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Abstract

Background: Interactions between transcription factors and their specific binding sites are a key component of
regulation of gene expression. Until recently, it was generally assumed that most bacterial transcription factor
binding sites are located at or near promoters. However, several recent works utilizing high-throughput technology
to detect transcription factor binding sites in bacterial genomes found a large number of binding sites in unexpected
locations, particularly inside genes, as opposed to known or expected promoter regions. While some of these intragenic
binding sites likely have regulatory functions, an alternative scenario is that many of these binding sites arise by chance
in the absence of selective constraints. The latter possibility was supported by in silico simulations for σ54 binding sites
in Salmonella.

Results: In this work, we extend these simulations to more than forty transcription factors from E. coli and other bacteria.
The results suggest that binding sites for all analyzed transcription factors are likely to arise throughout the genome by
random genetic drift and many transcription factor binding sites found in genomes may not have specific regulatory
functions. In addition, when comparing observed and expected patterns of occurrence of binding sites in genomes, we
observed distinct differences among different transcription factors.

Conclusions: We speculate that transcription factor binding sites randomly occurring throughout the genome could
be beneficial in promoting emergence of new regulatory interactions and thus facilitating evolution of gene
regulatory networks.

Keywords: Gene regulatory networks, Evolution, Position-specific score matrix, Random sequence,
Protein-DNA interactions

Background
Transcription factors regulate gene expression by
binding to specific short DNA sequences in or near
promoters and either activate or repress initiation of
transcription. Most transcription factors interact with
other components of the transcription initiation com-
plex upon binding to DNA whereas some help initiate
transcription by remodeling the DNA structure at the
promoter, which subsequently allows the RNA polymer-
ase to assemble at the promoter and initiate transcrip-
tion (reviewed in [1]). Understandably, determining the
DNA sequences recognized by individual transcription

factors – the transcription factor binding sites – is of
utmost interest with respect to understanding gene regu-
latory networks and connecting the transcription factor
activity to the organism physiology in general. Generally,
combinations of experimental and computational tech-
niques are used for this purpose.
Recent genome-wide analyses of σ54 regulons in E. coli

and Salmonella using chromatin immunoprecipitation
coupled with deep sequencing (ChIP-seq) or microarray
technology (ChIP-chip) yielded an unexpected result in
detecting many σ54 binding sites outside known or po-
tential promoters and mostly within genes [2–4]. The
functions of these binding sites are subject of specula-
tion; in particular, depending on location and orientation
of these binding sites they could modulate gene
expression by transcription interference or promoter
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competition [5, 6]. Bonocora and coworkers [3] prof-
fered that many of the intragenic binding sites detected
in E. coli were conserved in other bacteria and, there-
fore, likely to have functional relevance. On the other
hand, we used a Monte Carlo approach and computer
simulations to estimate how many σ54 binding sites are
likely to occur by chance in the genome and found that
many of the binding sites detected by the ChIP-chip ex-
periments could be random occurrences arising in the
absence of direct selective constraints on the binding
sites and consequently may have no specific physio-
logical function [2]. Instead, we proposed that these ran-
domly occurring binding sites could play a significant
role in the evolution of the regulatory networks. Com-
parisons of regulatory networks elucidated by reverse
engineering from gene expression data among related
bacteria showed that regulatory networks evolve rapidly
by loss or gain of regulatory genes, as well as new regu-
latory interactions [7, 8]. Randomly occurring transcrip-
tion factor binding sites may not necessarily have a
significant negative effect on the organism fitness in
most instances and could promote emergence of new
regulatory interactions, thus contributing to the evolu-
tion of gene regulatory networks.
Widespread intragenic binding has also been reported

for other transcription factors. Grainger et al. [9] used
ChIP-chip to examine binding of the E. coli cAMP re-
ceptor protein (Crp) to the chromosomal DNA in vivo
and reported that while the strongest binding sites were
generally associated with known Crp-dependent pro-
moters a large number of weaker binding sites were
distributed throughout the chromosome. Intragenic
binding was also reported for the pyrimidine catabolism
master regulator RutR, apparently with no effect on the
transcript levels [10]. More recently, extensive intragenic
binding was detected in studies of genome-wide binding
sites for 116 transcription factors in E. coli using gen-
omic SELEX [11] and for 154 transcription factors in
Mycobacterium tuberculosis using ChIP-seq [12]. The
majority of the intragenic binding sites for these diverse
transcription factors are not associated with demon-
strated transcription start sites and have no known
function. Fitzgerald and coworkers [13] investigated in-
tragenic FliA-dependent promoters in E. coli and sug-
gested that they could play evolutionary roles analogous
to those we previously proposed for σ54 binding [2].
Considering the different mechanisms for regulating
transcription and wide-ranging roles of transcription fac-
tors that bind to numerous intragenic sites, we have ex-
tended the simulation performed for σ54 binding sites to
more than 40 additional transcription factors to investi-
gate whether our results for σ54 apply generally to tran-
scription factors and whether there are significant
differences among different regulatory proteins.

Results and discussion
Accurate representation of the null hypothesis requires
incorporating Markov dependencies and genome
heterogeneity in the null model
The goal of the simulations was to assess occurrence of
the motif (transcription factor binding site) sequences
under the conditions of the null hypothesis, which as-
sumes that the binding sites are not subject to direct
selective constraints but might be influenced by other
biases, such as biased codon and amino acid usage,
dinucleotide usage biases, or local variance in GC content.
We tested three different methods for generating random
sequences (representing different null models) imple-
mented in Genome Randomizer [14] (http://www.cmbl.
uga.edu/software.html). The simplest model, ‘b’ for “homo-
geneous Bernoulli model”, reproduces only the overall GC
content of the genome. This is the most commonly used
model to assess whether a certain sequence feature is sta-
tistically unusual and it assumes that the probability of
finding a particular nucleotide (A, C, G, or T) at a particu-
lar position in the sequence does not depend on the con-
text or the location in the chromosome. In model ‘bb’, the
genome annotation is used to divide the genome into seg-
ments consisting of individual protein-coding genes and
intergenic regions; a random sequence is generated for
each segment to mimic its nucleotide composition, and
the randomized genome is reassembled from these seg-
ments. Consequently, the model reproduces the compos-
itional heterogeneity of the sequence at the scale of
individual genes (for example, AT-rich genes or intergenic
segments in an otherwise GC-rich genome retain their
lower GC content) as well as asymmetry between the cod-
ing (sense) and template (antisense) strand and between
the leading and lagging strand with respect to the direc-
tion of replication (GC-skew) [15–17]. However, the ‘bb’
model still does not take into account the immediate con-
text in terms of nearest-neighbor biases. These biases are
reflected in the ‘m1c1’ model, which models each inter-
genic region as a first order Markov chain using the
nucleotide alphabet and each gene as a first order Markov
chain using the codon alphabet, where the next codon
probability depends on the last base of the previous
codon. Consequently, this model reproduces the sequence
heterogeneity at the gene scale like the ‘bb’ model but also
dinucleotide frequencies in each intergenic region and
codon frequencies as well as frequencies of dinucleotides
spanning adjacent codons in each gene.
Figure 1 compares reverse cumulative distributions of

PSSM (position-specific score matrix) scores in the E.
coli genome and 1000 randomized genomes for two of
the investigated transcription factors (E. coli Crp and Cra).
Only the right tail of the distribution with scores > 0 is
shown. Because the PSSM score equal to zero implies that
the sequence at hand is equally likely to match a
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probabilistic model of the binding site derived from the
training set as it is to match the probabilistic model of the
background derived from the genome, it is reasonable to
expect that scores close to zero are not affected by selec-
tion and the fit of the distribution for random sequences
and actual genome sequence can be used as a measure of
how accurately the null model captures biases unrelated
to direct selection on the binding sites. The plots show
that the model ‘b’ is the poorest match (the values for ran-
dom sequences are systematically lower than those for the
actual E. coli genome) and the model ‘bb’ is only slightly
better, whereas the more complex ‘m1c1’ model provides
a good match between the data and the model for scores
close to zero with deviations occurring only for high
scores which are likely to include physiologically import-
ant binding sites that are maintained by selection. A
similar trend was observed for all other investigated tran-
scription factors, with the ‘m1c1’ model generally provid-
ing a very good match to the observed values for scores
close to zero. The most notable exception among the ana-
lyzed transcription factors is FlhDC, where the null model
underestimates the number of sites even for PSSM scores
close to zero (Additional file 1: Figure S1). Although we
cannot reliably pinpoint the exact source of the discrep-
ancy, one possible reason is that pentamers TATTT and
CCNTT, which comprise the most conserved segments of
the consensus FlhDC binding site, are more abundant in
the E. coli genome than an average pentamer (TATTT has
12,114 copies compared to expected 9061 for an average
pentamer and CCNTT has 37,725 copies compared to

expected 36,243); because the null model takes into ac-
count only the biases at the level of codons and dinucleo-
tides, systematic biases related to larger oligonucleotides,
such as pentamers, could potentially lead to discrepancies
such as the one observed for FlhDC. Using a higher order
Markov chain for the null hypothesis could resolve such
issues but it could also lead to overfitting. We therefore
used the “m1c1” model in our analyses because it yields a
good fit to the complete genome for scores close to zero
for almost all transcription factors and invariably a better
match than the simpler models (the complete set of the
simulation results is available at http://www.cmbl.uga.edu/
downloads/data_sets/2018/PSSM_simulations).

Transcription factor binding sites are likely to arise by
chance even in the absence of selection
We summarized basic information about each analyzed
transcription factor binding site and the main results of
the simulations in a ‘report card’ such as the one shown
in Fig. 2 for AraC. The complete set of report cards for
all investigated transcription factors is presented in
Additional file 1: Figure S1. The sequence logos were
either downloaded from RegulonDB (http://regulondb.ccg.
unam.mx/) [18] or generated by the WebLogo server at
http://weblogo.berkeley.edu/logo.cgi [19]. The motif infor-
mation content is derived from information entropy of
each site in the alignment of motif sequences in the train-
ing set and equal to the sum of the height of all letters in
the sequence logo [20]. Note that, whereas the motif infor-
mation content is determined solely by the training set of

Fig. 1 Reverse cumulative distributions of PSSM scores for Crp (top) and Cra (bottom) binding sites in the E. coli genome (blue) and random
sequences (black). The ordinate displays the number of sites in the genome with scores greater or equal to the score cutoff indicated on the
abscissa. The thick black line refers to the median value in 1000 random sequences and the thin lines to the 1st, 5th, 25th, 75th, 95th, and 99th
percentiles, respectively. The random sequences were generated by the models ‘b’ (left), ‘bb’ (center), and ‘m1c1’ (right; see the text for details)
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high-confidence binding site sequences, the maximum
PSSM score also depends on the sequence in which the
search was performed, specifically on its GC content. That
is because the PSSM scores are defined as log-ratios of tar-
get and background probabilities [21]. The report card also
contains the key results of the simulations, including the
distribution of PSSM scores in the complete genome, re-
stricted to intergenic sequences, and protein-coding genes.
The key observations from the AraC report card in
Fig. 2 are the following: (i) For scores close to zero,
the simulations match the observed values; (ii) the
observed values begin to deviate from the simulations
between the PSSM scores 10 and 15; not surprisingly,
this is most apparent in the intergenic regions where

promoters and the most physiologically important
transcription factor binding sites are expected to reside;
(iii) the observed values in protein-coding genes are close
to those found in random sequences.
Another relevant observation is that although the ob-

served values deviate from the simulations for high
scores, the deviations are small. It is important to reiter-
ate that the null model used to generate the random se-
quences reproduces the biases resulting from selection
on codon usage and dinucleotide frequencies but not
those reflecting potential selective constraints operating
on longer oligonucleotides, including the transcription
factor binding sites. The values in random sequences
therefore represent an estimate of the number of

Fig. 2 The ‘report card’ for E. coli AraC binding site. The information provided include the sequence logo for the site (top left), basic information
about the motif (top right), and comparison of reverse cumulative distributions of PSSM scores in the genome and random sequences generated
by the ‘m1c1’ model. The distributions are shown for all sites in the genome, restricted to intergenic sequences, and to protein-coding genes
separately for coding and template strands. See Methods and legend to Fig. 1 for details
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binding sites that occur in the genome in the absence of
selection and the small differences between the observed
and expected values suggest that some of the binding
sites in the genome have likely arisen by random genetic
drift. It is important to note that the simulations can
only provide an estimate of the number of sites expected
to occur by chance; they cannot determine which spe-
cific binding sites are functional and which represent
such random occurrences. Specifically, for simulations
using the complete genome (the upper left panel in Fig. 2),
there are only 4 hits in the E. coli genome with scores
higher than the highest score expected to be found by
chance (the median value of the highest scores found in
the 1000 random sequences). We refer to this value as
ΔNgenome. Considering that the training set contained 15
AraC binding sites present in the E. coli genome and
supported by evidence, this observation suggests that pre-
dicted binding sites in the E. coli genome with scores
matching at least some of the verified binding sites are ex-
pected to arise from random genetic drift rather than from
direct selection on the binding site. When the simulations
are restricted to intergenic regions, the analogous value,
ΔNig, rises to 6 but this is still below the number of bind-
ing sites supported by evidence, suggesting that even
intergenic regions, which represent a small fraction of a
bacterial genome, may contain AraC binding sites that
arise de novo by chance. Not surprisingly, ΔNcod and
ΔNtem, which refer to simulations using coding and tem-
plate strands of genes, are 0 and 1, respectively, and the
PSSM score distributions match closely the expected
values; this is consistent with the expectation that
protein-coding regions contain none or only few AraC
binding sites maintained by selective constraints in
addition to those that arise by chance.
Table 1 lists the ΔN values and other relevant informa-

tion for all 43 transcription factors investigated in this
work. Notably, only four of the 43 transcription factors
have ΔNgenome ≥ 10 and all have more sites in the train-
ing set than ΔNgenome, whereas three of the 43 transcrip-
tion factors have ΔNig at least equal to the size of the
training set, including Fnr in R. sphaeroides (but not Fnr
in E. coli), LexA in M. tuberculosis (but not in C. difficile
and just below the size of the training set in E. coli), and
PurR with ΔNig = 21, the same as the size of the training
set. These data suggest that the reasoning presented
above for AraC is widely applicable to other transcrip-
tion factors and that the genomes likely contain a num-
ber of transcription factor binding sites that arise by
chance in absence of selection and probably do not have
regulatory functions. We speculate that such spontan-
eous appearance of transcription factor binding sites
could be important in providing sufficient plasticity of
regulatory networks to allow adaptations to new condi-
tions. ΔNcod and ΔNtem never exceed 3 (Table 1),

suggesting that most binding sites found in genes, like
those for σ54 in E. coli and Salmonella [2, 3], may be spuri-
ous occurrences resulting from random genetic drift and
do not necessarily have a physiological function.

Similarities and differences among transcription factors
Transcription factors that stand out in terms of high ΔN
are identified in Fig. 3. Not surprisingly, ΔNgenome and
ΔNig exhibit a strong correlation, consistent with the no-
tion that the transcription factor binding sites that are
maintained by selection are predominantly located in
intergenic regions. The most significant outlier is the
catabolic repression protein Crp, followed by LexA in E.
coli and M. tuberculosis (but not LexA in C. difficile),
Fnr in R. sphaeroides (but not Fnr in E. coli; we discuss
the differences among the same transcription factors
from different species in the following section), and to
lesser extent by E. coli Fur and PurR.
Also shown in Fig. 3 is the relationship between the

ΔNgenome and the motif information content. The infor-
mation content of the motif can serve as a surrogate
measure of the transcription factor binding specificity
(caveat: this assumes that the training set is accurate and
representative, which may not be the case and the
quality of the training set may differ for different tran-
scription factors). Functionally important binding sites
that are maintained by selection are therefore more likely
to stand out from the random background if the sequence
motif has a high information content, which in turn can
lead to high ΔN values. As expected, the transcription fac-
tor binding sites with high ΔNgenome also tend to have
high motif information contents with the notable excep-
tion of Crp, which has the highest ΔNgenome and ΔNig

among all transcription factor binding sites investigated in
this work but below average motif information content.
What makes Crp unusual? Being a global regulator

can be a reason for high ΔNgenome and ΔNig. The Crp
binding site training set in RegulonDB contains 260 se-
quences supported by experimental evidence, by far the
largest among the transcription factors analyzed in this
work (Table 1). According to other sources, Crp in E.
coli regulates at least 190 genes [11, 22]. The high num-
ber of Crp binding sites that have regulatory functions
and are subject to selective constraints leads to an excess
of sites with high PSSM scores (Fig. 1 and Additional file 1:
Figure S1). Crp is also functionally distinct from other
transcription factors in our list that are considered global
regulators, notably IHF, Fis, Lrp, and H-NS which all have
ΔNgenome = 0 and ΔNig ≤ 4 (Table 1, Fig. 4, and Additional
file 1: Figure S1). In addition to their role in regulation of
transcription, IHF, Fis, Lrp, and H-NS are also
nucleoid-associated proteins, which contribute to mainten-
ance of bacterial nucleoid structure and their regulatory
function is related to their roles in remodeling the local
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Table 1 Selected data about investigated transcription factor binding sites

Protein Genome Motif length # of sites Information content ΔNgenome ΔNig ΔNcod ΔNtem

AraC E. coli 17 15 12.1 4 6 0 1

ArcA E. coli 17 77 9.9 1 5 0 0

ArgP E. coli 18 16 11.3 2 3 2 0

ArgR E. coli 18 29 15.7 8 10 0 0

CpxR E. coli 14 58 9.0 2 3 1 0

Cra E. coli 16 42 14.7 2 14 0 0

Crp E. coli 22 260 11.3 28 55 1 3

CsgD E. coli 17 24 8.4 1 2 0 1

CytR E. coli 18 18 11.3 1 2 1 0

DnaA E. coli 11 14 13.0 0 8 0 0

FadR E. coli 18 16 15.6 5 12 0 2

Fis E. coli 15 214 6.9 0 3 0 0

FlhDC E. coli 16 16 12.8 2 13 1 0

Fnr E. coli 14 84 11.1 4 10 0 0

Fnr R. sphaeroides 14 27 17.1 18 38 0 1

Fur E. coli 18 48 15.8 9 27 1 1

GadW E. coli 20 17 14.5 1 5 0 0

GadX E. coli 21 24 11.3 2 5 0 0

GalR E. coli 15 12 16.3 3 9 0 2

GlpR E. coli 19 17 15.3 3 5 1 0

H-NS E. coli 13 48 8.2 0 0 0 1

IHF E. coli 13 95 8.4 0 4 0 3

LexA C. difficile 16 17 15.4 1 0 0 0

LexA E. coli 20 40 17.9 24 36 0 1

LexA M. tuberculosis 18 23 22.5 21 24 2 3

Lrp E. coli 15 80 7.1 0 3 0 1

MalT E. coli 10 15 12.0 0 3 0 0

MarA E. coli 19 23 12.4 2 6 0 0

MetJ E. coli 16 15 14.1 2 14 0 2

Nac E. coli 17 14 10.6 1 2 0 0

NagC E. coli 22 20 19.9 7 10 1 1

NarL E. coli 17 67 7.8 0 5 0 0

NsrR E. coli 14 39 12.2 0 1 0 0

NtrC E. coli 18 25 14.4 5 9 0 0

OmpR E. coli 19 20 13.5 3 4 0 1

OxyR E. coli 20 34 11.2 0 2 1 1

PhoB E. coli 22 24 13.4 4 9 1 0

PhoP E. coli 17 33 12.0 4 4 2 1

PurR E. coli 16 21 20.5 8 21 1 0

Rob E. coli 17 13 14.2 3 7 0 0
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and global structure of the nucleoid [23]. They have rela-
tively low binding specificity, which is reflected in low
information contents of their binding sites (Table 1). Un-
fortunately, we were not able to find a usable training set
to include another important nucleoid-associated protein
HU in our simulations, which is in part because it interacts
with DNA in a different manner than typical transcription
factors. The HU binding is thought to have a low sequence

specificity and its binding is largely determined by DNA
structure and supercoiling [24].

Comparison of LexA and Fnr binding sites in distantly
related bacteria
While our results center on transcription factors from E.
coli (a γ-proteobacterium) for which we could obtain
training sets from RegulonDB, we also included tran-
scription factor binding sites from other bacteria, namely
the Fnr binding site from the α-proteobacterium Rhodo-
bacter sphaeroides [25] and LexA binding sites from
Mycobacterium tuberculosis (phylum Actinobacteria)
[26] and Clostridium difficile (phylum Firmicutes) [27].
The reverse cumulative distributions of PSSM scores for
the Fnr binding sites in E. coli and R. sphaeroides are
markedly different despite similar consensus sequence
(Fig. 5; see also Additional file 1: Figure S1). The main
obvious difference in the sequence logos that represent the
training sets used to construct the PSSM is that the Fnr
binding site in R. sphaeroides has higher information con-
tent. This difference is also reflected in higher ΔNgenome

and ΔNig in R. sphaeroides (Table 1). This could be a result
of how the training sets were assembled; the E. coli training
set was downloaded from RegulonDB, which compiles in-
formation from multiple sources and the evidence in sup-
port of an individual binding site may originate from

Table 1 Selected data about investigated transcription factor binding sites (Continued)

Protein Genome Motif length # of sites Information content ΔNgenome ΔNig ΔNcod ΔNtem

σ54 S. enterica 18 53 16.9 3 4 1 0

SoxS E. coli 18 27 12.5 3 7 0 0

TyrR E. coli 17 19 15.8 6 7 0 0

The DNA-binding proteins investigated in this work are listed together with the length of the motif in nucleotides, number of sites in the training set, and motif
information content (in bits). ΔNgenome is the number of sites found in the genome that have higher PSSM score than the highest score expected to be found in
the random sequence (median value among the 1000 simulations). ΔNig is the analogous value when the search is restricted to intergenic sequences and ΔNcod

and ΔNtem are the analogous values for the search restricted to codon and template strands of protein-coding genes, respectively

Fig. 3 Relationship between ΔNgenome and ΔNig (top) and between
ΔNgenome and the motif information content (bottom). Outliers are
labeled. For transcription factors from other bacteria than E. coli the
species is signified by the letter in parentheses, M for M. tuberculosis
and R for R. sphaeroides

Fig. 4 Reverse cumulative distributions of PSSM scores for IHF
binding sites in the E. coli genome (blue) and random sequences
(black). See legend to Fig. 1
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studies relying on different methodologies, whereas the
training set for R. sphaeroides contains Fnr binding sites
identified in a single study and supported by ChIP-chip
data [25]. Moreover, the E. coli training set contains 84
binding sites compared to 27 in the R. sphaeroides Fnr
training set.
To investigate whether the differences in the motif in-

formation contents and the size of the training set could
cause the differences in the PSSM score distributions,
we reduced the E. coli training set to 20 sites most simi-
lar to the consensus and repeated the simulations (Fig. 5
and Additional file 2: Figure S2). Although the informa-
tion content of the sequence motif generated from the
reduced training set increased to 19.6 bits compared to
11.1 bits when using the complete training set of 84 sites
and 17.1 bits for the Fnr binding site from R. sphaeroides
(Table 1), the resulting distribution of PSSM scores re-
sembles that of the E. coli Fnr with the full training set
and lacks the ‘bump’ in the tail seen in the score distri-
bution for Fnr in R. sphaeroides. We also performed
cross-species simulations, i.e., searching for R. sphaer-
oides Fnr motif in the E. coli genome and vice versa, and
both resulted in PSSM score distributions more similar
to those shown in Fig. 5 for E. coli than those for R.
sphaeroides (Additional file 2: Figure S2). We therefore
conclude that the differences in our results for Fnr in
E. coli and R. sphaeroides are not due to the differences in
the training sets or the motif information contents.
One factor that could contribute to the difference be-

tween Fnr binding sites in E. coli and R. sphaeroides is
the level of contrast between the GC content of the
binding set and that of the genome; the R. sphaeroides
genome is GC-rich (69% GC) and the E. coli genome is
GC-neutral (51% GC), whereas the Fnr binding site is
AT-rich in both bacteria. However, the difference in our
results for Fnr in E. coli and R. sphaeroides may also
arise from physiological differences between the two
bacteria, specifically the number of genes regulated by
Fnr. In most bacteria, the core Fnr regulon includes

genes involved in response to O2 deprivation but in R.
sphaeroides it also regulates photosynthetic genes, which
are not present in E. coli and most other bacteria [25].
Unlike Fnr, which has similar binding site consensus

in E. coli and R. sphaeroides, the LexA binding site mo-
tifs differ significantly among the three compared ge-
nomes, E. coli, M. tuberculosis, and C. difficile (Fig. 6).
The PSSM score distributions show clear excess of
high-scoring predicted LexA binding sites in E. coli and
M. tuberculosis compared to random sequences but little
differences between the observed and simulated PSSM
score distributions in C. difficile (Fig. 6 and Additional
file 1: Figure S1). It is intriguing to speculate that the
divergences in the PSSM score distributions relate to
variations in the LexA roles among different species,
possibly in combination with differences in the genome
GC contents. However, the detailed roles of LexA in dif-
ferent bacteria are not well understood and there is no
obvious connection to the observed differences in PSSM
score distributions. Distinctions in the LexA roles in C.
difficile include positive regulation of sporulation, which
is a cellular process that is not exhibited by either E. coli
or M. tuberculosis, and negative regulation of essential
housekeeping genes, rpoB and rplR, which has not been
reported for the LexA regulon of E. coli or M. tubercu-
losis and is likely to have pleiotropic effects on the cell
[26–29]. With respect to GC content, the binding site
motifs are AT-rich in all three genomes (32% GC in C.
difficile, 36% in E. coli, and 41% in M. tuberculosis),
whereas genome GC contents are dramatically different,
ranging from 29% in C. difficile, to 51% in E. coli, and
66% in M. tuberculosis. Interestingly, the LexA binding
sites themselves are more similar between C. difficile
and M. tuberculosis with both exhibiting the consensus pat-
tern GAAC(N)4GTT, than any of them is to E. coli, which
has a consensus GTG(N)10CAG (Fig. 6). Cross-species
searches (for example, searching for C. difficile LexA bind-
ing site in M. tuberculosis genome) resulted in PSSM score
distributions similar to those found in randomized genomes

Fig. 5 Reverse cumulative distributions of PSSM scores for the Fnr binding site in R. sphaeroides (left), in E. coli using the complete training set
(center), and in E. coli but using reduced training set of top 20 binding sites in the training set (right). The inserts show the sequence logos
representing the training sets used to construct the PSSM
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(Additional file 2: Figure S2), which is not surprising con-
sidering the differences among the binding site consensus
sequences (Fig. 6).

Transcription factor binding sites in protein coding
regions
In our previous work [2], we noted a mild suppression
of high-scoring σ54 binding sites in the template strand
of protein coding genes (but not the coding strand) and
we hypothesized that the binding sites in the template
strand could be detrimental due to conflicts of RNA
polymerases progressing in the opposite directions if the
σ54 binding sites in the template strand resulted in tran-
scription initiation. It should be noted that unlike any of
the transcription factors analyzed in this study, σ54 binds
DNA as part of the RNA polymerase holoenzyme and
each binding site has the potential to be an active pro-
moter. In contrast to σ-factors, transcription factor bind-
ing is not sufficient to initiate transcription in the
absence of a proximal promoter and randomly occurring
transcription factor binding sites are therefore less likely
to result in potentially detrimental transcriptional inter-
ference. Inspection of data in Additional file 1: Figure S1
suggests that although such suppression of transcription
factor binding sites in protein-coding genes is not com-
mon, some of the investigated transcription factor bind-
ing sites have fewer high-scoring hits in genes and
particularly in the template strand, including ArcA,
MarA, OmpR, and PurR. On the other hand, none of
the investigated transcription factors have significantly
more high-scoring binding sites in genes than expected
(Table 1 and Additional file 1: Figure S1).

Potential implications for evolution of regulatory
networks
Our results are consistent with a scenario in which the
regulatory DNA-binding proteins have ‘just the right’
level of specificity for their respective binding sites that
facilitates high-affinity binding to physiologically import-
ant promoters (sites with the highest PSSM scores tend

to be located in intergenic regions) while also allowing
binding to randomly occurring sites in the genome. This
allows for emergence of new regulatory interactions,
which, when beneficial, could become fixed in the popu-
lation. This scenario is also consistent with earlier works
showing that regulatory networks evolve rapidly by gain
and loss of regulatory proteins as well as specific regulatory
interactions determined by the interface between the
DNA-binding domain of the regulatory protein and its
binding sites in the DNA [7, 8] and may explain the wide-
spread binding of transcription factors to sites located in
unexpected places, including inside protein-coding regions
[2, 11–13]. Some of such randomly occurring transcription
factor binding sites may subsequently be incorporated into
regulatory networks, which may include standard tran-
scriptional regulation as well as non-canonical mechanisms
of transcriptional or posttranscriptional control, such as
synthesis of small regulatory RNAs or transcriptional inter-
ference [5, 6], regulation of adjacent operons [30], or act as
transcriptional regulators for previously unrecognized
protein-coding genes [31].
A caveat in this interpretation of the results relates to

the use of PSSM scores as a surrogate measure of bind-
ing affinity to a particular site in the DNA. The PSSM
model is widely used for computational prediction of
transcription factor binding sites but it cannot capture
cooperative effects among multiple binding sites or the
influence of supercoiling levels, DNA bending, and/or
other variations in DNA structure on the DNA-protein
interaction [32–35]. In this regard, our comparison of
PSSM scores with ChIP-chip signal intensities for σ54

binding sites showed a significant but noisy correlation,
suggesting that the PSSM scores offer a meaningful
quantitative estimate of the binding affinity but with a
limited accuracy, which probably results from factors
that cannot be captured in the binding site motif, such
as wider sequence context or structure of the surround-
ing DNA segment [36]. Moreover, despite its simplicity,
the PSSM method is still the most commonly used tech-
nique to predict transcription factor binding sites and

Fig. 6 Reverse cumulative distributions of PSSM scores for the LexA binding site in E. coli (left), M. tuberculosis (center), and C. difficile (right). The
inserts show the sequence logos representing the training sets used to construct the PSSM
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attempts to add more sophisticated improvements did not
result in better accuracy [36]. The main limitation, however,
is related to the quality and size of the training set, which
varies widely among the different transcription factors ana-
lyzed in this work. Despite these limitations, we believe that
our main conclusion, that many of the transcription factor
binding sites identified by recent analyses of genome-wide
DNA binding (ChIP-chip, ChIP-seq, and genomic SELEX)
may occur randomly in the absence of selective constraints,
is justified for the following reasons: (i) The results are con-
sistent for all the analyzed transcription factors regardless
of the size of the training set; in addition, restricting the
training set to a subset of most conserved sites does not
qualitatively change the results. (ii) For low PSSM score
cutoffs, the observed values match the expected values
from the simulations; that was also true for cross-species
searches with LexA binding sites where selection is not ex-
pected to play a role. (iii) Finally, the random emergence of
binding sites may be required to facilitate the rapid evolu-
tion of regulatory networks, which was suggested by inde-
pendent and very different methodology [7, 8].

Conclusions
To address potential roles of transcription factor binding
sites found outside of known or expected promoters
[2–4, 9–13], we performed a series of in silico simulations
for 43 transcription factors with the goal to estimate how
many of their binding sites are likely to occur in the gen-
ome by chance, that is, in the absence of selective con-
straints operating directly on the binding sites. Using a null
model that reflects the codon usage and nearest neighbor
biases inherent in the genome, we found that for all tran-
scription factors included in our study, the excess of pre-
dicted binding sites in the natural genome relative to the
randomized genomes was always smaller than the number
of known binding sites for the given transcription factor.
Moreover, the numbers of predicted binding sites in the
natural genome were often very similar to those in the ran-
domized genomes. We interpret this result as an indication
that a significant fraction of the transcription factor binding
sites found in a genome could arise from random genetic
drift without having a physiological function in the cell. We
speculate that such randomly occurring transcription factor
binding sites could play an important role in evolution of
gene regulatory networks by providing opportunities for
emergence of new regulatory interaction. This scenario is
consistent with the observation that regulatory networks
evolve rapidly by loss or gain of regulatory genes, as well as
new regulatory interactions [7, 8].

Methods
DNA sequences and motif training sets
The genomic DNA sequence including annotation in the
GenBank format were downloaded from the NCBI

database (https://www.ncbi.nlm.nih.gov/) for E. coli K12
substrain MG1655 (accession number NC_000913),
Salmonella enterica serovar Typhimurium strain 14028S
(NC_016856), Mycobacterium tuberculosis H37Rv
(AL123456), Clostridium difficile R20291 (FN545816),
and chromosome 1 of Rhodobacter sphaeroides 2.4.1
(NC_007493). For the E. coli transcription factor binding
sites, the training sets were obtained from RegulonDB
(http://regulondb.ccg.unam.mx/) [18] directly in the form
of the frequency matrices whereas for the transcription
factor binding sites from the other genomes the frequency
matrices were constructed from collections of known bind-
ing sites obtained from original literature. The sample of
H-NS binding sites was extracted from RegulonDB flat file
(http://regulondb.ccg.unam.mx/menu/download/datasets/
files/PSSMSet.txt). The data files used in the simulations
are available for download at http://www.cmbl.uga.edu/
downloads/data_sets/2018/PSSM_simulations.

Motif search
The standard PSSM method implemented in the Motif
Locator program previously developed in our laboratory
[37] was used to assign scores to potential binding sites.
In brief, frequency matrix {Na, i}, consisting of counts of
the letter (nucleotide) a at motif position i, is con-
structed from the training set of known motif sequences.
Pseudocounts (an arbitrary small number) are added to
the values Na, i to account for the uncertainty resulting
from the limited size of the training set. The frequency
matrix {Na, i} is converted to probability matrix {pa, i},
where pa, i is a probability of finding the letter a at pos-
ition i of the motif. The position-specific score matrix
(PSSM) is subsequently defined as sa, i = log(pa, i/qa); qa
are the background probabilities, that is probabilities of
finding the letter a at any position in the genome, which
reflect the genome GC content. Assuming the motif has
the length L nucleotides, any L-mer can be assigned a

score S ¼ PL
i¼1 sai;i , where ai is the nucleotide at pos-

ition i of the L-mer at hand. The score S is referred to as
PSSM score and reflects the ratio of the probability that
the L-mer matches a randomly selected sequence from
the probabilistic model of the motif represented by the
probability matrix and the probability that it matches a
randomly selected sequence from the probabilistic
model of the background represented by the background
probabilities. For more details, see, for example, ref. [21].
All overlapping L-mers in both strands of the genome
are subsequently assigned PSSM scores; for the purposes
of this work, the number of L-mers with scores greater
or equal to a selected score cutoff is recorded. In-house
software was used to mask protein-coding segments (the
CDS features in the GenBank file Features Table) to
evaluate PSSM scores in intergenic regions and to
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extract annotated protein-coding sequence to evaluate
scores in protein-coding genes.

Monte Carlo simulations
Monte Carlo approach is used to estimate the distribution
of the numbers of L-mers with scores greater or equal to a
selected score cutoff in the absence of selective constraints
operating on the motif. One thousand random sequences
were generated by one of the three stochastic models, ‘b’,
‘bb’, and ‘m1c1’, implemented in the Genome Randomizer
program previously developed in our laboratory [14]
(http://www.cmbl.uga.edu/software.html). The PSSM
method was used to find the number of L-mers scoring
above each selected cutoff in each of the random se-
quences in exactly the same manner as it was used for the
actual genome sequence. The complete set of computer
programs used to perform the simulations is available for
download at http://www.cmbl.uga.edu/downloads/data_
sets/2018/PSSM_simulations.

Additional files

Additional file 1: Figure S1. Complete set of ‘report cards’ for
transcription factor binding sites investigaed in this work. (PDF 3337 kb)

Additional file 2: Figure S2. ‘Report cards’ for additional tests including
cross-species searches. (PDF 849 kb)
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