressure level.
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preference of T3 setting over the other setting being compared 
to. The T3 setting showed higher CMOS scores than the T1 set-
ting for all subjects and listening situations. In contrast, the T2 
setting and the T3 setting showed almost equivalent CMOS 
scores; that is, the preferences were different among the subjects. 

DISCUSSION

In the subjective test, all subjects showed significant differences 
in their AMP settings (P<0.05) in accordance with the varia-
tions in the LS condition under the same ISL (usually between 
noise-only and speech-in-noise). Also, the user-selected AMP 

Table 2. User-selected AMP and ß values in the subjective test (in training phase)

Subject LS
Input sound level (dB)

45 50 55 60 65 70 75 80 85 90

1 SO –11.95 –19.66 –26.71a) –33.76 –36.78 –39.46 –41.81 –43.83a) –46.85 –48.29
NO –17.99 –21.34 –25.37b) –30.74 –32.97 –40.47b) –42.70 –50.20 –52.55 –56.58
SIN –8.59 –13.62 –16.31 –21.34 –24.36 –29.40 –30.07 –34.09 –40.81 –48.19
ß 3.47 2.65 2.65 2.65 2.65 3.47 2.65 2.65 2.65 2.65

2 SO –23.02 –30.07 –33.76 –37.45 –42.15 –44.83 –47.85 –57.92 –63.29 –66.64
NO –2.89 –12.28 –18.99b) –21.01 –30.07 –31.75b) –38.46b) –46.17 –51.88 –57.92
SIN –8.93 –13.96 –16.64 –21.34 –27.05 –31.07b) –33.76 –41.48 –47.85 –53.89a)

ß 3.47 3.47 3.47 3.47 3.47 3.47 3.47 2.65 3.47 3.47
3 SO –13.40 –27.67 –30.20 –29.10 –36.80 –36.80 –43.40 –43.40 –57.70 –48.00

NO –23.32 –23.32 –34.32b) –34.32 –47.11 –47.11b) –53.51 –60.65 –60.65 –60.65
SIN –10.03 –10.03 –21.03 –21.03 –21.03 –19.80 –38.50 –30.80 –52.80 –52.80
ß 3.47 2.65 3.47 2.65 3.47 1.76 3.47 1.76 3.47 3.47

4 SO –15.30 –20.00 –25.03 –33.09 –36.78 –37.79 –42.48 –45.17 –54.68 –54.68
NO –4.90 –11.28 –15.97b) –18.99 –23.69 –29.73b) –33.76b) –35.77 –41.14 –46.51
SIN –2.55 –5.23 –10.94 –15.30 –25.37 –30.07 –35.77 –40.13 –45.17 –47.85
ß 2.65 1.76 1.76 1.76 3.47 3.47 3.47 3.47 2.65 2.65

5 SO –6.30 –15.10 –21.70 –25.00 –28.30 –30.50 –31.90 –38.50 –41.01 –52.09
NO –8.70 –17.50 –20.80b) –24.30 –28.70b) –39.70b) –41.90 –47.40 –49.60 –50.70
SIN 5.68 0.26 –4.21 –11.91b) –17.41 –20.71 –20.71 –31.71 –33.91 –43.81
ß 2.65 2.65 2.65 2.65 2.65 2.65 1.76 2.65 1.76 2.65

6 SO –13.96 –20.34 –26.38 –27.72 –33.42 –36.44 –40.81 –45.17 –51.54 –54.23
NO –1.88 –9.26 –15.30b) –18.99 –26.38 –29.40 –34.09 –39.80b) –45.00 –60.00
SIN 1.14 –4.90 –9.60b) –15.97 –19.66 –25.70 –30.07 –33.76 –38.46 –44.83
ß 3.47 2.65 2.65 2.65 3.47 2.65 2.65 3.47 2.65 2.65

7 SO –0.61 –6.11 –13.81 –21.51 –29.21 –34.71 –36.91 –39.11 –43.51 –42.41
NO –11.00 –18.70 –24.20b) –29.70 –30.80 –34.10b) –36.30b) –37.40 –41.80 –44.00
SIN 9.90 2.20 –1.10 –6.60 –12.10 –15.40 –18.70 –25.30 –33.00 –34.10
ß 2.65 3.47 2.65 2.65 2.65 1.76 3.47 2.65 2.65 1.76

8 SO –10.36 –13.66 –20.78 –25.21 –29.15 –29.15 –37.27 –37.27 –40.22 –43.18
NO –13.42 –17.82b) –20.02b) –26.62 –31.02 –34.32b) –39.76b) –41.96 –50.33 –50.33
SIN –7.99 –10.92 –16.37 –21.51 –21.52 –28.66 –35.55 –41.95 –45.15 –50.31
ß 3.47 3.47 2.65 3.47 2.65 3.47 3.47 2.65 3.47 2.65

9 SO –10.39 –16.99 –21.39 –24.69 –27.99 –29.09 –31.29 –41.19 –37.76 –37.27
NO –16.21 –23.91 –30.51b) –38.21 –43.71b) –49.21b) –53.61 –59.11 –59.11 –61.31
SIN –7.00 –9.71 –15.86 –19.55 –23.49 –28.90 –35.55 –36.53 –39.98 –43.42
ß 3.47 3.47 2.65 3.47 3.47 3.47 3.47 3.47 3.47 3.47

10 SO –1.09 –9.89 –20.89 –21.99 –27.49 –28.59 –31.89 –35.19 –40.72 –43.42
NO –8.61 –11.91 –17.41b) –22.91 –26.21 –29.51 –31.71b) –35.01 –37.21 –40.51
SIN 15.15 4.56 –3.80 –6.02 –7.74 –12.17 –19.80 –19.55 –28.90 –30.91
ß 3.47 3.47 3.47 3.47 2.65 2.65 2.65 2.65 3.47 2.65

Repeated-measures analysis of variance (RM-ANOVA) revealed significant differences among the three listening situations for all input sound level (ISL), 
and further post-hoc analysis indicated that, in speech-in-noise conditions, subjects select significantly higher AMP values compared to speech-only and 
noise-only in all ISL levels except 90 dB where this was the case only in noise-only. 
AMP, amplification constant; LS, listening situation; SO, speech-only; NO, noise-only; SIN, speech-in-noise.
a)Not actually NO, but classified as NO. b)Not actually SO, but classified as SO.
a) and b) represent misclassified cases.
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Table 3. Results of the CMOS test between T1 setting and T3 setting using 10 speech-only sounds, 20 noise-only sounds, and 20 speech-in-
noise sounds (TS_2) 

Subject 1 2 3 4 5 6 7 8 9 10

Speech-only 2.20±0.79 1.00±1.56 0.90±1.37 1.10±1.29 1.00±1.94 1.00±1.49 1.70±1.16 1.50±1.43 2.00±0.47 1.80±1.48
Noise-only 1.30±0.98 0.15±1.93 0.55±0.94 0.15±1.14 0.30±1.30 –0.10±1.29 1.30±0.86 0.45±1.23 1.30±0.98 0.60±1.76
Speech-in-noise 0.40±1.23 0.35±1.76 0.50±1.24 0.40±1.23 0.55±1.73 0.20±1.44 0.65±0.88 0.40±1.79 0.80±1.24 0.80±1.28

Values represent the CMOS scores (higher score indicate the amount of preference of T3 setting over the other setting). 
CMOS, Comparison Mean Opinion Score.

Table 4. Results of the CMOS test between T2 setting and T3 setting using 10 speech-only sounds, 20 noise-only sounds, and 20 speech-in-
noise sounds (TS_2) 

Subject 1 2 3 4 5 6 7 8 9 10

Speech-only 0.80±1.32 0.80±1.32 –0.30±1.25 0.20±1.03 0.20±1.55 –1.00±0.82 2.10±0.74 0.10±0.99 –0.50±1.43 2.10±0.57
Noise-only 1.35±1.09 –0.25±0.97 –0.05±0.83 –0.05±0.76 0.80±0.89 –0.45±1.05 1.45±1.00 –0.10±1.45 –0.35±1.27 1.15±1.23
Speech-in-noise 0.20±1.11 –0.30±1.38 0.00±0.65 –0.30±0.66 –0.75±1.16 –0.45±1.05 –0.05±1.05 –0.15±0.75 –0.20±1.24 –0.55±1.15

Values represent the CMOS scores (higher score indicate the amount of preference of T3 setting over the other setting). 
CMOS, Comparison Mean Opinion Score.

values in speech-in-noise were generally higher than those in 
noise-only and speech-only situations under the same ISL, 
which implies that the listener prefers to reduce the volume of 
the device when there is no interesting sound (noise-only) or 
there is no acoustic interference (speech-only) to reduce the per-
ceptual discomfort from the noise. In contrast, when an interest-
ing sound is mixed with environmental interference, the listener 
usually prefers to increase the volume of the device to increase 
the intelligibility of the interesting sound while enduring the 
perceptual annoyance from the loud interference. This prefer-
ence, though it was derived from normal-hearing subjects, dem-
onstrates the high potential for LS classification to benefit hear-
ing-impaired subjects. Furthermore, when considering the user-
selected β values in speech-in-noise situations under different 
ISL condition, the participants all preferred different β settings 
(e.g., subjects 1, 2, 6, 8, 9, and 10 selected 2.65 and 3.47, subject 
5 selected 1.76 and 2.65, and subjects 3, 4, and 7 selected 1.76, 
2.65, and 3.47) with no apparent pattern. Additionally, partici-
pants sometimes preferred different β values as the ISL condi-
tion changed, which further demonstrates the necessity of user-
adjustable noise-reduction algorithm (adjusting the DNS) for the 
trainable hearing aid. These results demonstrate that all ISL, LS, 
and DNS conditions can affect the results of training and as a 
result, affect the performance (personal satisfaction) of the de-
vice in real-life situations, which justifies the incorporation of all 
of those factors in the device operation. 

In the CMOS test, the T3 setting showed significantly im-
proved sound quality over the T1 setting [21]; however, the T3 
setting showed no significant difference compared to the T2 set-
ting despite the difference in parameter setting between T2 and 
T3 settings. These results may be associated with the fact that 
the LS classifier used in the current study occasionally misclassi-
fied noise-only (babble) situations as speech-only situations (Ta-
ble 2), which may have introduced error to the results. In addi-

tion, the output of the LS classifier varied depending on when 
the user selection was made during the training phase (e.g., an 
identical babble noise could be classified as noise-only or 
speech-only, depending on the timing of the user selection), 
which greatly affected the classification accuracy among the par-
ticipants. The CMOS test results between T2 and T3 would be 
improved by enhancing the performance of the LS classifier [5]. 
For example, looking at only the speech-only situation (which 
was least affected by the misclassification) in Table 4, T3 showed 
improved CMOS score (on average) in a majority of the sub-
jects, which indicates the potential benefit of the proposed algo-
rithm. In the current study, the proposed T3 setting resulted in 
CMOS scores 1.42, 0.60, and 0.51 (on average) higher than the 
T1 setting, in speech-only, noise-only, and speech-in-noise situa-
tions, respectively. The proposed T3 setting also resulted in 
scores 0.45 and 0.35 higher than the T2 setting, in speech-only 
and noise-only situations, respectively (scores were lower only 
in the speech-in-noise situation), which is consistent with the re-
port by Chalupper et al. [4], which suggests that the classifier 
control training achieved more comfortable loudness ratings (in 
about 72%–88% of situations) than did the gain control train-
ing (in about 68%–82% of situations) on average. 

There are three scenarios that may cause abnormal operation 
of the proposed algorithm in normal-operation mode. First, 
when the ambient sound level changes abruptly (by more than 5 
dB), the output of the ISL detector may not detect the change 
as quickly because it uses the most recent 2.5 seconds of data to 
calculate (i.e., the input sound data from the previous track is 
temporarily dominant over the new one). As a result, the ISL 
detector may display a sound level with less than 5 dB differ-
ence (even though the change in environment was permanent, 
not temporary), and hence the algorithm assumes the environ-
ment did not change and proceed to implement incorrect inter-
nal parameters instead of refraining from an update for one in-
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terval as intended. For example, note the errors in the 1st re-
cording of 65 dB shown in Fig. 2A, as well as the errors in the 
1st recording of 65 dB and the 1st recording of 50 dB shown in 
Fig. 3A. Second, the LS classifier may misclassify the category of 
the input sounds during training or during normal-operation 
mode, which would negatively influence the database, thereby 
negatively affecting the auto-tuned internal parameters. For ex-
ample, as shown in Figs. 2B, 3B, the 55 dB babble noise sound 
was misclassified as speech-only during the training phase (in 
other words, the parameters for 55 dB noise-only were recorded 
as 55 dB speech-only, which resulted in an absence of data for 
55 dB in the noise-only database). As a result, the parameters 
for 55 dB babble noise was applied to 55 dB speech-only in 
normal-operation mode, and the parameters for the 55 dB bab-
ble noise-only situation were determined by interpolation of the 
surrounding values, 50 dB and 60 dB noise-only parameters. 
The errors in 55 dB (babble noise) and 50 dB (car noise) shown 
in Fig. 3B were also caused by this scenario. Third, the first and 
second error-inducing scenarios may occur simultaneously, as 
shown in Fig. 3C: the 1st recording of 80 dB (babble noise) and 
the 1st recording of 75 dB (car noise).

There are several limitations in the current study. First, during 
the subjective evaluations, we considered only one user-control-
lable noise reduction algorithm: β-adjustable beamforming. 
However, in commercial devices, additional algorithms may be 
required to achieve environment-adaptive adjustment, such as 
single-microphone-based noise-reduction algorithms using spec-
tral subtraction and Wiener filtering [17,22]. To modify the cur-
rently implemented algorithm to have a more conventional 
hearing aid algorithm structure, it is necessary to include addi-
tional user-controllable algorithms, such as single-microphone-
based noise-reduction, to better reflect users’ personal prefer-
ences for various degrees of ambient noise suppression and 
speech distortion. Second, wide dynamic-range compression 
was bypassed during the verification process because only nor-
mal-hearing subjects participated in the subjective test. Howev-
er, in actual hearing aids, the use of wide dynamic-range com-
pression is indispensable because it (with an additional fitting 
formula [23]) compensates for the threshold shift in the audio-
gram caused by damage to the inner and outer hair cells, which 
may also affect the personal parameter preferences set during 
the training phase [4,13]. For an implemented algorithm to be 
suitable for hearing-impaired persons, wide dynamic-range com-
pression with appropriate band gains for individual hearing-im-
paired subjects should be added before the output volume ad-
justment, and then, the procedures described in the current 
study should be performed. In fact, compression learning 
achieved the largest comfortable loudness ratings, in about 
76%–91% of situations, in the report of Chalupper et al. [4]. 
Third, the amount of time spent in the training phase was rela-
tively short; continuous training of weeks or months after the 
initial training would be ideal to more accurately verify the ef-

fect of user training [24]. In addition, according to previous re-
ports, the final parameter settings can be affected by the starting 
point of the training [22]. The effect of such initial parameter 
settings on the proposed algorithm should also be investigated 
in future works. Furthermore, in the current study, each subject 
performed the training phase with a one-signal-for-each-condi-
tion protocol. In real circumstances, the personal preferences in 
a specific condition can differ from time to time depending on 
the variations in emotional and circumstantial states of the de-
vice user. To deal with such ambiguous situations, in the current 
study, the algorithm was designed to override the previous pa-
rameter settings with the most recent parameter setting for the 
same exact environment. We based this on the assumption that 
the device user would adapt and become more familiar with the 
device, and as this happens, preference settings would also 
adapt. However, this overriding protocol may not always be ap-
propriate in all situations; therefore, for example, it may be 
more effective to save all duplicated user selections for the same 
condition in the database, and then determine the output pa-
rameters by one of the following methods: (1) averaging the 
saved values or (2) giving different weights to the saved values 
in accordance with the recorded time, and averaging the weight-
ed values. These approaches should also be considered in future 
studies. Finally, due to limited number of hearing-impaired pa-
tients available to participate in this study, normal-hearing per-
sons participated in this study instead, which is the limitation of 
this study. Though this is less than ideal, the positive results ob-
served with normal-hearing participants are highly likely to af-
fect hearing-impaired persons in a similar way.

In conclusion, as the experimental results showed, the pre-
ferred settings for each of the ISL, LS, and DNS conditions were 
different among subjects, which justifies the incorporation of 
more environmental factors during the training phase for more 
dedicated device individualization. Based on the result of this 
study, it is very likely for greater personal satisfaction to be 
achieved under various ambient situations by reflecting individ-
ual preference to a more extensive acoustic conditions to further 
personalize hearing aid control.
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