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Abstract: Cyclodipeptides (CDPs) or 2,5-diketopiperazines (DKPs) can exert a variety of biological
activities and display pronounced resistance against enzymatic hydrolysis as well as a propensity
towards self-assembly into gels, relative to the linear-dipeptide counterparts. They have attracted
great interest in a variety of fields spanning from functional materials to drug discovery. This concise
review will analyze the latest advancements in their synthesis, self-assembly into gels, and their more
innovative applications.
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1. Introduction

Gels based on self-assembling biomolecules have become a popular research topic [1].
Amongst their attractive features, there is also good potential as greener alternatives to
traditional synthetic polymers. They do not persist in the environment and are not derived
from oil-industry raw materials. In particular, self-assembling short-peptides represent
cheap building blocks for large-scale production, and with overall promising properties
in terms of bioactivity [2] and biocompatibility to achieve functional materials [3,4]. The
large chemical diversity they provide ensures continuous advancements, and even con-
sidering just the publications in the last couple of years, numerous regard self-assembling
tripeptides [5–15] and dipeptides [16–25]. Furthermore, the study of such simple systems
could advance the understanding of prebiotic chemistry, relative to the potential role of
peptide-based organized structures in the emergence of catalytic activity [26].

Linear dipeptides can easily cyclize into 2,5-diketopiperazines (DKPs) or cyclodipep-
tides (CDPs), which are widely reported as self-assembling building blocks in virtue of
their enhanced rigidity and hydrogen-bonding into defined networks, both of which can be
advantageous for self-organization into gels [27]. The orientation of the amino acid lateral
chains (Figure 1) could be on the same side of the ring plane for the homochiral CDPs
(LL/DD), or on the opposite side for the heterochiral stereoisomers (LD or DL). The ring
structure increases the resistance against proteolytic degradation compared to linear pep-
tides and allows them to cross the blood-brain barrier, both of which are important aspects,
for instance, for the development of neuroprotective agents for oral administration [28].
CDPs are indeed attracting interest as drug carriers, thanks to their demonstrated ability to
cross membranes and penetrate cells [29]. Their aggregates can display fluorescence [30],
and they are widely studied for their diverse biological activities [31–38], which make them
promising for biomedical applications, as recently reviewed [39]. Further, they are being
investigated also for optoelectronic [40] and catalytic [41] applications, as biodegradable
and environmentally-friendly substitutes of more traditional options.
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Figure 1. 3D Chemical structure of generic cyclodipeptides (CDPs) obtained from the cyclization of 
L-homochiral (a) or D,L-heterochiral (b) dipeptides. Side chains are represented as a generic green 
sphere and the rest of the atom types are represented using the standard CPK model. 

All these features make CDPs an attractive choice as biocompatible, green, function-
alizable, and cheap building blocks for smart materials with a wide scope of applications 
from industry to medicine. The basic design is very simple: two amino acids bound to-
gether in a cyclic structure with a defined stereochemistry (i.e., LL, LD/DL, or DD) and the 
possibility to further derivatize the side chains [42–46] of selected amino acids [47–50], as 
widely applied in nature [51–56]. 

CDPs are synthesized by microorganisms [57,58], they are found in food as tasting 
agents, and can be the product of fermentation processes that are particularly relevant to 
the food and beverage industry [59]. A dipeptide is a relatively simple structure, and it is 
easy to synthesize for modern organisms, thanks to the complex molecular machinery 
provided by ribosomes and enzymes. CDPs can also form spontaneously without en-
zymes, and therefore interest in their role as prebiotic-chemistry building blocks is grow-
ing [60]. The nature of the side chains of CDPs is not only involved in the self-assembly 
process but they could also provide catalytic functional groups. Thus, materials obtained 
by these molecules could be versatile [41]. There is growing interest in CDPs, and recent 
reviews exist that discuss their bioactivity [58,61,62], supramolecular organization [31,40], 
and use as scaffolds for drug discovery [52,63–66]. 

Therefore, this concise review will focus on gels obtained through the self-assembly 
of CDPs formed by unprotected and underivatized amino acids. Hydrogels and organo-
gels are the two types of materials that are mostly studied; xerogels are obtained upon 
drying gels, and often their purpose is the characterization of the system whenever it is 
not possible to use a hydrogel, for example in transmission-electron microscopy (TEM) 
and infrared (IR) spectroscopy techniques. Conversely, studies of aerogels and ionogels 
based on CDPs are still scarce [67], therefore these two types of materials will not be dis-
cussed. 

2. Synthesis of CDPs 
2.1. Organic Synthesis of CDPs in Solution 

Retrosynthetic analysis of the CDP ring (Scheme 1) reveals several possible discon-
nections with routes A–B being far more popular than tandem cyclizations (D–E). The 
most popular route, which can be easily performed also in water or solvent-free through 
green approaches, goes through the disconnection of the amide bond (Scheme 1, A), and 
several methods to cyclize dipeptides for this approach are described further below. An 
aza-Wittig cyclization will also go through disconnection A, as will do Ugi chemistry us-
ing an isonitrile, an acid, an aldehyde, and an amine. The C-N disconnection (Scheme 1, 
B) is another quite popular alternative that involves intramolecular N-alkylation. Also, in 

Figure 1. 3D Chemical structure of generic cyclodipeptides (CDPs) obtained from the cyclization of
L-homochiral (a) or D,L-heterochiral (b) dipeptides. Side chains are represented as a generic green
sphere and the rest of the atom types are represented using the standard CPK model.

All these features make CDPs an attractive choice as biocompatible, green, functional-
izable, and cheap building blocks for smart materials with a wide scope of applications
from industry to medicine. The basic design is very simple: two amino acids bound
together in a cyclic structure with a defined stereochemistry (i.e., LL, LD/DL, or DD) and
the possibility to further derivatize the side chains [42–46] of selected amino acids [47–50],
as widely applied in nature [51–56].

CDPs are synthesized by microorganisms [57,58], they are found in food as tasting
agents, and can be the product of fermentation processes that are particularly relevant to
the food and beverage industry [59]. A dipeptide is a relatively simple structure, and it
is easy to synthesize for modern organisms, thanks to the complex molecular machinery
provided by ribosomes and enzymes. CDPs can also form spontaneously without enzymes,
and therefore interest in their role as prebiotic-chemistry building blocks is growing [60].
The nature of the side chains of CDPs is not only involved in the self-assembly process
but they could also provide catalytic functional groups. Thus, materials obtained by these
molecules could be versatile [41]. There is growing interest in CDPs, and recent reviews
exist that discuss their bioactivity [58,61,62], supramolecular organization [31,40], and use
as scaffolds for drug discovery [52,63–66].

Therefore, this concise review will focus on gels obtained through the self-assembly of
CDPs formed by unprotected and underivatized amino acids. Hydrogels and organogels
are the two types of materials that are mostly studied; xerogels are obtained upon drying
gels, and often their purpose is the characterization of the system whenever it is not possible
to use a hydrogel, for example in transmission-electron microscopy (TEM) and infrared
(IR) spectroscopy techniques. Conversely, studies of aerogels and ionogels based on CDPs
are still scarce [67], therefore these two types of materials will not be discussed.

2. Synthesis of CDPs
2.1. Organic Synthesis of CDPs in Solution

Retrosynthetic analysis of the CDP ring (Scheme 1) reveals several possible discon-
nections with routes A–B being far more popular than tandem cyclizations (D–E). The
most popular route, which can be easily performed also in water or solvent-free through
green approaches, goes through the disconnection of the amide bond (Scheme 1, A), and
several methods to cyclize dipeptides for this approach are described further below. An
aza-Wittig cyclization will also go through disconnection A, as will do Ugi chemistry using
an isonitrile, an acid, an aldehyde, and an amine. The C-N disconnection (Scheme 1, B) is
another quite popular alternative that involves intramolecular N-alkylation. Also, in this
case, 4-component Ugi-type chemistry can be employed, in tandem with an Aza-Michael.
Alternatively, the use of a Diels-Alder allows to achieve CDPs with a high level of structural
complexity. The C-C disconnection (Scheme 1, C) often involves enolate acylation, albeit
radical routes were also described to attain the C-C cyclization [63]. Despite the various
synthetic routes available, the search is still active in this area with new developments
pertaining to CDP synthesis appearing also in the most recent literature [68–76].
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ycarbonyl; HOBt = Hydroxybenzotriazole; Lys = lysine; NMI = N-methylimidazole; NMP = N-

Scheme 1. Retrosynthetic analysis reveals five disconnections (A–E) to yield the CDP ring [63].

2.2. Organic Synthesis of CDPs in Solid Phase

Solid-phase synthesis of CDPs [77,78] offers the possibility to rapidly gain ac-
cess to a plethora of structurally complex products [79]. Solid-phase methods can be
very convenient for the rapid screening of arrays of libraries obtained through the
parallel synthesis of CDPs, for instance via the SPOT method on cellulose membranes
(Scheme 2) [80]. This type of approach to preparing CDPs is very convenient on a small
scale when the priority is time. Conversely, it is rather costly and poses challenges for
scale-up, so it will not be described further here, since several convenient liquid-phase
alternatives are available.
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Scheme 2. CDP-array synthesis on cellulose membranes via SPOT method for rapid screening [80].
Boc = tert-butyloxycarbonyl; DIC = N,N′-diisopropylcarbodiimide; Fmoc = fluorenylmethoxycar-
bonyl; HOBt = Hydroxybenzotriazole; Lys = lysine; NMI = N-methylimidazole; NMP = N-methyl-2-
pyrrolidone; Pro = proline; SPPS = solid-phase peptide synthesis; TFA = trifluoroacetic acid.

2.3. Dipeptide Cyclization to CDPs
2.3.1. Liquid-Phase Cyclization

Dipeptide cyclization is certainly the most widely used approach and can be per-
formed starting with a C-terminally protected dipeptide, both in organic solvent and water.
The reaction is an aminolysis, therefore the N-terminus must be deprotected either before
the reaction or during the cyclization in a one-pot fashion. The C-terminal protecting group
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is usually a methyl ester so that the N-terminal amine acts as the nucleophile and the
methoxy functionality is the leaving group. For example, the cyclization of aspartame
(L-Asp-L-Phe-OMe) was studied in an organic solvent. The reaction was performed in
dimethylsulfoxide (DMSO), by stirring the solution for 8 h at 80 ◦C with a final yield after
workup of 88% [81]. Dipeptides featuring a methoxy group at the C-terminus could also
spontaneously cyclize in water via aminolytic reaction [82].

2.3.2. Microwave-Assisted Cyclization

Microwave-assisted cyclization in water is an interesting technique that allows one to
make CDPs in high-yield and within a short time. In the case of hydrophobic CDPs, the
workup is straightforward due to the precipitation of the product. With this technique,
it is possible to perform a greener synthesis of CDPs because more steps are merged in
one, avoiding expensive workups and petroleum-derived solvents. Microwave heating
was studied in many different solvents for dipeptide methyl esters and only in water it is
possible to reach high yields [83]. It is possible to remove the Boc (tert-butyloxycarbonyl)
protecting group through microwave heating in water when amino acids or peptides dis-
play an unprotected C-terminus [84]. However, N-Boc deprotection and cyclization can also
occur in one-pot, as demonstrated on C-terminal tert-butyl and methyl esters [85]. Recently,
the green synthesis of CDPs was obtained in high-to-quantitative yield by microwave-
assisted cyclization in water (Scheme 3), also without the methyl ester at the C-terminus,
and with no need for work-ups for hydrophobic CDPs that precipitate as white solids,
leaving any unreacted dipeptide in solution [86].
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nearly quantitative yield with no need for workups [86]. R1 = benzyl; R2 = benzyl; iso-propyl.

2.3.3. Cyclization Using Vapor Deposition

A peculiar case of dipeptide cyclization was described using vapor deposition [87].
Diphenylalanine (Phe-Phe) was heated at 220 ◦C and thus evaporated in a vacuum chamber.
When the peptide reached a cooler surface (i.e., 80 ◦C), it cyclized and formed nanotubes.
The stacking interactions between the aromatic rings of the side chains were the key for
inter-molecular recognition and templating of the cyclization to CDPs, as well as the growth
of their self-assembled nanotubes.

2.3.4. Cyclization in the Solid State

CDPs can be synthesized also in the solid state, through the heating of a powder
sample [88,89]. The appropriate reaction temperature depends on the nature of the peptide
sequence. For example, Gly-Gly needs 230 ◦C, while Phe-Phe 147 ◦C [90] or 125 ◦C [91],
suggesting a correlation between the reaction minimum temperature and the amino acid
side-chain steric hindrance. Cyclization indeed requires molecular mobility, which is
governed by the nature of the side chains in the solid state. The melting points of Gly-Gly
and Phe-Phe are respectively 262–264 ◦C and 288–290 ◦C, thus confirming that the reaction
occurred in a solid state and probably above the glass transition temperature (Tg). The latter
depends on the sample preparation when manufactured; from that point onwards, CDP
molecules do not maintain random conformations and, instead, they start to reorganize in
the solid structure, since rotations and translations are possible [90].
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2.4. Enzymes and Biotechnological Tools for CDP Synthesis

Finally, biotechnological tools are also being developed to prepare CDPs. To this
end, cyclodipeptide synthases were recently reported to catalyze the cyclization of
aminoacylated-tRNA substrates [92,93]. Installation of C-C double bonds to attain
dehydrogenated CDPs can be achieved through oxidase-mediated catalysis [94], while
N-alkylation is catalyzed by methyltransferases [95]. Interestingly, a cytochrome P450
has been identified that can catalyze both the CDP dimerization and cyclization towards
bioactive CDP-derived natural products with interesting bioactivities (Figure 2) [96].
Mutagenesis of other cytochrome P450s gave access to catalysts for CDP synthesis with
good regio- and stereo-specificity, and chemical versatility [97]. Whole-cell biocatalysts
were used to attain heterodimeric CDPs, with Mycobacterium smegmatis demonstrating
to be a more robust and efficient organism, than the commonly used Escherichia coli or
Streptomyces systems [98]. The large variety of reactions catalyzed by cytochrome P450s
to synthesize and modify CDPs is gaining momentum and has just been reviewed [99].
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Figure 2. Active site of cytochrome P450 NzeB showing the concave substrate (pink) bound in the
“cyclization site”, and the extended substrate (green) bound in the “dimerization site”. Reproduced
with permission from [96], copyright © 2020, American Chemical Society.

3. Self-Assembly of CDPs into Gels
3.1. Gels from Unprotected-Dipeptide Derived CDPs
3.1.1. Non-Covalent Interactions Responsible for Gelation

Supramolecular gels are very interesting because of their self-organized structure
via non-covalent interactions. This feature allows one to make dynamic materials with
self-healing properties and thermal reversibility avoiding any by-products, which are
net advantages over classic covalent interactions. The driving force for gel transition is
non-covalent, therefore it is important to evaluate the CDP structure in terms of available
interactions, such as hydrogen bonding, π-π stacking, CH-π, or dipole-dipole interactions,
etc. Numerous examples of gels formed by unprotected-dipeptide derived CDPs have
been reported (Table 1), although the number of studies involving modified CDPs is far
greater, as discussed in Section 3.2.
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Table 1. Gelling CDPs obtained from unprotected dipeptides.

CDP Sequence Gel Type Reference

Cyclo(Ala-Gly) Organogel [100]
Cyclo(Val-Gly) Organogel [100]
Cyclo(Leu-Gly) Organogel [100]
Cyclo(Leu-Val) Organogel [100]
Cyclo(Leu-Ala) Organogel [100]
Cyclo(Leu-Leu) Organogel [100]
Cyclo(Phe-Gly) Organogel [100]
Cyclo(Phe-Gly) Hydrogel [41]
Cyclo(Phe-Val) Hydrogel [86]
Cyclo(Phe-Leu) Hydrogel [82,101]
Cyclo(Phe-Leu) Organogel [100,102]
Cyclo(Phe-Phe) Hydrogel [86]
Cyclo(Phe-Phe) Organogel [100]
Cyclo(Phe-Cys) Hydrogel [103]
Cyclo(Phe-Ser) Hydrogel [103]
Cyclo(Phe-Glu) Hydrogel [103]
Cyclo(Phe-His) Hydrogel [103]
Cyclo(Phe-Lys) Hydrogel [103]
Cyclo(Trp-Trp) Organogel [104]
Cyclo(Trp-Tyr) Hydrogel [105]
Cyclo(Tyr-Tyr) Hydrogel [104]
Cyclo(Tyr-Tyr) Organogel [104]
Cyclo(Tyr-Lys) Hydrogel [106]
Cyclo(Tyr-Lys) Organogel [106]
Cyclo(Lys-Glu) Organogel [107]

The role of hydrogen-bond interactions between CDP rings was studied on organogels
made by cyclo(Leu-Leu) [108]. This compound is a very interesting organogelator, which
self-assembles into aromatic solvents, such as benzene, xylene, toluene, and ethylbenzene,
whilst not in aliphatic solvents. Surprisingly, it was noted that a small amount of water
addition, not only improved the kinetics of the gelation process (that was accelerated from
two days to six hours in toluene) but also allowed to attain organogels with aliphatic
hydrocarbons, such as cyclohexane, hexane, and heptane. The cases of the latter three are
very interesting because, in the absence of any functional group in the solvent molecules,
Van der Waals forces are the only possible interactions available [108]. Hydrogen bonds
play an important scaffolding role in the assemblies, while van der Waals forces are typically
the driving force in the initial stages to generate the hydrophobic core of the supramolecular
structures [109].

The nature of the side chains of CDPs plays a role in the final structure of the
supramolecular system. The presence of different functional groups allows one to ex-
pand the non-covalent interaction toolkit of CDPs. Further, they have a great influence
on the solubility of CDPs in one particular solvent. Short and hydrophilic side chains are
not suitable for hydrogels as seen in the case of the aspartame CDP [82]. Phenylalanine,
tyrosine, tryptophan, and histidine are the four natural aromatic amino acids; the latter
is also a base and, thus, it is easily ionized at different pH values. Phe, Tyr, and Trp are
hydrophobic, and they could be a good choice for a potential hydrogelator. All three
derived CDPs were studied as gelling agents in water and many organic solvents [104]. In
particular, cyclo(Tyr-Tyr) is a robust hydrogelator and it is also an organogelator for alcohol-
based solvents. Cyclo(Phe-Phe) is an organogelator, whilst cyclo(Trp-Trp) showed a weak
gelling ability only in chloroform. Conversely, another study reported cyclo(Tyr-Trp) as a
robust hydrogelator [105]. All these findings raise the question about the possible driving
force embodied in non-covalent interactions of aromatic moieties, such as π-π stacking and
CH-π interactions. Recently, a study about cyclo(Phe-Phe) and cyclo(p-nitro-Phe-Phe) high-
lighted the role of this kind of interaction with the aid of single-crystal XRD data [86]. Both
CDPs displayed the same conformation in the crystal state with an intramolecular CH-π
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interaction (Figure 3). However, the structure of cyclo(Phe-Phe) showed intermolecular
π-π stacking and intra-intermolecular CH-π interactions. Surprisingly, the introduction of
the nitro group did not affect the molecular conformation, rather, it resulted in the rigid
translation of the molecule into another position, thus creating a new crystal packing, with
loss of an intermolecular CH-π interaction. Nevertheless, cyclo(p-nitro-Phe-Phe) demon-
strated to be a better hydrogelator than cyclo(Phe-Phe), thus the different electronic density
between the two aromatic rings could play an important role.
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Figure 3. Superimposition of the single-crystal XRD structures of cyclo(Phe-Phe) (green carbon
atoms) and cyclo(p-nitro-Phe-Phe) (cyan carbon atoms) reveal the same conformation with an
intramolecular CH-π interaction (dashed line). Nitrogen, oxygen, and hydrogen atoms are
colored in blue, red, and white, respectively. Reproduced with permission from [86], Copyright ©
2019, Thieme Verlag, Germany.

3.1.2. Spectroscopic Characterization Methods to Monitor Gelation

The CDP basic scaffold is a six-membered ring with two amide groups. N-H and C=O
can engage in hydrogen bonding. Fourier-transformed infrared (FT-IR) spectroscopy is a
good technique to observe if there are any hydrogen-bond interactions. Generally, the C=O
stretching signal for an amide group falls around 1690 cm−1, while the N-H stretching
and bending signals appear approximately at 3400 and 1500 cm−1, respectively. As a
result of the transition from solution to gel, it is possible to observe a shift of these signals
because of the hydrogen-bonding interaction. For instance, FT-IR of cyclo(Val-Leu) in
chloroform solution shows a shift of 1690 to 1640 cm−1 for the C=O group, and from 3400
to 3320 cm−1 for the N-H group, as a result of gelation [102]. FT-IR of cyclo(Glu-Lys) in
DMSO before and after transition also shows a more complex situation. The C=O signal is
shifted from 1687–1682 cm−1 to 1670–1677 cm−1, the N-H stretching from 3515–3500 cm−1

to 3320–3200 cm−1, and the N-H bending from 1500–1510 cm−1 to 1520–1538 cm−1 [107].
Stretching signals are shifted towards lower wavenumbers when hydrogen bonding occurs.

1. H-NMR is another useful spectroscopic technique to study hydrogen bonding in
gels. Amide signals are shifted downfield when this interaction occurs [100]. It is not
possible to measure signals from a gelling agent in a rigid packing because of the long
correlation time needed. However, it is possible to study small aggregates in a solution
that are representatives of the material. 1H-NMR spectra of cyclo(Tyr-Lys) in DMF-d7
showed the situation in solution at 60 ◦C of pre-aggregated gelators that gelled at room
temperature [106]. Amide signals were broadened and shifted from 7.78 (at 65 ◦C) to
8.10 ppm (at 25 ◦C) as a result of hydrogen bonding.

3.1.3. Oscillatory Rheometry to Monitor Gelation

Rheometry is the technique of election to quantify the viscoelastic properties per-
taining to gels and their precursor solutions. When the elastic or storage modulus (G’) is
significantly higher than the viscous or loss modulus (G”), the system is defined as a gel.
With this technique, it is possible also to study the thermo-reversibility and self-healing
properties of these systems, as well as the shear-thinning behavior that is desirable for
injectability. For instance, cyclo(Phe-Xaa) (Xaa = Gly, Ser, Cys, Glu, His, Lys) CDPs were
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characterized by rheometry, and all the soft materials displayed thermo-reversibility [103].
All these compounds formed stable hydrogels at 4 wt%. Cyclo(Phe-Cys) was found to
be the best hydrogelator of the series with as little as 0.25 wt% needed for gelation, and
a remarkably high gel-sol transition temperature of 100 ◦C when formulated at 1 wt%.
Interestingly, despite the fact that serine is isoelectronic with cysteine, cyclo(Phe-Ser) was
the worst gelling agent of this series with a gel-sol transition temperature of 12 ◦C also
with high loading (4 wt%). All these compounds, except for cyclo(Phe-Ser), showed a
thixotropic and self-healing behavior. Understandably, ionizable side chains revealed a pH
dependency of the gel-sol transition. For instance, cyclo(Phe-Glu) formed stable hydrogels
at pH 6, while cyclo(Phe-Lys) at pH 8–11. The blended hydrogel obtained mixing these
two CDPs showed remarkably wider pH stability from 2 to 11. The gel-to-sol transition
temperature was dependent on the pH value, with a maximum corresponding to 79 ◦C at
pH 2, and a minimum corresponding to 27 ◦C at pH 7 [103].

Cyclo(Phe-Leu) is a strong hydrogelator with self-healing ability and rheological
stability in the temperature range corresponding to 20–60 ◦C [101]. The stability against
heating highlighted the different behavior of CDPs relative to linear short peptides, whose
gels remained stable at analogous conditions. Temperature changes can sometimes be
accompanied by crystallization, especially if gels are a metastable phase. Cyclo(Phe-Leu)
is not ionizable, and thus it showed a gelling ability through a wide range of pH values,
from 3 to 11 (Figure 4). Another interesting feature of this compound was its demonstrated
resistance against protease-catalyzed hydrolysis [101]. It is apparent that CDPs can be
a good choice to make hydrogels suitable for medical applications, and offer various
advantages over the linear-peptide analogs.

Molecules 2021, 26, x FOR PEER REVIEW 8 of 18 
 

 

before and after transition also shows a more complex situation. The C=O signal is shifted 
from 1687–1682 cm−1 to 1670–1677 cm−1, the N-H stretching from 3515–3500 cm−1 to 3320–
3200 cm−1, and the N-H bending from 1500–1510 cm−1 to 1520–1538 cm−1 [107]. Stretching 
signals are shifted towards lower wavenumbers when hydrogen bonding occurs. 

1. H-NMR is another useful spectroscopic technique to study hydrogen bonding in 
gels. Amide signals are shifted downfield when this interaction occurs [100]. It is not pos-
sible to measure signals from a gelling agent in a rigid packing because of the long corre-
lation time needed. However, it is possible to study small aggregates in a solution that are 
representatives of the material. 1H-NMR spectra of cyclo(Tyr-Lys) in DMF-d7 showed the 
situation in solution at 60 °C of pre-aggregated gelators that gelled at room temperature 
[106]. Amide signals were broadened and shifted from 7.78 (at 65 °C) to 8.10 ppm (at 25 
°C) as a result of hydrogen bonding. 

3.1.3. Oscillatory Rheometry to Monitor Gelation 
Rheometry is the technique of election to quantify the viscoelastic properties pertain-

ing to gels and their precursor solutions. When the elastic or storage modulus (G’) is sig-
nificantly higher than the viscous or loss modulus (G’’), the system is defined as a gel. 
With this technique, it is possible also to study the thermo-reversibility and self-healing 
properties of these systems, as well as the shear-thinning behavior that is desirable for 
injectability. For instance, cyclo(Phe-Xaa) (Xaa = Gly, Ser, Cys, Glu, His, Lys) CDPs were 
characterized by rheometry, and all the soft materials displayed thermo-reversibility 
[103]. All these compounds formed stable hydrogels at 4 wt%. Cyclo(Phe-Cys) was found 
to be the best hydrogelator of the series with as little as 0.25 wt% needed for gelation, and 
a remarkably high gel-sol transition temperature of 100 °C when formulated at 1 wt%. 
Interestingly, despite the fact that serine is isoelectronic with cysteine, cyclo(Phe-Ser) was 
the worst gelling agent of this series with a gel-sol transition temperature of 12 °C also 
with high loading (4 wt%). All these compounds, except for cyclo(Phe-Ser), showed a thix-
otropic and self-healing behavior. Understandably, ionizable side chains revealed a pH 
dependency of the gel-sol transition. For instance, cyclo(Phe-Glu) formed stable hydrogels 
at pH 6, while cyclo(Phe-Lys) at pH 8–11. The blended hydrogel obtained mixing these 
two CDPs showed remarkably wider pH stability from 2 to 11. The gel-to-sol transition 
temperature was dependent on the pH value, with a maximum corresponding to 79 °C at 
pH 2, and a minimum corresponding to 27 °C at pH 7 [103]. 

Cyclo(Phe-Leu) is a strong hydrogelator with self-healing ability and rheological sta-
bility in the temperature range corresponding to 20–60 °C [101]. The stability against heat-
ing highlighted the different behavior of CDPs relative to linear short peptides, whose 
gels remained stable at analogous conditions. Temperature changes can sometimes be ac-
companied by crystallization, especially if gels are a metastable phase. Cyclo(Phe-Leu) is 
not ionizable, and thus it showed a gelling ability through a wide range of pH values, 
from 3 to 11 (Figure 4). Another interesting feature of this compound was its demonstrated 
resistance against protease-catalyzed hydrolysis [101]. It is apparent that CDPs can be a 
good choice to make hydrogels suitable for medical applications, and offer various ad-
vantages over the linear-peptide analogs. 

 
Figure 4. SEM images and photographs (insets) of the gels formed by cyclo(Phe-Leu) at various pH values. Adapted with
permission from [101], copyright © 2019, Elsevier.

3.2. Gels from Protected-Dipeptide Derived CDPs

As can be seen from Table 1, the vast majority of reported CDP gelators based on
unprotected dipeptides features hydrophobic amino acids. To further expand the chemical
diversity of the building blocks and attain CDP hydrogelators also from hydrophilic amino
acids, a popular strategy employs the use of hydrophobic protecting groups. These include
Fmoc (fluorenylmethyloxycarbonyl) [107,110–112], OtBu (tert-butoxy) [113,114], Boc [111],
and, generally, alkyl-chain derivatizations [106,115], for instance through formation of
amide bonds with lipophilic carboxylic acids, as described more in detail below.

3.2.1. Protected CDPs with Glu or Asp Acidic Groups

Cyclo(Glu-Glu) is a hydrophilic CDP, featuring two ionizable carboxylic groups of
the side chains of the glutamic acid residues. These functional groups were reacted with
Fmoc-Cl as a protection strategy. In particular, the Fmoc mono-substituted CDP revealed
an interesting gelation ability [110]. Without the Fmoc protecting group, the CDP was
too hydrophilic to yield hydrogels. Instead, with the Fmoc mono-substitution, it gained
ability as superhydrogelator, superorganogelator in aromatic and chlorinated solvents,
and also as organogelator in alcohols. The racemate formed hydrogels with a slightly
higher concentration (0.6 wt%). XRD data showed a “pseudoracemate” non-crystalline
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self-assembly, and this system showed a faster thixotropic recovery time than the enantio-
pure analogs. The recovery time was also tunable with the concentration (using 0.6 to
1.2 wt%) from 4 to 10 min [110].

A series of four CDPs with Glu and Asp were protected with OtBu and studied for
the influence of the length of the side chain of Glu and Asp on their gelation ability [113].
The four compounds were thus cyclo(Tyr-Glu(OtBu)), cyclo(Phe-Glu(OtBu)), cyclo(Phe-
Asp(OtBu)), and cyclo(Leu-Glu(OtBu)). The first two were compared to understand the
role, if any, of the para-hydroxyl substitution on the aromatic side chain. Both were found
to be super hydro- and organo-gelators in many solvents (Figure 5), therefore it seemed
that the OH group of Tyr was not involved in the main driving-force interactions of the
self-assembly process. The latter two were compared to elucidate the effect, if any, of the
differing number by one carbon atom in the side chain. This small difference was sufficient
to lead to two completely divergent supramolecular behaviors. In particular, the CDP
featuring Glu was a super hydro- and organo-gelator, whilst that featuring Asp was almost
insoluble in all the solvents, with organogels being formed only in 1,2-dichlorobenzene,
and at high concentration (4.6 wt%), relative to the Glu-analogue in the same solvent
(0.1 wt%). This latter CDP demonstrated to be a hydro- and organo-gelator, although it
required higher concentrations to gel, relative to the aromatic analogs cyclo(Tyr-Glu(OtBu))
and cyclo(Phe-Glu(OtBu)), presumably due to the loss of the possibility to engage in π-π
stacking and CH-π intermolecular interactions [113].
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dichlorbenzene, (vi) tert-butanol, (vii) sec-butanol, (viii) acetonitrile, (ix) 50% glycerol, (x) water, (xi)
phosphate buffered saline (PBS, 10 mM, pH 7.4). Reproduced with permission from [113], copyright
© 2017 American Chemical Society.

Cyclo(Glu-Glu) is functionalizable as a symmetric or asymmetric compound, thanks to
the presence of two carboxylic groups in the side chains of the symmetric scaffold. A series
of cyclo(Glu-Glu) derivatives were studied to understand the difference in supramolecular
behavior between symmetric and asymmetric building blocks [114]. Tyramine, phenylala-
nine, tyrosine, and OtBu-protection were the four variable structural components of this
study; tyramine was linked to the side chain of Glu through the amino group, thus forming
an amide bond. Phe or Tyr instead was derivatized through the α-amino group. OtBu
was added to the C-terminal carboxylic group of Phe or Tyr. All these building blocks
were studied as asymmetric compounds (with functionalization occurring on only one of
the Glu side chains) or symmetric (with both Glu being bonded to Tyramine, Phe, or Tyr).
Tyramine demonstrated not to be a good choice, as both mono- and di-substituted CDPs
did not gel. Without OtBu on the carboxylic group of Phe or Tyr, no gels were formed
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either, the only exception being in acetone but only for two particular CDPs. The only
hydrogelator was the Tyr-OtBu mono-substituted CDP, while all the other compounds
were good organogelators, although each one in different solvents. The presence of OtBu
seemed to play an important role in organogel formation in this series of analogs. As
in the study described in the previous paragraph, mono-substitution at one Glu with a
hydrophobic group enabled gelation. In particular, in this study, when cyclo(Glu-Glu) was
mono-substituted with Phe or Tyr, it yielded a gelling agent as long as OtBu was present
on the free carboxylic group of Phe or Tyr [114].

3.2.2. Protected CDPs with Lys Amino Groups

Lysine is another convenient amino acid to functionalize through the ε-amino group of
the side chain. Protection with the Fmoc group increases the hydrophobicity and provides
an aromatic character, which is useful to engage in non-covalent interactions for self-
assembly. As an example, the amino acidic cyclo(Glu-Lys) was capped with OtBu (Glu)
and Fmoc (Lys) and compared against the unprotected analog [107]. With the capping of
either one or both polar groups, all CDPs gained organogelation ability. When the OtBu
protecting group was present on the carboxylic moiety, the corresponding CDP became a
superorganogelator for aromatic solvents, such as benzene, xylene, or toluene, with the
possibility for the amine group to be either free or linked to Fmoc. When the carboxylic
group was free and the Fmoc was installed on the amine, the CDP became a hydrogelator
and an organogelator for chlorinated solvents [107].

Besides Fmoc, Boc is another convenient protecting group for the Lys ε-amine. A
similar study on the influence of Boc and Fmoc groups showed that cyclo(Lys-Lys) did not
form hydrogels, while the corresponding Fmoc and Boc derivatives were organogelators,
although none of these compounds showed a minimum gelling concentration <1 wt% [111].
Another study showed the importance of the Fmoc-protecting group in the organogelation
of cyclo(Lys-Lys) derivatives. The CDPs were functionalized with cysteine on both Lys-side
chains through amide bonding, with the α-amino group of Cys being either Fmoc-protected
or free. Only the derivatives with the Fmoc group were able to yield organogels, while
thiols could be either in the reduced form or oxidized in a bicycle [112].

Alkyl chains provide another strategy to increase the hydrophobicity of polar side
chains of CDPs. Lysine could be acylated with anhydrides or coupled with an aliphatic
carboxylic acid through an amide bond. A study of these kinds of derivatives, using
cyclo(Tyr-Lys) as CDP scaffold, showed the change in hydrophobicity was related to the
different gelling behavior [106]. In particular, linear carboxylic acids with an aliphatic
chain composed of 1, 2, 3, 5, 7, 11, or 17 carbon atoms were chosen as acyl functional
groups. Low-molecular-weight acids (with 1–4 carbon-atom chains) rendered CDPs hy-
drogelators, with the lighter compound being also an organogelator for polar solvents,
such as dimethylformamide, DMSO, and piperidine. The use of alkyl chains composed of
2–17 carbon atoms provided organogelation ability in alcohols [106].

4. Applications

Self-assembled gels are attractive systems to design innovative materials. As discussed
in this review, CDPs can be biocompatible, cheap, and easy to synthesize, and natural
CDPs provide a great source of inspiration to develop green solutions for many of the
challenges of our century. As CDPs are a popular topic, recent reviews already exist on
CDP applications in medicine [39] and optoelectronics [40]. A comprehensive review of
CDP uses (Figure 6) was published in 2017 [27], therefore here we will focus on the latest
advancements in the field.

One research area that is gaining momentum is bioinspired enzyme mimicry through
the design of supramolecular catalysts based on minimalistic peptides [116] and their
derivatives, CDPs included. For instance, His and Cys residues are catalytically active
residues of various hydrolases. Cyclo(Phe-His) and cyclo(Phe-Cys) successfully self-
assembled into a hydrogel for esterase mimicry [41]. Cyclo(Phe-Leu) formed a hydrogel in
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the presence of tetramethylpyridylporphyrin iron complex (Fe(III)-TMPyP) as a catalyst for
peroxidase reactions [82]. The hydrogel not only provided a scaffold but also enhanced the
catalyst acceleration of pyrogallol oxidation, relative to the free catalyst in solution [82].
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Another area that is very promising for its innovative potential consists of the develop-
ment of smart materials, which respond to a variety of stimuli, with light being particularly
attractive for spatio-temporal control. For instance, a biocompatible non-natural CDP
equipped with an azobenzene (Scheme 4) provided an interesting hydrogelator that re-
sponded to a light switch through sol-gel transitions [117]. In particular, green-light
irradiation promoted trans-to-cis isomerization, which could be reversed upon appropriate
change of the light wavelength. Since only the trans isomer was a gelling agent, it was thus
possible to switch from the gel to a solution upon green-light irradiation. The compound
was studied to carry a possible anticancer drug into a living system and then release it with
an external-light stimulus [117].

Finally, organic electronics is one of the most researched areas as finding new tech-
nologies in this field could translate into great innovations in the electronic market. Recent
advancements include organic micro-devices that can be printed avoiding traditional
silicon-based components, although at present this is sustainable only in batch [118]. For
large-scale production, the key is finding a few versatile organic materials to reduce the
number of components needed for the printing process and to optimize the number of
reagents needed to print a complex circuit. The high stability provided by CDPs, together
with their easy low-cost production on a large scale, indeed makes them attractive to
develop organic electronics [40]. For example, cyclo(Tyr-Trp) is a hydrogelator with good
resistance to harsh environments. This compound was tested at different pH and tempera-
ture values, as well as in the presence of charged biopolymers, and the noticeable resistance
suggested the potential for electronic applications. Cyclic voltammetry studies showed a
supercapacitor behavior and good electrochemical stability, thus this material could be a
good candidate for an organic supercapacitor component [105].
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advancements include organic micro-devices that can be printed avoiding traditional sil-
icon-based components, although at present this is sustainable only in batch [118]. For 
large-scale production, the key is finding a few versatile organic materials to reduce the 
number of components needed for the printing process and to optimize the number of 
reagents needed to print a complex circuit. The high stability provided by CDPs, together 
with their easy low-cost production on a large scale, indeed makes them attractive to de-
velop organic electronics [40]. For example, cyclo(Tyr-Trp) is a hydrogelator with good 
resistance to harsh environments. This compound was tested at different pH and temper-
ature values, as well as in the presence of charged biopolymers, and the noticeable re-
sistance suggested the potential for electronic applications. Cyclic voltammetry studies 
showed a supercapacitor behavior and good electrochemical stability, thus this material 
could be a good candidate for an organic supercapacitor component [105]. 

Scheme 4. Chemical structures of the photo-responsive trans isomer of an azobenzene-derivative of
a DKP (Trans-DKP-Azo) that self-assembles into a hydrogel and can be used to carry the anticancer
drug plinabulin (center) through non-covalent interactions [117].

5. Conclusions

The area of self-assembling minimalistic systems composed of di- and tri-peptides
has attracted great interest in the last decade, showing promising potential for a variety
of applications. Recently, we have witnessed a renaissance of their cyclic derivatives,
CDPs, in virtue of their higher stability against physico-chemical harsh conditions as well
as biological degradation. The rigid structure provided by the CDP ring is particularly
attractive to impart various bioactivities, to allow to cross the blood-brain barrier and reach
otherwise difficult pathological targets to treat, and also to favor self-assembly into hydro-
and organo-gels. As new bioactive CDPs continue to be identified from natural sources,
and their synthesis can be easily attained also through the development of biotechnological
and microwave-assisted green methods, it appears evident that the field is well-set to keep
growing and bring further innovation in all the areas where greener alternatives are highly
sought after.
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