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Abstract
Background: Cellulose acetate phthalate (CAP), a promising candidate microbicide for
prevention of sexual transmission of the human immunodeficiency virus type 1 (HIV-1) and other
sexually transmitted disease (STD) pathogens, was shown to inactivate HIV-1 and to block the
coreceptor binding site on the virus envelope glycoprotein gp120. It did not interfere with virus
binding to CD4. Since CD4 is the primary cellular receptor for HIV-1, it was of interest to study
CAP binding to HIV-1 complexes with soluble CD4 (sCD4) and its consequences, including changes
in the conformation of the envelope glycoprotein gp41 within virus particles.

Methods: Enzyme-linked immunosorbent assays (ELISA) were used to study CAP binding to HIV-
1-sCD4 complexes and to detect gp41 six-helix bundles accessible on virus particles using
antibodies specific for the α-helical core domain of gp41.

Results: 1) Pretreatment of HIV-1 with sCD4 augments subsequent binding of CAP; 2) there is
synergism between CAP and sCD4 for inhibition of HIV-1 infection; 3) treatment of HIV-1 with
CAP induced the formation of gp41 six-helix bundles.

Conclusions: CAP and sCD4 bind to distinct sites on HIV-1 IIIB and BaL virions and their
simultaneous binding has profound effects on virus structure and infectivity. The formation of gp41
six-helical bundles, induced by CAP, is known to render the virus incompetent for fusion with
target cells thus preventing infection.

Background
Cellulose acetate phthalate (CAP) is a promising microbi-
cide candidate for prevention of infection by sexually
transmitted disease (STD) pathogens, including HIV-1
[1–7]. CAP inactivates HIV-1 and blocks the coreceptor
binding site on the virus envelope glycoprotein gp120,
while leaving the site for the primary cellular receptor

CD4 accessible [8,9] Soluble CD4 (sCD4) was shown to
inhibit HIV-1 infection by two mechanisms: reversible
blockage of virus binding to receptors, and irreversible in-
activation of virus infectivity [10]. Since CAP and sCD4
bind to distinct domains on the HIV-1 envelope, it was of
interest to determine whether or not these two ligands af-
fect virus infectivity synergistically as do other combina-
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tions of anti-HIV-1 drugs and sCD4 [11,12] Binding of
sCD4 leads to conformational changes in gp120 [13–17].
Binding of gp120 to coreceptors CXCR4 and CCR5, re-
spectively, triggers additional conformational changes in
HIV-1 envelope glycoproteins [18,19] For these reasons it
was of interest to determine whether a) pretreatment of
HIV-1 with sCD4 would affect subsequent binding of CAP
to virus particles, and b) CAP binding to virus particles in
the presence or absence of sCD4 would elicit conforma-
tional changes which could affect HIV-1 infectivity. Such
studies were expected to elucidate further the mechanisms
involved in the antiviral/virucidal activity of CAP and to
contribute to the potential development of microbicides
combining two or more anti-HIV-1 compounds with dis-
tinct target sites.

Methods
Reagents
The following monoclonal antibodies (mAbs) were used:
NC-1, a mouse mAb raised against the gp41 six-helix bun-
dle from HIV-1 IIIB [20]; and anti-p24 mAb (ImmunoDi-
agnostics, Inc., Woburn, MA). Rabbit antibodies against
the gp41 six-helix bundle were prepared as described [21].
Rabbit antiserum against HIV-1 IIIB gp120 was prepared
as described [22] and shown to cross-react with HIV-1 BaL
(own unpublished data). Recombinant soluble CD4
(sCD4) was from Genentech Inc., South San Francisco,
CA. Recombinant HIV-1 IIIB gp120, biotinylated gp120
and biotinylated sCD4 were from ImmunoDiagnostics,
Inc., Woburn, MA. Purified recombinant protein A/G was
from Pierce, Rockford, IL. Pelletted, 1000-fold concen-
trates of HIV-1 IIIB (6.8 × 1010 virus particles/ml) and BaL
(2.47 × 1010 virus particles/ml) [23] were from Advanced
Biotechnologies, Inc., Columbia, MD. Biotin labeled goat
anti-mouse IgG and anti-rabbit IgG were from Roche Di-
agnostics Corporation, Indianapolis, IN. Chicken serum
was from OEM Concepts, Toms River, NJ. Antiserum to
phthalate was prepared by immunization of rabbits with
phthalic anhydride treated rabbit serum albumin [24].
Horseradish peroxidase (HRP) labeled streptavidin was
from Zymed, South San Francisco, CA. HRP was quanti-
tated using a kit from Kirkegaard & Perry Laboratories,
Inc., Gaithersburg, MD. Enzyme linked immunosorbent
assay (ELISA) kits for the HIV-1 p24 antigen were from
Beckman Coulter, Inc., Miami, FL. The tyrosine-sulfated
peptide from CCR5 [25]; {S-peptide; MDYQVSSPIY-
DINYYTSEPSQK; (Y = sulfotyrosine)} was from American
Peptide, Sunnyvale, CA. The corresponding control pep-
tide with tyrosines instead of sulfotyrosines, and N36
(SGIVQQQNNLLRAIEAQQHLLQLTVWGIKQLQARVL)
and C34 (WIEWDREINNYTSIIYSLIEESQN-
QQEKNEQELL) peptide constituents of the gp41 core
[20,21] of HIV-1 BaL were from AnaSpec, Inc., San Jose,
CA. CAP was a gift from Eastman Chemical Company,
Kingsport, TN. H9 cells chronically infected with HIV-1 II-

IB, and PM1 cells were obtained from the AIDS Research
and Reference Reagent Program contributed by Drs. R.
Gallo, P. Lusso and M. Reitz, respectively.

Inhibition of HIV-1 infection
HIV-1 IIIB (100 TCID50) in the presence or absence of
graded concentrations of virus inhibitors, CAP and sCD4,
respectively, in RPMI-1640 medium containing 10% fetal
bovine serum (FBS) were mixed with MT-2 cells (104

cells/well) and placed into 96-well polystyrene plates. The
mixtures were incubated at 37°C overnight. On the 2nd

day, culture supernatants were removed from each well
and fresh medium was added. On the 4th day, culture su-
pernatants were collected and tested for p24 antigen by
ELISA. Similar experiments were done with HIV-1 BaL
(2.5 × 105 virus particles), except that PM1 cells [26] were
used instead of MT-2 cells.

The inhibitory activity of CAP and sCD4 in combination,
against HIV-1 infection was determined as described
above. The CAP:sCD4 weight ratios in the combinations
were 10:1 and 2:1 for HIV-1 IIIB and HIV-1 BaL, respec-
tively. The 50% inhibitory concentrations (IC50) and the
combination index values (CI) were calculated as previ-
ously described [27] using a computer program (CalcuS-
yn) kindly provided by Dr. T. C. Chou (Sloan-Kettering
Cancer Center, New York). A CI value < 1 indicates syner-
gy and that of > 1 indicates antagonism. The compound
dose reductions were calculated based on the IC50 value
for CAP and sCD4 used alone or in combination [27].

To measure the virucidal activity of CAP/sCD4 combina-
tions, treated and untreated purified HIV-1 IIIB (3.4 × 108

virus particles) (unlike in the experiments described in an
earlier report [8] where infectious tissue culture medium
was used instead), were serially diluted 2- to 256-fold in
RPMI-1640 medium containing 10% FBS, mixed with
MT-2 cells and placed into 96-well polystyrene plates. Vi-
rus replication was monitored by measuring p24 antigen
as described above. Similar experiments were done with
HIV-1 BaL (2.5 × 108 virus particles), except that PM1 cells
were used instead of MT-2 cells. The percentage of residual
infectivity after CAP/sCD4 treatment was calculated from
calibration curves relating absorbance to virus dilutions of
untreated viruses.

Enzyme-linked immunosorbent assays (ELISA)
For virus capture assays, wells of 96-well polystyrene
plates (Immulon II; Dynatech Laboratories Inc., Chantil-
ly, VA) were coated either with CAP (1 µg/well). or with
mAb NC-1 [20,21]. For coating with CAP, a solution of
CAP (100 µl; 10 µg/ml in 0.05 M acetate pH 6.0) was add-
ed to the wells. After incubation overnight at 4°C, the
wells were washed and postcoated for 1 h at 20°C with bo-
vine serum albumin (BSA) and gelatin (1 and 0.1 mg/ml
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in 0.05 M acetate pH 6.0). For coating with antibodies,
wells were first coated with protein A/G (1 µg/well) in 0.1
M Tris buffer, pH 8.8 for 2 h at 20°C, followed by mAb
NC-1 or normal mouse IgG (= control wells) {1 µg/well;
diluted in phosphate buffered saline (PBS)} for 1 h at
20°C. Coating with the N36/C34 peptide complexes (0.01
to 10 µM) was done under conditions described for pro-
tein A/G. Subsequently the wells were washed and post-
coated with BSA and gelatin as described above, except
that these proteins were dissolved in 0.14 M NaCl, 0.01 M
Tris, pH 7.0 (TS). Chicken serum (10%) in PBS (Ch-PBS)
was used instead in experiments with HIV-1 BaL to sup-
press binding of this virus to control wells. The wells were
washed with TS and stored at 4°C. HIV-1 virus particles
suspended in diluents and treated as indicated in legends
to Figs. 2, 3, 5 were added to the wells for 5 h at 4°C. Sub-
sequently the wells were washed 10× with ice cold PBS or

1:50 anti-p24 mAb in Ch-PBS for HIV-1 BaL to minimize
the contribution of p24 antigen not associated with virus
particles to absorbance readings corresponding to p24 an-
tigen released from detergent treated virus. The washed
wells with bound virus particles were then treated with
lysis buffer (1% Nonidet P40 {NP40}, 100 µg/ml BSA in
PBS) for 30 min at 37°C. The supernatants were removed
and tested for p24 antigen using ELISA kits from Beckman
Coulter, Inc. following the manufacturer's protocol.

To measure the binding of biotinyl-sCD4 and biotinyl-
gp120 (in the presence and absence of sCD4), respective-
ly, to CAP, the biotinylated proteins were added to CAP
and control postcoated wells without CAP, respectively, at
dilutions shown in Fig. 1. The binding of these biotinylat-
ed proteins to the wells, after washing with TS, was deter-
mined by adding HRP-streptavidin (1 µg/ml) in TS
containing 0.25% gelatin and 0.05 % Tween 20 for 30
min at 37°C. The wells were washed and bound HRP was
detected using the test kit from Kirkegaard & Perry follow-
ing the manufacturer's protocol, and the absorbance was
read at 450 nm.

The sandwich ELISA for the gp41 six-helix bundle was per-
formed as described [21]. Treated and control virus prep-
arations were incubated with lysis buffer for 30 min at
20°C and then added to wells coated with rabbit polyclo-
nal antibodies to the gp41 core. In control experiments,
CAP alone (5 mg/ml in lysis buffer) was added to the
wells. After incubation at 4°C overnight, binding of six-
helix bundles was determined from subsequent binding
of mAb NC-1, which was added at 1 µg/ml in PBS/1%
BSA/1% gelatin (100 µl/well) for 1 h at 37°C. Subsequent-
ly the wells were washed three times with PBS/0.05%
Tween 20 and biotin labeled anti-mouse IgG (100 µl/well;
125 ng/ml diluted in PBS containing 1% dry fat-free milk)
was added. After incubation for 1 h at 37°C, the wells were
washed as described above and HRP-streptavidin (125 ng/
ml in PBS containing 10% goat serum; 100 µl/well) was
added. After incubation for 1 h at 37°C, the wells were
washed six times with PBS/0.05% Tween 20. HRP was
quantitated as described above.

To exclude the remote possibility that mAb NC-1 reacted
with CAP, serial two-fold dilutions (0.25 to 8 µg/ml) of
the mAb and of control mouse IgG, respectively (each at
16 µg/ml in PBS-BG) were added to CAP coated or CAP-
gp120 coated wells for 1 h at 37°C. The wells were washed
and bound IgG was quantitated as described above for the
sandwich ELISA. CAP-gp120 wells were prepared by coat-
ing first with HIV-1 IIIB gp120 under conditions de-
scribed above for protein A/G, except that the pH was 8.0
instead of 8.8. Subsequently, CAP was added to the wells
as described above. In control experiments, serial dilu-
tions (1/200 to 1/1,600) of rabbit anti-phthalate antise-

Figure 1
Binding of biotinyl-gp120, biotinyl-sCD4 and biotinyl-gp120-
sCD4 complexes to CAP coated wells. Graded quantities of
biotinyl-gp120 (indicated on the abscissa) and of biotinyl-
gp120-sCD4 complexes were added to CAP coated and con-
trol wells. The complexes were prepared by mixing 1 µg of
biotinyl-gp120 with 500 ng of sCD4 for 30 min at 20°C in
PBS. To determine the effect of sCD4/gp120 ratios on gp120
binding to CAP, constant amounts (500 ng) of biotinyl-gp120
were mixed with graded quantities of sCD4 (0 to 1,000 ng)
(insert) and the mixtures were further handled as described
above. Binding of biotinyl-gp120 did not increase at sCD4/
biotinyl-gp120 weight ratios >1 (data not shown). In control
experiments, graded quantities of biotinyl-sCD4 in the
absence of gp120 were added to the wells. After incubation
at 4°C overnight, the wells were washed and bound bioti-
nylated proteins were detected from subsequent binding of
HRP-streptavidin. Absorbance corresponding to biotinylated
proteins bound to control wells was in the range of 0–0.026
and was substracted from the absorbance corresponding to
biotinylated proteins bound to CAP coated wells.
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rum and of normal rabbit serum, respectively (each
diluted 100-fold in PBS-BG) were added to the wells.
Bound rabbit IgG was quantitated using biotinylated goat
anti-rabbit IgG.

Shedding of gp120 from virus particles
Preparations of purified HIV-1 IIIB and BaL, respectively,
were incubated for 5 min at 37°C in the presence or ab-
sence of CAP (final concentration 5 mg/ml). Control
preparations were not exposed to 37°C. Virus particles
and released gp120 were separated by centrifugation as
described [28]. The virus containing pellets and superna-
tant fluids were assayed by an ELISA allowing gp120 de-
termination in the presence of CAP. Wells of polystyrene
plates were coated with protein A/G, followed by polyclo-
nal rabbit anti-gp120 (diluted 500-fold) under conditions
described above for virus capture assays. Serial twofold di-
lutions in PBS-BG of preparations containing gp120 were
added to the wells. After 4 h at 20°C, the wells were
washed and bound gp120 was detected by addition of bi-
otinyl-sCD4 (1 µg) followed by HRP-streptavidin as de-
scribed above. The amount of gp120 in the virus pellets
and the supernatant fluids was calculated from calibration
curves relating absorbance readings to gp120 dilutions.
All determinations were done in triplicate.

Molecular modeling: Docking of CAP on the gp41core 
structure
The acetylated and phthaloylated cellotetraose unit
(CTAP) composed of four 1,4-linked β-D-glucose units,
which is a representative part of CAP was created in Quan-
ta 2000 [29] as described before [8]. CTAP was minimized
by the steepest descent method followed by the adopted
basis Newton-Raphson (ABNR) method. The energy dif-
ference of 0.05 Kcal/mol between two successive struc-
tures during both minimization steps was used as the
termination criterion.

The docking simulations of CTAP were performed using
the DockVision program [30] on the entire surface of the
gp41 core structure {The X-ray crystal structure of the
gp41 core, 1aik, was retrieved from the protein databank
[http://www.rcsb.org] }. A grid box (125 × 125 Å × 125 Å)
was created to cover the entire gp41 core surface for CTAP
to dock. The default forcefield (Research Potential Func-
tion) was used to perform 1000 Monte Carlo runs for
docking simulations. Both CTAP and the gp41 core struc-
ture were kept rigid during docking. Intermolecular ener-
gy criteria were used to select the lowest energy docked
CTAP.

Electrostatic potential maps of gp120 and the gp120-CD4 
complex
Electrostatic potentials were calculated using a Poisson-
Boltzmann solver included in the GRASP program [31].
All default parameters were used. The electrostatic poten-
tial maps are shown on the accessible surface of gp120
and the gp120-CD4 complex.

Figure 2
Binding of HIV-1 and HIV-1-CD4 complexes to CAP coated
wells. Suspensions (50 µl) of purified HIV-1 IIIB (6.8 × 109

virus particles/ml) and of HIV-1 BaL (2.5 × 109 virus particles/
ml), respectively, in 0.1 M sodium acetate pH 7.0 were mixed
with 5 µg of sCD4 and incubated for 30 min at 20°C. sCD4
was not added to control virus preparations. The suspen-
sions were cooled on ice and polyethylene glycol 6000 (PEG)
was added to a final concentration of 3% to separate HIV-1
from sCD4 (which does not precipitate in 3% PEG). After 90
min at 4°C, the mixtures were centrifuged at 10,000 rpm,
the supernatant fluids removed and the pellets washed once
with 3% PEG in PBS containing 10 mg/ml BSA. The pellets
were resuspended in sodium acetate buffer pH 7.0 containing
25 µg/ml BSA, and serial dilutions (indicated on the abscissa)
were added to CAP coated and control wells, respectively.
After incubation for 5 h at 4°C, the supernatant fluids were
removed, the wells washed, and the bound virus quantitated
by ELISA for p24 antigen. The amount of HIV-1 IIIB and HIV-
1 BaL bound to control wells was ≤ 2.1% and ≤ 13%, respec-
tively, of that bound to CAP coated wells. All experiments
were done at least in triplicate.
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Results
Enhancement of CAP-HIV-1 binding by CD4
Earlier studies [8] indicated that CAP binding to the enve-
lope glycoprotein gp120 and to HIV-1 virus particles, re-
spectively, did not interfere with their subsequent
association with sCD4. Thus, it would be expected that
CAP would not inhibit the attachment of HIV-1 to target
cells and would block only subsequent steps obligatory
for HIV-1 infection initiated by engagement of CXCR4
and CCR5 coreceptors, respectively. The latter event was
shown to be blocked by CAP [8] and has been considered
the basis for the virus inhibitory and virus inactivating
properties of CAP at neutral pH. However, it has not been

determined whether or not occupancy of CD4 binding
sites within gp120 would affect subsequent interactions
with CAP. To answer this question, the binding of gp120
and gp120-sCD4 complexes, respectively, to immobilized
CAP was studied. Results shown in Fig. 1 indicated that
sCD4 enhanced gp120-CAP binding. Maximum enhance-
ment was observed at sCD4/gp120 weight ratios of ≥ 0.6
(Fig. 1 insert), corresponding to a molar ratio of ≥ 1.2
[32], in agreement with the observation that gp120-CD4
complexes consist of one molecule each of CD4 and
gp120 [16]. Biotinyl-sCD4 in the absence of gp120 did
not bind to CAP. Similarly, pretreatment of HIV-1 with
sCD4 resulted in subsequent increased binding of virus
with CAP, the effect being much more pronounced with
HIV-1 BaL in comparison with HIV-1 IIIB (Fig. 2).

Synergism between CAP and sCD4 in inhibiting HIV-1 in-
fection
Since HIV-1 can bind CAP and sCD4 simultaneously, and
the binding of CAP is enhanced in the presence of sCD4,
it was of interest to determine whether these two ligands
act on HIV-1 cooperatively, resulting in synergism of their
antiviral effects. This indeed was observed (Table 1 and 2,
Fig. 3). CAP and sCD4 synergistically inhibited infection
by HIV-1 IIIB (Table 1) and HIV-1 BaL (Table 2). A similar
synergism was observed for virucidal activity against HIV-
1 IIIB (Fig. 3) but only additive effects were found for HIV-
1 BaL (in the absence of sCD4, ED50 for CAP = 1.49 ± 0.38
mg/ml; in the presence of sCD4 [100 µg/ml], which
caused an 1.85-fold decrease of infectivity, ED50 = 1.39 ±
0.18 mg/ml for residual infectivity).

Treatment of HIV-1 with CAP leads to induction of gp41 
six-helix bundles
Earlier studies [8], in which the binding of CAP treated
and untreated virus with antibodies specific for distinct re-
gions on the envelope glycoproteins gp120 and gp41 was
studied, indicated that CAP had either no effect or caused
decreased binding with antibodies against several pep-
tides from gp120 but only against a single peptide, 557–
586, from gp41 (see Discussion). It was intended to ex-
pand these studies to mAb NC-1, specific for the gp41 six-
helix bundle [20]. Results of preliminary studies indicated
that CAP did not interfere with the six-helix bundle for-
mation from constituent peptides derived from near the
N- and C-terminus of the gp41 ectodomain [20]; (own
unpublished data). Surprisingly, and unlike with mAb
2F5 [8] specific for the C-terminal region of the gp41 ec-
todomain [33], CAP treatment enhanced the binding of
both HIV-1 IIIB and HIV-1 BaL to mAb NC-1, reacting
with gp41 six-helix bundles from both HIV-1 IIIB and BaL
(Fig. 4), suggesting the formation of these structures with-
in virus particles as a result of CAP treatment (Fig. 5).
Treatment with both CAP and sCD4 further enhanced the
expression of the six-helix bundles in the case of HIV-1 Bal

Figure 3
Synergism between CAP and sCD4 for virucidal activity
against HIV-1 IIIB. sCD4 was added to 50 µl of HIV-1 IIIB (6.8
× 109 virus particles/ml) in PBS. After 30 min at 20°C, CAP
was added to final concentrations between 0 and 1250 µg/ml
and the mixtures were incubated for 5 min at 37°C. CAP at
the same concentrations described above was also added to
virus not pretreated with sCD4. Virus suspensions were put
on ice and PEG was added to a final concentration of 3% to
separate HIV-1 from CAP and sCD4. After 90 min at 4°C,
the mixtures were centrifuged at 10,000 rpm, the superna-
tant fluids removed and the pellets washed twice with 3%
PEG in PBS containing 10 mg/ml BSA. The final washed pel-
lets were resuspended in tissue culture medium, and serial 2-
fold dilutions in the same medium were added to MT-2 cells.
Infection was monitored by ELISA for p24 antigen. The gray
horizontal line corresponds to virus inactivation (80.2 ± 1.3%
of residual infectivity) caused by treatment with sCD4 in the
absence of CAP. All experiments were done at least in tripli-
cate.
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(Fig 5B), but not in the case of HIV-1 IIIB (Fig 5A). sCD4
alone was less effective in enhancing the expression of the
six-helix bundles. Treatment of neither recombinant
gp160 or the gp41 C-peptide with CAP resulted in gener-
ation of epitopes recognized by mAb NC-1 (data not
shown).

To exclude the remote possibility that mAb NC-1 reacted
with CAP or protein-bound CAP, and that this, rather
than binding to six-helix bundles, would lead to results
shown in Fig. 5, the binding of the mAb to CAP coated
wells was investigated. No significant binding of mAb
NC-1 and of control mouse IgG, respectively, to wells
coated by CAP directly or to CAP bound to HIV-1 IIIB
gp120 was observed. On the other hand, anti-phthalate
antibodies reacted with both forms of immobilized CAP
(Fig. 6). These results support the conclusions from results
in Fig. 5.

Engagement of the gp120 coreceptor binding site with a
tyrosine sulfated peptide from the N-terminus of the core-
ceptor CCR5 [25], shown to inhibit infection by CCR5-de-
pendent, but not CXCR4-dependent, HIV-1 isolates, was
sufficient to increase the expression of the gp41 six-helix
bundles in HIV-1 BaL virus particles (Fig. 7). A CCR5 con-
trol peptide the tyrosines of which were not sulfated did

not have this effect. Analogous experiments with HIV-1
IIIB were not performed since there are no published data
concerning the biological properties of tyrosine sulfated
peptides from the N-terminus of CXCR4.

In the experiments described above evidence for the for-
mation of gp41 six-helix bundles was obtained from cap-
ture of CAP, CD4 and CCR5 S-peptide treated virus
particles, respectively, onto wells coated with mAb NC-1.
This assay is equivalent to an immunoprecipitation assay
with solid phase mAb NC-1. In order to provide further
evidence for the induction of the gp41 six-helix bundles
by the distinct ligands binding to the HIV envelope, the
newly formed structures in virus lysates were also quanti-
tated by a sandwich ELISA [21]. The results not only une-
quivocally confirmed the induction of gp41 six-helix
bundle structures by sCD4, CAP and the S-peptide from
CCR5, but also provided evidence that these structures
were undetectable in untreated virus particles (Fig. 8).
CAP (0.078 to 10 mg/ml) in the absence of virus particles
provided negative results in this assay. The CCR5 peptide
lacking sulfated tyrosines did not induce the six-helix
bundles. Thus, it seems likely that the detection of gp41
six-helix bundles in untreated HIV-1 using the virion cap-
ture assay was due to their spontaneous formation during
prolonged incubation of HIV-1 in these tests. The six-helix
bundles were also induced by heating (10 min at 60°C)
HIV-1 virus particles (Fig. 8).

In summary, blocking by CAP of the coreceptor binding
sites on the virus envelope glycoprotein gp120 within
HIV-1 virus particles appears to induce conformational
changes in gp41 leading to the formation of six-helix bun-
dle structures.

Shedding of gp120 from virus particles
It was reported that treatment of HIV-1 gp120/gp41 enve-
lope glycoprotein oligomers with sCD4 lead to shedding
of gp120-sCD4 complexes concomitant with increased ex-
posure of some cryptic epitopes on gp41 [13,34,35].
Therefore, it was of interest to determine whether or not
shedding of gp120 from virus particles was required for
the CAP induced exposure of binding sites for mAb NC-1
on gp41. Treatment of HIV-1 IIIB and BaL with CAP did
not decrease the level of virus-associated gp120 in com-
parison with control virus preparations (Table 3). The re-
sults agree with the half life of 40 h for virus associated
gp120 in the course of spontaneous gp120 shedding from
HIV-1 HXB3 at 37°C [36] and the small sCD4 induced re-
lease of gp120 within 5 min at 37°C [37]. Thus gp120
shedding was not a prerequisite for the formation of gp41
six-helix bundles.

Figure 4
Immunological cross-reactivity between six-helix bundle
structures derived from HIV-1 IIIB and BaL. Serial two-fold
dilutions of mAb NC-1, raised against HIV-1 IIIB gp41 six-
helix bundles, were added to wells coated with the respec-
tive N36/C34 peptide complexes [20,21] and binding of the
IgG antibodies was determined as described in Methods.
Normal mouse IgG was used in control experiments instead
of mAb NC-1. Dilutions of the respective gp41 six-helix bun-
dles were also tested in a sandwich ELISA (insert). The
absorbance for controls in the absence of gp41 bundles was
0.
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Discussion
Earlier studies [8] indicated that CAP treated HIV-1 parti-
cles have their coreceptor, i.e. CXCR4 and CCR5, binding
sites obstructed, while sites involved in association with
CD4 appeared unaffected. This suggested that HIV-1

could bind CD4 and CAP at the same time, independent-
ly. Since association with CD4 induces conformational
changes in the HIV-1 envelope glycoprotein gp120
[14,16,17], it was of interest to determine: (a) whether
CD4 binding to HIV-1 would affect subsequent associa-
tion of the virus with CAP and (b) the consequences of
both CD4 and CAP binding to virus particles. First, it was
found that pretreatment of gp120 with sCD4 enhanced
subsequent binding with CAP (Fig. 1). This could be as-
cribed to conformational changes in gp120, to the con-
cealment of surface areas with the greatest negative charge
on gp120 by CD4 [16], (Fig. 9), which could diminish the
electrostatic attraction between gp120 and negatively
charged CAP, or to additional CAP binding sites on the
CD4 portion of gp120-sCD4 complexes. The binding of
HIV-1 with CAP was similarly enhanced by pretreatment
with sCD4 (Fig. 2), the effect being much more pro-
nounced with the R5 virus, HIV-1 BaL, in comparison
with the X4 virus, HIV-1 IIIB. These observations may be
related to the recognized role of CD4 in inducing confor-

Figure 5
Treatment of HIV-1 with CAP enhances the expression of
binding sites for mAb NC-1. Purified HIV-1 IIIB (6.8 × 109

virus particles) and HIV-1 BaL (2.5 × 109 virus particles),
respectively, each in 100 µl PBS were incubated for 30 min at
20°C in the presence (5 µg) or absence of sCD4. Each sam-
ple was divided into two equal portions. CAP in 0.1 M ace-
tate pH 6.0 was added to one aliquot (final concentration 5
mg/ml). An equivalent amount of acetate without CAP was
added to the second aliquot. After incubation for 5 min at
37°C, the suspensions were cooled on ice and PEG was
added to a final concentration of 3% to separate HIV-1 from
sCD4 and CAP. After 90 min at 4°C, the mixtures were cen-
trifuged at 10,000 rpm, the supernatant fluids removed and
the pellets washed once with 3% PEG in PBS containing 10
mg/ml BSA. The final washed pelleted viruses were sus-
pended in PBS containing 100 µg/ml of each BSA and gelatin,
and dilutions (indicated on the abscissa) in the same buffer
were added to mAb NC-1 coated and control wells. After 5
h at 4°C, the wells were washed and bound virus was quanti-
tated by ELISA for p24 antigen. The amount of HIV-1 IIIB and
HIV-1 BaL, respectively, bound to control wells was ≤ 2.1%
and ≤ 6.1% of that bound to mAb NC-1 coated wells. All
experiments were done at least in triplicate.
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Table 1: Synergism between CAP and sCD4 in inhibiting infection 
by HIV-1 IIIB.

% Inhibition CI* Concentrations for inhibition of infection
CAP (µg/ml) sCD4 (µg/ml)

Alone Mix Alone Mix

50 0.29 7.10 1.05 0.72 0.11
70 0.39 10.59 2.01 1.02 0.20
90 0.60 20.05 5.63 1.78 0.56
95 0.76 28.55 9.96 2.42 0.99

* CI = Combination index values

Table 2: Synergism between CAP and sCD4 in inhibiting infection 
by HIV-1 BaL.

% Inhibition CI* Concentrations for inhibition of infection
CAP (µg/ml) sCD4 (µg/ml)

Alone Mix Alone Mix

50 0.40 3.24 1.10 9.05 0.55
70 0.43 4.43 1.68 15.60 0.84
90 0.49 7.31 3.24 37.12 1.62
95 0.52 9.64 4.67 59.98 2.34

* CI = Combination index values
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mational changes in gp120 that contribute to the expo-
sure of binding sites for CXCR4 and CCR5 [16,17,38].

Furthermore, it seemed important to determine whether
simultaneous CD4 and enhanced CAP binding to HIV-1
would result in synergistic effects for inhibition of HIV-1
infection. Evidence for such synergism was indeed estab-
lished (Table 1 and 2, Fig. 3).

Earlier studies [8], in which the binding of CAP treated
and untreated virus to antibodies specific for distinct re-
gions on the envelope glycoproteins gp120 and gp41 was
studied, indicated that CAP caused decreased binding
with antibodies against several peptides from gp120 but
only with a single antibody against peptide 557–586 from
gp41 (for numbering of amino acid residues see our earli-
er publication [39]). Thus, there are fewer binding sites for
CAP on gp41 than on gp120. Interestingly, molecular
docking studies revealed that phthalic and acetic acid an-
hydride modified cellotetratose, a subunit of CAP, docked
to a single site on the gp41 core structure overlapping the
peptide 557–586 (Fig. 10). This region is in the vicinity of
the most prominent positively charged areas on the sur-
face of the gp41 core which has an overall negative charge.
Since CAP blocks coreceptor binding sites on gp120 [8] it
was of interest to determine whether this blockade would
lead to conformational changes in HIV-1 gp41, similar to
those elicited by CD4 or coreceptor binding to gp120.

The occupancy of CD4 and coreceptor binding sites by
their respective ligands elicits downstream conformation-
al changes in the envelope glycoprotein gp41, rendering it
competent for fusion between virus and target cell mem-

branes [18,19,40–43]. Shedding of gp120 from virus par-
ticles is not required for subsequent membrane fusion
events [44]. The induction of gp41 six-helix bundles, de-
tectable by mAb NC-1, by CAP in the absence of gp120
shedding is consistent with this conclusion. The confor-
mational changes lead to the formation of a coiled-coil in
gp41, consisting of three NH2-terminal leucine/isoleucine
zipper regions, each contributed by one of the three subu-
nits of the envelope glycoprotein trimer. In the presence
of target cell membranes, the NH2-terminal fusion pep-
tide is displaced in the direction of the target cell mem-
brane, into which it inserts. Thus, the HIV-1 envelope
glycoprotein gp41 becomes an integral component of two
membranes, the viral membrane and the cellular mem-
brane. The outer surface of the coiled-coil contains
grooves into which three heptad repeat regions from the
C-terminal part of the gp41 ectodomain pack, resulting in
a stable six-helix bundle [42,45–54]. The six-helix bundle
structure can be detected by specific antibodies
[14,20,43,55].

Results presented here indicate that purified HIV-1 parti-
cles do not contain detectable six-helix bundle structures.

Figure 6
Monoclonal antibody NC-1 does not bind to CAP. For
experimental design see Methods section.
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Effect of a tyrosine sulfated CCR5 peptide [25,56,57] on
expression on HIV-1 BaL of binding sites for mAb NC-1.
Purified HIV-1 BaL (quantity indicated in the legend for Fig. 2)
was mixed with the tyrosine sulfated S peptide and a control
non-sulfated peptide, respectively, from CCR5 for 5 min at
37°C, followed by 30 min at 4°C. Control virus was incu-
bated under the same conditions in the absence of the pep-
tide. Serial dilutions (indicated on the abscissa) of the treated
and untreated virus were added to mAb NC-1 and control
normal mouse IgG coated wells, respectively, and the bound
virus was quantitated by ELISA for p24. The quantity of virus
bound to control wells was ≤ 2.3% of that bound to mAb
NC-1 coated wells. All experiments were done at least in
triplicate.

VIRUS DILUTION

p2
4

A
N

T
IG

E
N

B
O

U
N

D
(A

B
S

O
R

B
A

N
C

E
at

45
0

nm
)

0

0.2

0.4

0.6

0.8

1.0

1/27 1/9 1/3

HIV-1 BaL
HIV-1 BaL + control peptide
HIV-1 BaL + CCR5 S-peptide
Page 8 of 13
(page number not for citation purposes)



BMC Infectious Diseases 2002, 2 http://www.biomedcentral.com/1471-2334/2/6
Their expression is induced by CAP treatment of the virus
(Fig. 5 and 8). Prior engagement of CD4 binding sites is
not required for the induction of the six-helix bundles by

CAP, but increases their expression (Fig. 5 and 8). The ap-
parent cooperativity between CAP and sCD4 in induction
of the gp41 six-helix bundle structures may possibly be re-
lated to the observed synergism between these two ligands
for inhibition of HIV-1 infection (Table 1 and 2, Fig. 3).
The hypothesis that engagement of coreceptor binding
sites on gp120 by CAP leads to the expression of gp41 six-
helix bundle structures is supported by the finding that a
tyrosine sulfated S-peptide, but not the non-sulfated pep-
tide, from the N-terminus of CCR5 [25,56,57] has an ef-
fect similar to that of CAP (Fig. 7). The helix-bundles were
also induced by heating HIV-1 virus particles at 60°C, in
agreement with the irreversible induction of the fusogenic
conformation in influenza virus hemagglutinin by heat
[58,59]

In summary, the results presented here suggest that treat-
ment of HIV-1 with CAP leads to conformational changes
in the envelope glycoproteins, ultimately resulting, in the
absence of target cell membranes, in the formation of
gp41 six-helix bundles. These structures are extremely sta-
ble and represent a terminal, functionally inactive viral
constituent [54,60]; (Fig. 11), analogous to that of inacti-
vated influenza virus hemagglutinin HA2 exposed to low
pH in the absence of cell membranes [59,61–64].

Conclusions
Earlier studies describing the underlying molecular mech-
anisms involved in the HIV-1 inhibitory effect of the can-
didate microbicide CAP indicated that this compound
remains bound to HIV-1, impairing virus infectivity by
blockade of binding sites for cellular coreceptors CXCR4
and CCR5 [8]. Results reported here further extend these
findings and show that: 1) there is synergism between
sCD4 and CAP for inhibition of virus infectivity; 2) CAP

Table 3: Treatment of HIV-1 with CAP does not result in gp120 
shedding from virus particles

Treatment % gp120 associated with virus particles

HIV-1 IIIB HIV-1 BaL

None 77.0 ± 2.8 83.8 ± 6.9
5 min 37°C, 

No CAP
84.6 ± 6.4 80.0 ± 0.5

5 min 37°C + 
CAP

87.1 ± 2.4 88.1 ± 7.3

Figure 8
Induction of gp41 six-helix bundles by HIV-1 treatment with
sCD4, CAP, CCR5 S-peptide and heat. HIV-1 IIIB and HIV-1
BaL, respectively, were treated with CAP and sCD4 as
described in the legend for Fig. 5 or exposed to 60°C for 10
min. HIV-1 BaL was also treated with the S-peptide and a
control non-sulfated peptide from CCR5 as described in the
legend for Fig. 7. The treated virus preparations and
untreated control virus were treated with lysis buffer (see
Methods) for 30 min at 20°C. CAP in lysis buffer (0.078 to 10
mg/ml) was also tested; the results for a 5 mg/ml concentra-
tion are shown (identical results were obtained for all other
concentrations). The lysates were tested by a sandwich
ELISA for the gp41 six-helix bundle (see Methods). All exper-
iments were done at least in triplicate.
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Electrostatic potential maps of gp120 and the gp120-CD4
complex. Electrostatic potentials are shown for the solvent
accessible surfaces. (A) The electrostatic potential map on
gp120. Blue indicates electropositive areas whereas red rep-
resents electronegative areas. (B) After CD4 binds to gp120,
the electropositive surface area (blue) increases markedly
while the most negatively charged (red) area on gp120
(arrow) becomes blocked by sCD4.
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binding to HIV-1 leads to conformational changes in viral
envelope glycoproteins resulting in the expression of
functionally inert six-helix bundle structures.

To the best of our knowledge, results reported here and
earlier [8] represent the most detailed study on the mech-
anism of action of a polymeric anti-HIV-1 compound and
offer new opportunities for microbicide research, includ-
ing the design of combined microbicides with distinct tar-
get sites on HIV-1 and acting synergistically.

List of abbreviations
CAP, cellulose acetate phthalate; STD, sexually transmit-
ted disease; ELISA, enzyme-linked immunosorbent assay;
mAbs, monoclonal antibodies; FBS, fetal bovine serum;
PEG 6000, polyethylene glycol 6000; HIV-1, human im-
munodeficiency virus type 1; BSA, bovine serum albumin;
PBS, phosphate buffered saline; Ch-PBS, chicken serum
(10%) in PBS; PBS-BG, 1% BSA/1% gelatin in PBS; HRP,
horseradish peroxidase; sCD4, soluble CD4; TS, 0.14 M
NaCl, 0.01 M Tris, pH 7.0; CTAP, cellotetraose acetate
phthalate; pdb, Protein Data Bank; ED50, effective dose
for 50 % inhibition.

Figure 10
Docking of a cellotetraose acetate phthalate (CTAP) unit of CAP to the gp41 core structure. (A) Docking of CTAP on the
gp41 core. The inner N-peptide coiled-coiled trimer is represented in green whereas the outer C-peptide helices are repre-
sented in yellow. Residues on the gp41 core interacting with CTAP (gray and red) are color-labeled. The brown residues are
hydrophobic whereas blue residues are positively charged. One of the negatively charged groups from the phthalic acid moie-
ties of CTAP docked near an R579 residue of the gp41 core. Two of the CTAP phenyl groups have hydrophobic contact with
gp41 W571. The peptide segment 557–586 {[8,39], corresponding to residues 550–571 in the X-ray crystal structure} antibod-
ies to which are prevented by CAP from binding to gp41, is indicated in light blue in one of the three inner helices. (B) Electro-
static potential surface of the gp41 core created by the GRASP [31] program. The CTAP molecule docked near a relatively
electropositive site on gp41. Most of the surface is highly electronegative.
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