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Muscarinic receptors (mAChRs) are typical members of the G protein-coupled

receptor (GPCR) family and exist in five subtypes from M1 to M5. Muscarinic

receptor subtypes do not sufficiently differ in affinity to orthosteric antagonists

or agonists; therefore, the analysis of receptor subtypes is complicated, and

misinterpretations can occur. Usually, when researchers mainly specialized in

CNS and peripheral functions aim to study mAChR involvement in behavior,

learning, spinal locomotor networks, biological rhythms, cardiovascular

physiology, bronchoconstriction, gastrointestinal tract functions, schizophrenia,

and Parkinson’s disease, they use orthosteric ligands and they do not use allosteric

ligands. Moreover, they usually rely on manufacturers’ claims that could be

misleading. This review aimed to call the attention of researchers not deeply

focused on mAChR pharmacology to this fact. Importantly, limited selective

binding is not only a property of mAChRs but is a general attribute of most

neurotransmitter receptors. In this review, wewant to give an overview of themost

common off-targets for established mAChR ligands. In this context, an important

point is a mention the tremendous knowledge gap on off-targets for novel

compounds compared to very well-established ligands. Therefore, we will

summarize reported affinities and give an outline of strategies to investigate the

subtype’s function, thereby avoiding ambiguous results. Despite that, the

multitargeting nature of drugs acting also on mAChR could be an advantage

when treating such diseases as schizophrenia. Antipsychotics are a perfect

example of a multitargeting advantage in treatment. A promising strategy is the

use of allosteric ligands, although some of these ligands have also been shown to

exhibit limited selectivity. Another new direction in the development of muscarinic

selective ligands is functionally selective and biased agonists. The possible selective

ligands, usually allosteric, will also be listed. To overcome the limited selectivity of

orthosteric ligands, the recommended process is to carefully examine the

presence of respective subtypes in specific tissues via knockout studies,

carefully apply “specific” agonists/antagonists at appropriate concentrations and

then calculate the probability of a specific subtype involvement in specific

functions. This could help interested researchers aiming to study the central

nervous system functions mediated by the muscarinic receptor.
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1 Introduction

It is widely accepted that many neurotransmitters bind to

different receptor types. As an example, glutamate binds to

metabotropic glutamate receptors (mGlu) and to a group of

ligand-gated ion channels (N-methyl-D-aspartate (NMDA), α-
amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)

and kainite receptors). Serotonin binds mainly to G protein-

coupled receptors (GPCRs), but 5-HT3 receptors are ligand-

gated ion channels. Similarly, acetylcholine (ACh) binds to

nicotinic receptors (NRs), which are ligand-gated ion

channels, and to muscarinic receptors (mAChRs), which are

typical G protein-coupled receptors.

Commonly, less is known about the properties of ligands

used in research on the central nervous system (CNS) and

peripheral tissue functions. In this review, we will focus on

mAChRs. As an example, the recent translational research of

human epithelial ovarian carcinoma have described the role of

M2 mAChRs in M2 cell growth and survival (Taggi et al.,

2022). The authors have used arecaidine propargyl ester as M2

mAChR preferential agonist. However, as it can be deduced

from Table 1, arecaidine propargyl ester binds with similar

affinity to M2-M4 mAChRs, slightly better that to M1

mAChRs. These conclusions could be therefore misleading.

It could be surprising to mention that majority of GPCRs can

be activated by multiple ligands (Vass et al., 2018), e.g.,

1312 potentially active ligands (searched from ChEMBL

database (Gaulton et al., 2016), with Ki<1 µmol/L) exist for M1

mAChRs, of which 930 are active at other GPCRs (i.e., 70%).

Similarly, among 1336 potentially active ligands for M2, 974 are

active at other GPCRs (i.e., 73%), and the corresponding numbers

for M3 mAChRs and M4 mAChRs are 1384 vs. 855 (i.e., 62%) and

466 vs. 387 (i.e., 83%), respectively. Thus, these authors talk about

the interactome.

In general, the off-target is defined as targets (proteins or

other molecules in the body) other than those for which the

drug was meant to bind. This can lead to unexpected side effects

that may be both harmful and positive. Learning about the off-

target effects of drugs may help in drug development.

Alternatively, these drugs are designated as multitargeting

drugs.

Muscarinic receptors can provide good examples of ligands

exhibiting multitarget properties. Typically, mAChR subtypes

do not greatly differ in their affinity to orthosteric antagonists

(Farar and Myslivecek, 2016; Valuskova et al., 2018a;

Myslivecek, 2019) or agonists (Alexander S. P. et al., 2017),

which complicates the analysis determining receptor subtypes

involved in the specific function and misinterpretations can

occur. Thus, the exact role of a specific muscarinic subtype is an

important issue that is usually not precisely considered when

studying its functions.

There are five mAChR subtypes (M1-M5). They can be

classified into the even-numbered subtypes (M2,M4) that

preferentially couple to heterotrimeric Gi proteins and the

odd-numbered (M1,3,5) that preferentially couple to

heterotrimeric Gq proteins. In detail, odd-numbered mAChRs

are more similar in amino acid sequence composition (see

Section 6) between each other than this group and the other

group (even-numbered mAChRs).

What is important, mAChRs are involved in many functions,

such as learning (Fernández De Sevilla et al., 2021), spinal

locomotor networks (Mille et al., 2021), locomotion (Ztaou

and Amalric, 2019), biological rhythms (Myslivecek et al.,

2017), cardiovascular physiology (Saternos et al., 2017),

bronchoconstriction (Kistemaker and Gosens, 2015), and

gastrointestinal tract functions (Tobin et al., 2009), and they

are also involved in pathologies, such as schizophrenia (Dean and

Scarr, 2020) and Parkinson’s disease (Ztaou and Amalric, 2019).

Therefore, the choice of appropriate ligand(s) is crucial for

mAChR subtype determination in the abovementioned

functions.

There are several ways how to discriminate between mAChR

subtypes. The first is the choice of appropriate ligand(s) with

careful competition binding. This is usually a time and source-

consuming issue and sometimes it is not possible (e.g., when it is

necessary to see the changes in function depending on mAChR

subtype). The second one is the use of the procedure as proposed

here. The third possibility is the use of a specific ligand (mostly

allosteric) whose number and subtype selectivity are limited

to date.

The allosteric ligands have been shown to exhibit

selectivity for specific mAChR subtypes (Kruse et al.,

2013; Kruse et al., 2014; Bock et al., 2018; Coughlin

et al., 2019), providing promising therapeutic effects in

diseases connected with mAChRs. However, the search for

therapeutically useful ligands should also address

additional criteria (i.e., security, bioavailability) beyond

subtype specificity. As discussed in Section 4, in most

cases, orthosteric ligands bind with higher affinity, and

allosteric ligands can provide greater receptor selectivity

but are not bound with sufficient affinity. On the other

hand, not all orthosteric bind with a higher affinity, and not

all allosteric ligands may provide greater receptor

selectivity. Bitopic (dualsteric) ligands combine allosteric

site selectivity with orthosteric high binding affinity.

Another new direction in the development of selective

muscarinic ligands involves functionally selective and biased

agonists [for detail, see review (Randáková and Jakubík, 2021)].

However, both allosteric ligands and biased agonists are usually

not widely known and thus are not used in mAChR functional

studies. On the other hand, allosteric ligands can also target

multiple receptors; thus, analyses of mAChR functions using

these ligands can be complicated. Additionally, very well-

established ligands (with a long history of use in MR

research, e.g., atropine) are expected to exhibit more

additional targets than less established ligands (with a short
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TABLE 1 Effects of orthosteric agonists (+endogenous ligand) on muscarinic receptors and other targets. The compounds are listed alphabetically.
The numbers indicate pKi values. Please note that a higher pKi indicates higher affinity. Unavailable data are shown as blank spaces. The affinities
of nicotinic receptors are not divided among specific subunits. The affinities of other, noncholinergic targets are divided into nanomolar (pKi>6) and
micromolar (pKi<6) groups. The categorization of pKi is compromise between extremely large Table and fast orientation howmuch are other targets
are affected in specific concentration of ligand used (see also examples in Chapter 5). Data are from or adapted from (Pascuzzo et al., 1984; Eglen
and Whiting, 1987; Buckley et al., 1989; Buckley et al., 1990; Hudkins et al., 1991; Wess et al., 1991; Bolden et al., 1992; Kashihara et al., 1992;
Sowell et al., 1992; Doods et al., 1993; Shen et al., 1993; Stanton et al., 1993; Doods et al., 1994; Ferrari-Dileo et al., 1994; Kleinschroth et al., 1995;
Waelbroeck et al., 1996; McKenna et al., 1997; Boess et al., 1998; Bolognesi et al., 1998; Cantı´ et al., 1998; Caulfield and Birdsall, 1998; Lazareno
et al., 1998; Choppin et al., 1999; Sánchez and Hyttel, 1999; Eglen and Nahorski, 2000; Kozlowski et al., 2000; Lazareno et al., 2000; Becerra et al.,
2001; Dhein et al., 2001; Huang et al., 2001; Lockhart et al., 2001; Apelt et al., 2002; Carlsson et al., 2002; Harvey et al., 2002; Cheng et al., 2002;
Lazareno et al., 2002; Böhme et al., 2003; Samochocki et al., 2003; Sur et al., 2003; Jakubik et al., 2004; Kobayashi et al., 2004; Wang et al., 2004;
Ghoneim et al., 2006; Spalding et al., 2006; Butini et al., 2008; Langmead et al., 2008; Bridges et al., 2009; Heinrich et al., 2009; Prat et al., 2009;
von Coburg et al., 2009; Bridges et al., 2010a; Harada et al., 2010; Hern et al., 2010; Lange et al., 2010; Rook et al., 2010; Sinha et al., 2010; Watt
et al., 2011; Daval et al., 2012; Samadi et al., 2012; Sykes et al., 2012; Arunotayanun et al., 2013; Nenasheva et al., 2013; Salmon et al., 2013; Croy
et al., 2016; Gaulton et al., 2016; Alexander S. P. et al., 2017; Alexander S. P. H. et al., 2017; Chen et al., 2017; Carr et al., 2018; Hegde et al., 2018;
Broad et al., 2019; Myslivecek, 2019; Xu et al., 2019; Olianas et al., 2020; Okimoto et al., 2021) and the IUPHAR/BPSGuide to Pharmacology (www.
guidetophamacology.org). For specific ligand references see text. The activity represents the main effect of a specific ligand.

Target Muscarinic receptors Nicotinic
receptors

Cholinester-
ases (ChEs)
AChE/BChE

Other targets

M1 M2 M3 M4 M5 Nanomolar
(pKi > 6)

Micromolar
(pKi < 6)

Drug Endogenous ligand

Acetylcholine 4.3–4.9 6.4 5.6 4.5–5.6 6.1 4.06–8.77

Orthosteric agonists

77-LH-28-1 8.7 5.5 ± 0.1 5.9 ± 0.2 5.8 ± 0.4 D2DR, 5-HT2B 5HT2C

AC-260584 (*) 7.39 (5.9) 5.0–6.16 5.23 5.0 6.0 D2DR 5HT2C, 5-HT2B

AC-42 (*) 6.2 (6.2) 5.76–6.01 5.55–6.0 5.85–6.0 5.35–6.0 6.0 6.0 α1A,B,D-AR, α2A,B-
AR, D2DR, D4DR,
H1R, 5-HT1A,

A1 R, A2A R, A3 R, β1,2-
AR, CB1 R, CCK R, GR,
ChT, MAO, NPY R,
SERT,

(-)-aceclidine# 5.4
[5.6–5.7]

6.2–6.4
[5.1]

5.7[5.1] 5.4[5.0] 5.5[4.8]

arecaidine
propargyl ester

6.4 5.7 5.7 5.9

Arecoline 5.7 5.2 5.4 5.5 6.57–6.65 CACNA1C

Bethanechol 4.0 4.0 4.2 4.0

butylthio-TZTP (PET) σ1R (PET)

Carbachol 3.2–5.3 4.2–5.7 4.0–4.4 4.3–4.9 4.9 4.18–6.12 not cleaved AANAT

cevimeline 5.3 6.1 5.6 6.0

furtrethonium 4.1 4.5 4.1 4.3

Iperoxo 5.67–10.1 9.8 9.52 ±
0.81

LY-593039 6.21–7.63 6.05–7.54 >5.0 >5.0 >5.0 D2DR, 5-HT2B 5HT2C

methacholine 6.4 7.2 6.9 5.8 AANAT

Methylfurmethide 4.6 4.9 4.6 4.7 2.0

milameline$ 5.5 5.4 5.1 4.8

NNC 11-1314 7.4 7.2 7.1–7.7 7.3 7.8

NNC 11-1585 9.9 10.1 8.3 8.6 8.3

NNC 11-1607 8.6 8.2 8.1 8.1 8.2

oxotremorine 5.5–6.0 5.0–6.6 5.3 5.2 5.1–7.26 5.82–8.77 AANAT

oxotremorine-M 5.1–5.6 4.9 5.1 5.2

pentylthio-TZTP 8.6 7.9 8.1 8.7

pilocarpine 4.9–5.1 4.9 5.1 5.2 5.0

sabcomeline (SB-
202026)

6.7 7.0 7.2 7.1

SPP1 7.67 6.89 5.10 6.94 6.71

(Continued on following page)
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history of use or only recently discovered), simply because they

are better investigated. Another aspect that complicates the

determination of appropriate receptor subtypes in specific

tissues is the presence of multiple mAChR subtypes in both

periphery tissues, e.g., the retina (Ruan et al., 2021) and heart

(Myslivecek et al., 2008a; Myslivecek et al., 2008b), and CNS

tissues, e.g., the striatum (Felder et al., 2018), hippocampus

(Ohno-Shosaku et al., 2003) and other tissues. In the CNS, the

presence of multiple mAChR subtypes on the same structure

(presynaptic or postsynaptic) thus complicates the

identification of target structures. In the brain, some regions

have targets being co-expressed, whereas regions have only one

target or subtype predominantly expressed. This can be also

relevant if a ligand is targeting regions in the brain and only one

region is of interest. The number of receptors (Bmax) also plays a

role in receptor interactions.

One can argue that it is possible to use antibodies against

specific mAChR subtypes; however, antibodies are very often not

specific to the declared targets and can reveal the presence of

specific subtypes, even when using mAChR subtype-specific

knockout (KO) (Pradidarcheep and Michel, 2016).

Here, we focus on the multiple-target binding of widely used

muscarinic drugs that are usually considered subtype-specific.

We mainly focus on orthosteric ligands because of their broad

usage. We also will emphasize the allosteric drugs that have been

shown to be subtype-selective.

Usually, but not in all cases, the orthosteric agonists need

micromolar concentration to activate the receptors (see

Table 1). The concentration of agonists in signaling assays

will depend on receptor expression, receptor reserve, and the

amplification of the signaling assay. The antagonists can block

the receptors with nanomolar concentration. The common

TABLE 1 (Continued) Effects of orthosteric agonists (+endogenous ligand) on muscarinic receptors and other targets. The compounds are listed
alphabetically. The numbers indicate pKi values. Please note that a higher pKi indicates higher affinity. Unavailable data are shown as blank spaces. The
affinities of nicotinic receptors are not divided among specific subunits. The affinities of other, noncholinergic targets are divided into nanomolar
(pKi>6) and micromolar (pKi<6) groups. The categorization of pKi is compromise between extremely large Table and fast orientation how much are
other targets are affected in specific concentration of ligand used (see also examples in Chapter 5). Data are from or adapted from (Pascuzzo et al.,
1984; Eglen andWhiting, 1987; Buckley et al., 1989; Buckley et al., 1990; Hudkins et al., 1991;Wess et al., 1991; Bolden et al., 1992; Kashihara et al., 1992;
Sowell et al., 1992; Doods et al., 1993; Shen et al., 1993; Stanton et al., 1993; Doods et al., 1994; Ferrari-Dileo et al., 1994; Kleinschroth et al., 1995;
Waelbroeck et al., 1996; McKenna et al., 1997; Boess et al., 1998; Bolognesi et al., 1998; Cantı´ et al., 1998; Caulfield and Birdsall, 1998; Lazareno et al.,
1998; Choppin et al., 1999; Sánchez and Hyttel, 1999; Eglen and Nahorski, 2000; Kozlowski et al., 2000; Lazareno et al., 2000; Becerra et al., 2001;
Dhein et al., 2001; Huang et al., 2001; Lockhart et al., 2001; Apelt et al., 2002; Carlsson et al., 2002; Harvey et al., 2002; Cheng et al., 2002; Lazareno
et al., 2002; Böhme et al., 2003; Samochocki et al., 2003; Sur et al., 2003; Jakubik et al., 2004; Kobayashi et al., 2004;Wang et al., 2004; Ghoneim et al.,
2006; Spalding et al., 2006; Butini et al., 2008; Langmead et al., 2008; Bridges et al., 2009; Heinrich et al., 2009; Prat et al., 2009; vonCoburg et al., 2009;
Bridges et al., 2010a; Harada et al., 2010; Hern et al., 2010; Lange et al., 2010; Rook et al., 2010; Sinha et al., 2010; Watt et al., 2011; Daval et al., 2012;
Samadi et al., 2012; Sykes et al., 2012; Arunotayanun et al., 2013; Nenasheva et al., 2013; Salmon et al., 2013; Croy et al., 2016; Gaulton et al., 2016;
Alexander S. P. et al., 2017; Alexander S. P. H. et al., 2017; Chen et al., 2017; Carr et al., 2018; Hegde et al., 2018; Broad et al., 2019; Myslivecek, 2019; Xu
et al., 2019; Olianas et al., 2020; Okimoto et al., 2021) and the IUPHAR/BPSGuide to Pharmacology (www.guidetophamacology.org). For specific ligand
references see text. The activity represents the main effect of a specific ligand.

Target Muscarinic receptors Nicotinic
receptors

Cholinester-
ases (ChEs)
AChE/BChE

Other targets

M1 M2 M3 M4 M5 Nanomolar
(pKi > 6)

Micromolar
(pKi < 6)

xanomeline (*) 6.7–7.9
(7.8 ± 0.1)

6.9–7.4 7.2–7.4 7.4–7.7 6.7–7.4 5HT1A,1B,1D,1F 5-HT6, 5-ht1e

5-HT2A,2B,2C, 5-HT7

(-)YM796 4.3–4.8

(±)YM796 4.1–4.7

5-HT, serotonin receptors (with specific subtypes); AANAT, serotonin N-acetyltransferase (arylalkylamine N-acetyltransferase); A1R, adenosine A1 receptor; A2AR, adenosine A2A

receptor; A3R, adenosine A3 receptor; AR, androgen receptors; ASL, argininosuccinate lyase; α1-AR, α1-adrenoceptors (with specific subtypes); α2-AR, α2-adrenoceptors (with specific

subtypes); β-AR, β-adrenoceptors (with specific subtypes); BTLP, brain tumor-like proteins; CANCA1C, voltage-dependent L-type calcium channel subunit alpha-1C subunit; Cav1.2,

voltage-gated L-type calcium channel alpha-1C subunit; Ca2+/calmodulin PK II, calcium/calmodulin protein kinase II; CB R, cannabinoid receptors; CCK R, cholecystokinin receptor;

cGMP-PK, cGMP dependent protein kinase; ChT, high-affinity choline transporter; CYP2C19, CYP2C9, cytochrome P450 enzymes; δ-OR, δ-opioid receptor; D1,2,3,4,5DR, dopamine

D1,2,3,4,5 receptors; DAT, dopamine transporter; DAPK1, death-associated protein kinase 1, ETAR, endothelin ETA receptors; GluN1/GluN2A subunits of NMDA glutamate receptor; GlyR,

glycine receptor (subunits in parentheses); GR, glucocorticoid receptor; H1R, H2R, H3R, histamine receptors 1, 2, and 3; Kir, potassium inward rectifier; Kv1.7, voltage-gated potassium

channel 1.7; Kv11.1, rapid delayed inward rectifying potassium current; Kv7.1, voltage-gated potassium channel; Kv4.3, voltage-gated potassium channel subunit Kv4.3; LPA,

Lysophospholipid receptors; MAOA,B, monoaminoxidase A, B; MAPK, mitogen-activated protein kinase; MC4R, melanocortin receptor 4; MLCK, myosin light chain kinase; MT1AR,

melatonin receptor 1A; NMDA GluN1/GluN2A, subunits of NMDA receptors; NA, noradrenaline; NaV, sodium channels (batrachotoxin site); Nav1.5, sodium channel protein type V;

OCT-2, organic cation transporter 2; TRPV, transient receptor potential vanilloid ion channel; SLC22A1, solute carrier 22, type 1; NET, norepinephrine transporter, neurotrophic rectyrK1/

NGF receptor Trk-A, neurotrophic receptor tyrosine kinase 1/Nerve growth factor receptor Trk-A; NPY R, neuropeptide Y receptor; σR, sigma nonopioid receptor; SERT, serotonin (5-HT)

transporter; ser/thr kinase 3, serin/threonine kinase 3; TAS2R46, TAS2R10, Taste receptor type 2 (member 46, 10), TRα; TRβ1, thyroid receptors subtypes; VAChT, vesicular acetylcholine
transporter.

*pIC50 given instead of pKi. #pEC50 given instead of pKi. (*): also acts as an allosteric modulator. The values in parentheses are the values for allosteric binding. The values in brackets are the

values when ligand also act as partial agonist. (PET) the selectivity was determined using PET study.
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problem in the activation/blockade of mAChR is that the ligand

is usually used in high concentrations (see examples in Section

5). Thus, we tried to search available databases (PubMed, Web

of Science) for all possible molecules that are able to bind to

other targets (proteins or other molecules in the body) than

mAChRs. The drugs were divided according to the affinity of

off-targets in two groups (nanomolar and micromolar). The

reader can then compare the concentration used with the target

and judge if this off-target is affected or not.

We show here that most mAChR orthosteric ligands that

are usually considered subtype-specific can bind to other

receptors, which can be important when interpreting the

roles of mAChR subtypes in specific events in both

periphery and CNS tissues. This review aimed to call the

attention of researchers not deeply focused on mAChR

pharmacology to this fact. A very simple search of PubMed

(accessed on 20 June 2022) “pirenzepine and M1 selective”

reached 984 references—i.e., publications in which pirenzepine

could be potentially considered as M1 selective, which is far

from true (see below). In fact, the number of these publications

could be lower as not always pirenzepine is considered as M1

selective (just coincidence can occur). However, in most of these

references is pirenzepine considered to be M1 selective.

Similarly, a search on “AF-DX 116 and M2 selective”

(accessed on 20 June 2022) reached 313 results—thus, these

publications potentially consider AF-DX 116 as M2 selective.

The data reviewed here, however, do not report this selectivity.

Additionally, it is necessary to stress that multitarget drug

interactions can be considered an advantage in drug effects, as

they allow drugs to target more receptors and thus activate more

signaling pathways (typically involving sigma receptors)

(Maurice and Su, 2009; Abatematteo et al., 2021), which can

decrease the required dose of a given drug and produce additive

effects with the use of one drug.

2 Muscarinic receptor orthosteric
agonists

2.1 Established agonists of mAChRs and
their off-targets

The endogenous ligand of mAChRs, ACh, also binds to

NRs. Other mAChR agonists are able to activate multiple

targets, at least including all mAChR subtypes. This can be

a problem when one tries to discriminate between effects on

specific receptor subtypes. The widely used mAChR agonist

carbachol (carbamylcholine, see Table 1) also binds to NRs

(Bolchi et al., 2013) and is not hydrolyzable by cholinesterases,

which can be both advantageous and disadvantageous when

studying associated effects. The presence of NRs on

presynaptic or postsynaptic membranes can affect

neurotransmission.

In general, mAChR agonists (and partial agonists, see Table 1)

are not subtype-selective. Concretely, pilocarpine, bethanechol,

oxotremorine, arecoline, oxotremorine-M, xanomeline,

cevimeline, methacholine, iperoxo, methylfurmetide, pentylthio-

TZTP, sabcomeline, arecaidine propargyl ester, milameline,

furtrethonium (furmethid), aceclidine and relatively newly

synthesized compounds, such as SPP1, NNC 11-1585, NNC 11-

1607, and NNC 11-1314, are nonselective with respect to a single

mAChR subtype (Alexander S. P. et al., 2017; Broad et al., 2019),

although they can express higher selectivity for some subtypes, as is

the case for NNC 11-1585, which is more selective for M1 and M2

mAChRs than for other mAChR subtypes. Some of them, although

declared as subtype-selective, do not reveal specific subtype

selectivity. For example, oxotremorine, which is usually

considered M1-selective, activates all muscarinic subtypes with

similar affinity (Jakubík et al., 1997). Similarly, pilocarpine

(partial agonist), which is often declared M3-selective, has

comparable effects on all muscarinic receptor subtypes

(Alexander S. P. et al., 2017). Also, a relatively newly (2011)

synthesized drug, LY-593093, is not M1 mAChR selective, as

declared but there exists a similar affinity of M1 and M2

mAChRs [pKi = 6.21, 6.05, for M1 and M2 mAChRs,

respectively, see (Watt et al., 2011)]. In general, it is plausible to

expect that orthosteric mAChR agonists will bind to all mAChR

subtypes without specific selectivity to one of the five mAChR

subtypes (see Table 1 for mAChR subtype pKis: specific agonists are

bound with similar affinity to all subtypes). Some drugs, like (-)

YM796, (±)YM796 (Wei et al., 1992), AZD6088, LSN3172176

(Nabulsi et al., 2019), butylthio-TZTP (Farde et al., 1996) are not

sufficiently documented with respect to selectivity.

In the following paragraphs, the orthosteric muscarinic

agonists will be reviewed with respect to other targets. In the

1970s, methylfurmethide was indicated to also produce some

effects on NRs (Ochillo et al., 1977). Another example of such

a drug is arecoline, which acts on NRs (Ward et al., 1994; Pei

et al., 1998) as well as the Cav1.2 calcium current (So et al.,

2015), producing inhibitive effects. mAChR agonists

additionally target enzyme activities; thus, methacholine,

carbachol, and oxotremorine inhibited the activity of

serotonin N-acetyltransferase, which is a melatonin-

synthesizing enzyme, in bovine pineal explants (Pujito

et al., 1991). Oxotremorine has also been shown to inhibit

acetylcholinesterase (AChE) activity (Sowell et al., 1992).

Some ligands reveal multiple-target actions. This is the case

for xanomeline, which is considered a partial agonist for

mAChRs (Alexander S. P. et al., 2017). However, this drug

also has properties indicating allosteric binding (Jakubik et al.,

2004) and binding to many serotonin receptor (SERT)

subtypes (5-HT1A, 5-HT1B, 5-HT1D, 5-HT1F, 5-HT2A-

5HT2C, 5-HT6, and 5-HT7) (Watson et al., 1998).

Relatively recently, some new drugs have been synthesized

to favor M1 mAChR effects over effects on other receptor

subtypes (mainly M3 mAChRs), including AC-42, AC-
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260584, 77-LH-28-1, and LY-593039 (Heinrich et al., 2009).

However, these drugs can also bind to other neurotransmitter

receptors. For example, AC-260584 and 77-LH-28-1 bind

similarly to M1 mAChRs and D2 dopamine receptors and

affect 5-HT2B and 5HT2C receptors (Heinrich et al., 2009).

LY-593039 also binds to D2 dopamine receptors, although

slightly less than to M1 mAChRs (Heinrich et al., 2009). AC-

42 exerts complicated actions on mAChRs and is a typical

representative of multitargeting drugs. It acts on M1 mAChR as

a full agonist and simultaneously functions as a negative

allosteric modulator (NAM, see below for an explanation of

this term, (Langmead et al., 2006)). On other mAChR subtypes,

it behaves as an atypical agonist (Richards and van Giersbergen,

1995). As assessed by broad pharmacology profiling (the

compound was tested against 69 different pharmacological

targets - receptors, ion channels, transporters, and enzymes),

AC-42 was bound with revealed relatively high affinity to

histamine H1 receptors, D2-, and D4 dopamine receptors, 5-

HT1A serotonin receptors, and α1A,B,D- and α2A,B-
adrenoceptors (Sams et al., 2010). Other targets had a lower

affinity to AC-42 than 1 μmol/L.

2.2 Established agonists of GPCRs with
mAChRs as off-target

Another aspect of mAChR pharmacology is the existence

of the interactome (Vass et al., 2018). Although the

identification of other neurotransmitters that act on

mAChRs is difficult, some data indicate that adenosine can

act as an antagonist of some specific mAChR-mediated events.

It has been shown that adenosine acts selectively in opposing

mechanisms of depolarization of the rat superior cervical

ganglion M-current (Connolly and Stone, 1995). Another

report described a profound (isobutylthio)adenosine

inhibitive effect on mAChR binding (Pankaskie et al.,

1985). Recently, nerve growth factor has been shown to

physically interact with M4 mAChRs (Chen et al., 2021),

promoting neuroendocrine differentiation in prostate

cancer and producing castration resistance. Droxidopa,

which is a synthetic precursor of noradrenaline, used in

hypotension treatment, acts also as an antagonist with

pKi = 7.1 at M1 mAChRs (Croy et al., 2016).

Important findings were obtained with β3-adrenoceptor
agonist vibegron. It has been shown (Yamada et al., 2021) to

have an inhibitory action on 3H-NMS (N-methylscopolamine,

muscarinic antagonist) binding in different tissue with

maximal effect in the heart (pIC50 = 6.1 ± 0.16). However,

one should consider two facts: first, IC50 is not an optimal

indicator of the pharmacodynamic properties of a drug (see

Section 6), and second, β3-adrenoceptor are present in the

heart (Benes et al., 2012) which can slightly doubt these

results.

3 Muscarinic receptor orthosteric
antagonists

3.1 Established antagonists of mAChRs
and their off-targets

Orthosteric antagonists of mAChRs reveal a much wider

spectrum of action targets than agonists. Thus, one should be

more cautious in interpreting results obtained with the use of

mAChR orthosteric antagonists. Typically, although very often

declared by manufacturers as “selective ligands,” the vast

majority of antagonists bind with similar affinity to more

than one mAChR subtype (see Table 2). We have reviewed

these properties recently (Myslivecek, 2019). It can be

concluded that only a limited number of ligands (e.g.,

mamba toxins) are selective for one subtype (see Table 4).

However, the usage of toxins is not simple, especially in vivo, it

is difficult to make and expensive to use. These toxins also bind

allosterically, rather than only orthosterically (Karlsson et al.,

2000). Importantly, the selectivity to M3 mAChR was not,

according to our knowledge yet proven. The M3 mAChR

positive allosteric modulator ASP8302 (Okimoto et al., 2021)

revealed a similar increase in activity in M3 as well as in M5

mAChRs (see Table 2).

Some examples of “selective antagonists” are as follows (for

the affinities of these ligands, see Table 2): pirenzepine is

considered an M1 mAChR-selective ligand, but it binds with a

similar affinity to M4 mAChRs (Caulfield and Birdsall, 1998;

Myslivecek, 2019); methoctramine (and similarly, himbacine,

AF-DX 384 and AF-DX 116) (Doods et al., 1994; Caulfield

and Birdsall, 1998; Myslivecek, 2019), which is said to

preferentially bind to M2 mAChRs, also binds with similar

affinity to M4 mAChRs; 4-DAMP, which is known as an M3

mAChR-selective antagonist, reveals a similar affinity to M4

mAChRs (Caulfield and Birdsall, 1998; Myslivecek, 2019); and

darifenacin, which is used as an M3 mAChR antagonist in

incontinence treatment, antagonizes M5 mAChRs (Myslivecek,

2019). Similar non-selectivity has also been found for other

mAChR antagonists. On the other hand, when working

in vitro, some antagonists can discriminate between mAChR

subtypes when a competitive binding curve is employed; for

example, AFDX-384 has a significantly lower affinity for M5

mAChRs (pKi = 6.3) than for other mAChR subtypes (pKi values

vary between 7.2 and 9.0). Thus, the proportion of mAChRs

detected at concentrations higher than pKi = 6.3 can indicate the

amount ofM5mAChRs present [for the affinities of these ligands,

see (Myslivecek, 2019)]. Telenzepine, considered M1 mAChR

selective, has virtually the same affinity to M1 [pKD = 10.5, (Hern

et al., 2010)] as well as to M2 mAChRs [pKi = 10.4, (Nenasheva

et al., 2013).

In the following paragraphs, we discuss the binding of

mAChR antagonists to other neurotransmitter receptors and

target proteins (e.g., ion channels).
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TABLE 2 Effects of orthosteric antagonists onmuscarinic receptors and other targets. The compounds are listed alphabetically. The numbers indicate
pKi values. Please note that a higher pKi indicates higher affinity. Unavailable data are shown as blank spaces. The affinities of nicotinic receptors
are not divided among specific subunits. The affinities of other, noncholinergic targets are divided into nanomolar (pKi>6) and micromolar (pKi<6)
groups. The categorization of pKi is compromise between extremely large Table and fast orientation how much are other targets are affected in
specific concentration of ligand used (see also examples in Chapter 5). Data are from or adapted from (Pascuzzo et al., 1984; Eglen and Whiting,
1987; Buckley et al., 1989; Buckley et al., 1990; Hudkins et al., 1991;Wess et al., 1991; Bolden et al., 1992; Kashihara et al., 1992; Sowell et al., 1992;
Doods et al., 1993; Shen et al., 1993; Stanton et al., 1993; Doods et al., 1994; Ferrari-Dileo et al., 1994; Kleinschroth et al., 1995; Waelbroeck et al.,
1996; McKenna et al., 1997; Boess et al., 1998; Bolognesi et al., 1998; Cantı´ et al., 1998; Caulfield and Birdsall, 1998; Lazareno et al., 1998;
Choppin et al., 1999; Sánchez andHyttel, 1999; Eglen andNahorski, 2000; Kozlowski et al., 2000; Lazareno et al., 2000; Becerra et al., 2001; Dhein
et al., 2001; Huang et al., 2001; Lockhart et al., 2001; Apelt et al., 2002; Carlsson et al., 2002; Harvey et al., 2002; Cheng et al., 2002; Lazareno et al.,
2002; Böhme et al., 2003; Samochocki et al., 2003; Sur et al., 2003; Jakubik et al., 2004; Kobayashi et al., 2004; Wang et al., 2004; Ghoneim et al.,
2006; Spalding et al., 2006; Butini et al., 2008; Langmead et al., 2008; Bridges et al., 2009; Heinrich et al., 2009; Prat et al., 2009; von Coburg et al.,
2009; Bridges et al., 2010a; Harada et al., 2010; Hern et al., 2010; Lange et al., 2010; Rook et al., 2010; Sinha et al., 2010; Watt et al., 2011; Daval
et al., 2012; Samadi et al., 2012; Sykes et al., 2012; Arunotayanun et al., 2013; Nenasheva et al., 2013; Salmon et al., 2013; Croy et al., 2016; Gaulton
et al., 2016; Alexander S. P. et al., 2017; Alexander S. P. H. et al., 2017; Chen et al., 2017; Carr et al., 2018; Hegde et al., 2018; Broad et al., 2019;
Myslivecek, 2019; Xu et al., 2019; Olianas et al., 2020; Okimoto et al., 2021) and the IUPHAR/BPS Guide to Pharmacology (www.
guidetophamacology.org). For specific ligand references see text. The activity represents the main effect of a specific ligand.

Target Muscarinic receptors Nicotinic
receptors

Cholinester-
ases (ChEs)
AChE/BChE

Other targets

M1 M2 M3 M4 M5 Nanomolar
(pKi > 6)

Micromolar
(pKi < 6)

3-quinuclidinyl-
benzilate

10.29 10.35 10.4

4-DAMP 8.6–9.2 7.8–8.4 8.9–9.3 8.4–9.4 8.9–9.0

Aclidinium 10.1–10.2 10.1 10.1–10.2 10.0 9.9

AE9C90CB 8.6 9.9 9.5 9.5

AF-DX 116 5.8–6.9 7.1–7.3 5.5–6.6 6.2–7.0 5.4–6.6

AF-DX 384 7.3–7.5 8.2–9.0 7.2–7.8 8.0–8.7 6.3

Amitriptyline 7.8 7.9 7.9 8.1 7.8 H1R, 5-HT2A, 5-
HT2C, 5-HT6, 5-
HT7, α1A,B,D-AR,
α2A,B,C-AR,
D1,2,3,5DR, LPA1,
SERT, NET

Kir3.2, Kir3.4, DAT

AQ-RA 741 7.6–7.8 8.21–8.9 7.4–7.5 7.9–8.2 5.8–6.1

Atropine 8.5–9.6 9.0–9.1 8.9–9.8 8.7–9.9 9.3–9.7 4.49 9.15–9.46 5-HT2C α1D,2A-AR,5-
HT1A, SLC22A1,
glycine receptors

Benzatropine 9.0 8.6 8.89–9.57 8.62–9.48 8.84–8.69 σR, 5-HT2A,B,C,
H1R, DAT, α1A,B,D-
AR α2A,B,C-AR,
D3DR

SERT, NET, 5-
HT6, H2R

Biperiden 9.3 8.2 8.4 8.6 8.2

Clidinium 9.6 9.6

Darifenacin 7.5–7.8 7.0–7.4 8.4–8.9 7.7–8.0 8.0–8.1 β1,2-AR, Kv11.1 D2DR, Nav1.5

DAU 5884 9.4 ± 0.04 7.4 ± 0.05 8.8 ± 0.03 8.5 ± 0.02

dicyclomine 8.61 6.6 9.0 8.3 8.77 5-HT2A, 5-HT2B, 5-
HT2C, D3DR,
σ1R, σ2R,

Cav1.2, H2R, 5-
HT6, Kv11.1, NaV

(S)-dimetindene 6.7 7.5 6.9 6.5 6.1 H1R

Dosulepin 7.7 7.0 7.4 7.2 7.0 H1R, SERT, NET

Droxidopa 7.1 NA precursor

ethopropazine 8.5 8.1 6.52/6.59

glycopyrrolate 9.6–10.1* 8.7–9.5* 9.6–9.8* 9.1–10.0 8.9–9.9

guanylpirenzepine 7.3–7.6 5.3 6.2 6.2 6.8

hexahydrodifenidol 8.0 6.7 7.8 7.1 7.1

hexahydrosiladifenidol
(HHSiD)

7.4–7.9 6.6–6.8 7.7.-8.0 6.5–7.7 6.8–7.2

(Continued on following page)
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TABLE 2 (Continued) Effects of orthosteric antagonists on muscarinic receptors and other targets. The compounds are listed alphabetically. The
numbers indicate pKi values. Please note that a higher pKi indicates higher affinity. Unavailable data are shown as blank spaces. The affinities of
nicotinic receptors are not divided among specific subunits. The affinities of other, noncholinergic targets are divided into nanomolar (pKi>6) and
micromolar (pKi<6) groups. The categorization of pKi is compromise between extremely large Table and fast orientation how much are other targets
are affected in specific concentration of ligand used (see also examples in Chapter 5). Data are from or adapted from (Pascuzzo et al., 1984; Eglen and
Whiting, 1987; Buckley et al., 1989; Buckley et al., 1990; Hudkins et al., 1991; Wess et al., 1991; Bolden et al., 1992; Kashihara et al., 1992; Sowell et al.,
1992; Doods et al., 1993; Shen et al., 1993; Stanton et al., 1993; Doods et al., 1994; Ferrari-Dileo et al., 1994; Kleinschroth et al., 1995; Waelbroeck et al.,
1996; McKenna et al., 1997; Boess et al., 1998; Bolognesi et al., 1998; Cantı´ et al., 1998; Caulfield and Birdsall, 1998; Lazareno et al., 1998; Choppin
et al., 1999; Sánchez and Hyttel, 1999; Eglen and Nahorski, 2000; Kozlowski et al., 2000; Lazareno et al., 2000; Becerra et al., 2001; Dhein et al., 2001;
Huang et al., 2001; Lockhart et al., 2001; Apelt et al., 2002; Carlsson et al., 2002; Harvey et al., 2002; Cheng et al., 2002; Lazareno et al., 2002; Böhme
et al., 2003; Samochocki et al., 2003; Sur et al., 2003; Jakubik et al., 2004; Kobayashi et al., 2004;Wang et al., 2004; Ghoneim et al., 2006; Spalding et al.,
2006; Butini et al., 2008; Langmead et al., 2008; Bridges et al., 2009; Heinrich et al., 2009; Prat et al., 2009; vonCoburg et al., 2009; Bridges et al., 2010a;
Harada et al., 2010; Hern et al., 2010; Lange et al., 2010; Rook et al., 2010; Sinha et al., 2010;Watt et al., 2011; Daval et al., 2012; Samadi et al., 2012; Sykes
et al., 2012; Arunotayanun et al., 2013; Nenasheva et al., 2013; Salmon et al., 2013; Croy et al., 2016; Gaulton et al., 2016; Alexander S. P. et al., 2017;
Alexander S. P. H. et al., 2017; Chen et al., 2017; Carr et al., 2018; Hegde et al., 2018; Broad et al., 2019; Myslivecek, 2019; Xu et al., 2019; Olianas et al.,
2020; Okimoto et al., 2021) and the IUPHAR/BPS Guide to Pharmacology (www.guidetophamacology.org). For specific ligand references see text. The
activity represents the main effect of a specific ligand.

Target Muscarinic receptors Nicotinic
receptors

Cholinester-
ases (ChEs)
AChE/BChE

Other targets

M1 M2 M3 M4 M5 Nanomolar
(pKi > 6)

Micromolar
(pKi < 6)

hexocyclium 8.6 7.6 8.9 8.3 8.4

Himbacine 7.0–7.2 8.0–8.3 6.9–7.4 8.0–8.8 6.1–6.3 4.64

imipramine 6.9 6.52# α1A-AR, D2 DR, H1

R, 5-HT2A,C, NET,
SERT

Kv11.1, Kv3.2,
Kv3.4, Kv10.1,
GluN1, SLC22A1,
SLC22A2, Cav1.2

ipratropium 9.3–9.8 9.3–9.8 9.3–9.8 9.2 8.8 ASL, OCT-2

lithocholylcholine 5.6 5.3 6.0 5.3 5.2

mepenzolic acid 9.2 8.6 8.4

methoctramine 6.6–7.3 7.3–8.4 6.1–6.9 6.6–7.5 6.3–7.2 5.27/6.01 GluN1/GluN2A TRPV

methylscopolamine 9.9 10.4

N-methylscopolamine 9.4–10.3 9.3–9.9 9.7–10.2 9.9–10.2 9.3–9.7

ML381 (VU 0488130-1) <5.0 <4.5 <4.5 >4.5 6.3

MT1 toxin 7.3–7.6 7.1 <6.59 α1-AR
α2-AR

MT2 toxin 6.49 4.7 4.7 6 5.7 α1-AR
α2-AR

MT3 toxin (*) 7.1 <6 <6 8.5(8.7) <6 α2-AR
MT7 toxin (*) 9.8

(10.95)
<6 <6 <6 <6

Otenzepad 5.9–6.3 6.7–7.2 6.1 6.5 5.6

oxybutynin 8.2–8.6 7.9–8.1 8.8 8.4–8.7 7.9 DAT, σR CYP2C19, D3DR,
BTLP, CACNA1C,
NET, 5-HT2B

oxyphenonium 9.75
(atria)

9.95(ileum) 9.84 α2A-AR

p-F-HHSiD 6.68–7.3 6.01–6.6 7.5–7.84 7.2 6.6–7.0

PD 102807 5.3–5.5 5.7–5.9 6.2–6.7 7.3–7.4 5.2–5.5

pirenzepine 7.8–8.5 6.3–6.7 6.7–7.1 7.1–8.1 6.2–7.1

propantheline 9.7 9.5 10.0 10.2

QNB 10.6–10.8 10.1–10.6 10.4 9.7–10.5 10.2–10.7 VAChT

revefenacin 9.4 9.3 9.8 9.3 8.2

scopolamine 9.0 8.7 9.4 9.5 5-HT3

SCH 57790 6.93 8.1

silahexocyclium 8.7 7.5 8.9 8.5 8.7

(Continued on following page)
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Atropine, which is a typical muscarinic antagonist, can also

act as an antagonist at the α5 subunit of NRs (although at higher

concentrations, pKi = 4.49) (Tomizawa and Yamamoto, 1992)

and can block the effects of drugs on α2A- (Carr et al., 2018) and
α1D-adrenoceptors (Gaulton et al., 2016) and glycine receptors

(all subtypes (Maksay et al., 1999; Yang et al., 2007)). At higher

concentrations, it also inhibits solute carrier family 22 member 1

(SLC22A1 (Ahlin et al., 2008)) and serotonin 5-HT1A (Zhuang

et al., 1993) and 5-HT2C receptors (Gaulton et al., 2016). In mice,

atropine inhibits AChE (Sowell et al., 1992) at very low

TABLE 2 (Continued) Effects of orthosteric antagonists on muscarinic receptors and other targets. The compounds are listed alphabetically. The
numbers indicate pKi values. Please note that a higher pKi indicates higher affinity. Unavailable data are shown as blank spaces. The affinities of
nicotinic receptors are not divided among specific subunits. The affinities of other, noncholinergic targets are divided into nanomolar (pKi>6) and
micromolar (pKi<6) groups. The categorization of pKi is compromise between extremely large Table and fast orientation how much are other targets
are affected in specific concentration of ligand used (see also examples in Chapter 5). Data are from or adapted from (Pascuzzo et al., 1984; Eglen and
Whiting, 1987; Buckley et al., 1989; Buckley et al., 1990; Hudkins et al., 1991; Wess et al., 1991; Bolden et al., 1992; Kashihara et al., 1992; Sowell et al.,
1992; Doods et al., 1993; Shen et al., 1993; Stanton et al., 1993; Doods et al., 1994; Ferrari-Dileo et al., 1994; Kleinschroth et al., 1995; Waelbroeck et al.,
1996; McKenna et al., 1997; Boess et al., 1998; Bolognesi et al., 1998; Cantı´ et al., 1998; Caulfield and Birdsall, 1998; Lazareno et al., 1998; Choppin
et al., 1999; Sánchez and Hyttel, 1999; Eglen and Nahorski, 2000; Kozlowski et al., 2000; Lazareno et al., 2000; Becerra et al., 2001; Dhein et al., 2001;
Huang et al., 2001; Lockhart et al., 2001; Apelt et al., 2002; Carlsson et al., 2002; Harvey et al., 2002; Cheng et al., 2002; Lazareno et al., 2002; Böhme
et al., 2003; Samochocki et al., 2003; Sur et al., 2003; Jakubik et al., 2004; Kobayashi et al., 2004;Wang et al., 2004; Ghoneim et al., 2006; Spalding et al.,
2006; Butini et al., 2008; Langmead et al., 2008; Bridges et al., 2009; Heinrich et al., 2009; Prat et al., 2009; vonCoburg et al., 2009; Bridges et al., 2010a;
Harada et al., 2010; Hern et al., 2010; Lange et al., 2010; Rook et al., 2010; Sinha et al., 2010;Watt et al., 2011; Daval et al., 2012; Samadi et al., 2012; Sykes
et al., 2012; Arunotayanun et al., 2013; Nenasheva et al., 2013; Salmon et al., 2013; Croy et al., 2016; Gaulton et al., 2016; Alexander S. P. et al., 2017;
Alexander S. P. H. et al., 2017; Chen et al., 2017; Carr et al., 2018; Hegde et al., 2018; Broad et al., 2019; Myslivecek, 2019; Xu et al., 2019; Olianas et al.,
2020; Okimoto et al., 2021) and the IUPHAR/BPS Guide to Pharmacology (www.guidetophamacology.org). For specific ligand references see text. The
activity represents the main effect of a specific ligand.

Target Muscarinic receptors Nicotinic
receptors

Cholinester-
ases (ChEs)
AChE/BChE

Other targets

M1 M2 M3 M4 M5 Nanomolar
(pKi > 6)

Micromolar
(pKi < 6)

Solifenacin 7.6–8.0 6.9–7.1 7.7–8.0 6.8 7.2 Kv11.1, Nav1.5,
CACNA1C, Kv7.1,
Kv4.3

telenzepine 9.4 10.4

10.5
(pKD)

Tiotropium 10.34 10.05 10.37 10.18 9.76

Tolterodine 8.4–8.5 8.4–8.5 8.4–8.5 8.3–8.4 8.5–8.8 Kv11.1 Nav1.5,
CACNA1C, Kv7.1,
Kv4.3

trihexyphenidyl 8.25–8.87 7.47–7.92 7.82–8.5 8.26–9.12 7.92–8.06 σ1R CYP2D6

tripinamide 7.2–7.4 7.9–9.3 5.15–5.33 6.68–6.92

tripitramine 8.8 9.6 6.8 7.9 7.5

tropicamide 7.08 ±
0.04

7.19 ± 0.1 6.99 ± 0.07 6.86 ±
0.12

6.42 ±
0.14

CYP2C19,
CYP2C9

UH-AH 37 7.3–7.4 8.1–8.2 8.3–8.4 8.3

umeclidinium
(GSK573719)

9.8 9.8 10.2 10.3 9.9

VU0255035 7.8 6.2 6.1 5.9 5.6

5-HT, serotonin receptors (with specific subtypes); AANAT, serotonin N-acetyltransferase (arylalkylamine N-acetyltransferase); A1R, adenosine A1 receptor; A2AR, adenosine A2A

receptor; A3R, adenosine A3 receptor; AR, androgen receptors; ASL: argininosuccinate lyase, α1-AR: α1-adrenoceptors (with specific subtypes), α2-AR: α2-adrenoceptors (with specific

subtypes), β-AR, β-adrenoceptors (with specific subtypes), BTLP, brain tumor-like proteins; CANCA1C, voltage-dependent L-type calcium channel subunit alpha-1C subunit; Cav1.2,

voltage-gated L-type calcium channel alpha-1C subunit; Ca2+/calmodulin PK II: calcium/calmodulin protein kinase II; CB R, cannabinoid receptors; CCK R, cholecystokinin receptor;

cGMP-PK, cGMP dependent protein kinase; ChT, high-affinity choline transporter; CYP2C19, CYP2C9, cytochrome P450 enzymes; δ-OR, δ-opioid receptor; D1,2,3,4,5DR, dopamine

D1,2,3,4,5 receptors; DAT, dopamine transporter; DAPK1, death-associated protein kinase 1; ETAR, endothelin ETA receptors; GluN1/GluN2A subunits of NMDA glutamate receptor, GlyR,

glycine receptor (subunits in parentheses); GR, glucocorticoid receptor; H1R, H2R, H3R, histamine receptors 1, 2, and 3; Kir, potassium inward rectifier; Kv1.7, voltage-gated potassium

channel 1.7; Kv11.1, rapid delayed inward rectifying potassium current; Kv7.1, voltage-gated potassium channel, Kv4.3, voltage-gated potassium channel subunit Kv4.3; LPA,

Lysophospholipid receptors; MAOA,B, monoaminoxidase A, B; MAPK, mitogen-activated protein kinase; MC4R, melanocortin receptor 4; MLCK, myosin light chain kinase; MT1AR,

melatonin receptor 1A; NMDA GluN1/GluN2A, subunits of NMDA receptors; NA, noradrenaline; NaV, sodium channels (batrachotoxin site); Nav1.5, sodium channel protein type V;

OCT-2, organic cation transporter 2; TRPV, transient receptor potential vanilloid ion channel; SLC22A1, solute carrier 22, type 1; NET, norepinephrine transporter; neurotrophic rectyrK1/

NGF receptor Trk-A, neurotrophic receptor tyrosine kinase 1/Nerve growth factor receptor Trk-A; NPY R, neuropeptide Y receptor; σR, sigma nonopioid receptor; SERT, serotonin (5-HT)

transporter; ser/thr kinase 3, serin/threonine kinase 3; TAS2R46, TAS2R10, Taste receptor type 2 (member 46, 10); TRα, TRβ1, thyroid receptors subtypes; VAChT, vesicular acetylcholine
transporter.

*pIC50 given instead of pKi. #pEC50 given instead of pKi. (*): also acts as an allosteric modulator. The values in parentheses are the values for allosteric binding.
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concentrations (the pKi is 9.15–9.46). Thus, when researchers

apply atropine intending to block mAChRs, they should expect

some side effects on additional receptors, which can be minor or

significant. Moreover, the possible inhibition of AChE may

partially artificially diminish the effects of mAChR blockade.

Concerning these facts, one should consider replacing atropine

with another drug (e.g., aclidinium) when trying to block

mAChRs.

Similarly, the mAChR antagonist scopolamine also behaves

as an antagonist of serotonin 5-HT3 receptors (Lochner and

Thompson, 2016). Another mAChR antagonist, benzatropine,

has a wider spectrum of targets including other GPCRs (D3

dopamine receptors, α1A,B,D-adrenoceptors, α2A,B,C-
adrenoceptors (more information is available in (Svoboda

et al., 2019)), H1 (Kulkarni et al., 2006) and H2 histamine

receptors (Svoboda et al., 2019), and SERTs, 5-HT2A,B,C and

5-HT6 (Modell et al., 1989)); other receptors (σR—sigma

receptors (Svoboda et al., 2019)); and neurotransmitter

transporters (SERT (Zhang et al., 2001), DAT (Runyon and

Carroll, 2006), and NET (Newman and Kulkarni, 2002)), and

it is also able to inhibit the amino acid transporter SLC6A19

(Cheng et al., 2017).

A next mAChR antagonist, methoctramine, has been proven

to inhibit vanilloid receptor (transient receptor potential cation

channel, TRPV) function by reducing the single-channel mean

opening time and increasing the mean closure time (Mellor et al.,

2004). On the other hand, it is necessary to note that the

concentration used for this inhibition was relatively high

(10 μmol l−1, i.e., 10−5 mol l−1). Another effect of

methoctramine lies in GTPase activity, and it also behaves as

a direct Gi agonist in mast cells, where it stimulates exocytosis

(Chahdi et al., 1998). Additionally, it inhibits cholinesterases

(AChE and BChE) (Tumiatti et al., 2003) and produces

antagonistic effects on GluN1/GluN2A NMDA receptors

(pKIC50 = 6.86, (Saiki et al., 2013)).

Amitriptyline affects mainly (in nanomolar rank) serotonin

receptors (5-HT2A, 5-HT2C, 5-HT6, 5-HT7 (Gaulton et al.,

2016)), H1R histamine receptors (Gaulton et al., 2016),

α1A,B,D-AR, α2A,B,C-AR (Gaulton et al., 2016), D1,2,3,5DR (von

Coburg et al., 2009; Gaulton et al., 2016), neurotransmitter

transporters SERT, NET, and less DAT (Arunotayanun et al.,

2013) and LPA1 lysophospholipid receptors (Olianas et al.,

2020). Besides, potassium inward rectifiers (Kir3.2, Kir3.4) are

inhibited in micromolar rank (Kobayashi et al., 2004).

Himbacine inhibits AChE, although at micromolar

concentrations (Brunhofer et al., 2012). Synthetic analogs of

the natural product himbacine can inhibit protease-activated

receptor-1 (PAR-1), which is also known as the thrombin

receptor (Chackalamannil et al., 2003; Chelliah et al., 2014).

However, himbacine itself is devoid of PAR-1 activity.

Darifenacin, which has very good selectivity for M3mAChRs,

surprisingly affects many additional receptors and some channels

and proteins. For example, darifenacine inhibits fatty acid-

binding protein 4 (Wang et al., 2014), the rapid delayed

inward rectifying potassium current (KIR, Kv11.1), the sodium

channel protein type V alpha subunit (Nav1.5), voltage-gated

potassium channels (IKs, KCNQ1), and voltage-gated potassium

channel subunit Kv4.3 (Mirams et al., 2014). Another target of

darifenacin is GPCRs, including β1 and β2-adrenoceptors (Beattie
et al., 2012) and dopamine D2 receptors (Connolly et al., 2011).

Similar to darifenacine, solifenacin affects the KIR, the

Nav1.5/sodium channel protein type V alpha subunit, Kv7.1/

IKs, KCNQ1(Kv7.1)/KCNE1(MinK), Kv4.3/IK subunit Kv4.3,

and the Cav1.2/voltage-gated L-type calcium channel alpha-1C

subunit (Mirams et al., 2014).

Ipratropium can activate the arginine metabolic enzyme

argininosuccinate lyase (Hung et al., 2017), which is involved

in specific cancer types, including hepatocellular carcinoma.

Ipratropium also inhibits the organic cation transporter 2-

mediated transport of specific substrates (Belzer et al., 2013).

Tropicamide is a drug usually used as an atropine

replacement for pupillary dilatation. It is considered an M4

mAChR antagonist, but all mAChR subtypes reveal a similar

affinity to this ligand (Croy et al., 2016). Moreover, this drug also

inhibits the cytochrome P450 enzymes CYP2C19 and CYP2C9

(Gaulton et al., 2016). However, CYPs are affected in micromolar

rank and thus they are not physiologically significant in that

point of view.

Oxybutynin is another example of a drug with multiple

targets. In addition to mAChRs, it also inhibits CYP2C19, D3

dopamine receptors, DAT (Gaulton et al., 2016), a group of brain

tumor-like proteins (i.e., lethal(3)malignant brain tumor-like

protein 1, L3MBTL histone methyl-lysine binding protein 3,

lethal(3)malignant brain tumor-like protein 4, MBT domain-

containing protein 1) (Kireev et al., 2010), voltage-dependent

L-type calcium channel subunit α-1C (Wiśniowska et al., 2012),

NET (Gaulton et al., 2016), SERT, 5-HT2B (Gaulton et al., 2016),

and sigma nonopioid intracellular receptor 1(Gaulton et al.,

2016).

Tolterodine is another drug with multiple targets that binds

to Kv11.1/HERG (inward rectifier) (Mirams et al., 2014), the

Nav1.5/sodium channel protein type V alpha subunit (Mirams

et al., 2014), the Cav1.2/voltage-gated L-type calcium channel

alpha-1C subunit (Mirams et al., 2014), the Kv7.1/IK (Mirams

et al., 2014), and Kv4.3/IK subunit Kv4.3 (Mirams et al., 2014).

Dicyclomine has a relatively wide spectrum of actions, in

nanomolar concentrations, it inhibits 5-HT2A, 5-HT2B, 5-HT2C

serotonin receptors, D3DR, σ1R, σ2R, and in micromolar

concentrations it inhibits Cav1.2, H2R, 5-HT6, Kv11.1, NaV
(for all data see (Gaulton et al., 2016)).

Trihexyphenidyl acts on σ1R in nanomolar rank and on

CYPD2 in micromolar rank (Gaulton et al., 2016).

A special example of a drug with multiple targets (reveals

orthosteric and allosteric binding) is MT7 toxin, which is

obtained from the green mamba. This compound is not only

a very selective antagonist of M1mAChRs that irreversibly blocks
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but also binds to their allosteric sites with pKi = 10.95 (Fruchart-

Gaillard et al., 2006). There are further mamba toxins that bind to

muscarinic receptors. MT1 toxin, however, is not specific, it

binds similarly to M1 and M4 mAChRs (see Table 2), but also

inhibit 3H-prazosin binding in different tissue preparation (in the

periphery—vas deferens, in CNS—cerebral binding) indicating it

is able to inhibit α1-ARs and α2-ARs (Harvey et al., 2002). It is

necessary to mention that inhibition of prazosin binding was not

100% in vas deferens. Similarly, MT2 toxin is not selective and

also binds to cerebral (100% inhibition) α1-ARs and α2-ARs
(Harvey et al., 2002). MT3 toxin is also not selective (Jolkkonen

et al., 1994; Carr et al., 2018), it also binds to the allosteric site on

M4 mAChRs (Jolkkonen et al., 1994)and is able to inhibit α2-ARs
(Carr et al., 2018).

Another antagonist, (S)-dimetindene is an isomer of

histamine antagonist and has a similar ability to antagonize

the effects on all mAChRs (Böhme et al., 2003).

Ethopropazine is also able to inhibit cholinesterases—both

acetylcholinesterase and butyrylcholinesterase (Brus et al., 2014).

Very often used tritiated ligand for muscarinic receptors,
3H-QNB binds also to vesicular acetylcholine transporter with

pKi = 6.24 (Kozaka et al., 2012). However, the pKi for mAChRs is

around 10 (see Table 2).

Another radioligand used in mAChR detection, also as PET

ligand (Mulholland et al., 1995) is tritiated, radioactively

carbonylated, respectively N-methylpiperidyl benzilate

(NMPB). This ligand is declared as M2 mAChR selective

(Stein et al., 1988). However, no available data on other

mAChR subtypes and structure similarity to 4-DAMP (see

above) opens the question about the real selectivity of this

drug. A similar case comes with clinidium, in which also data

on M2 mAChRs are only available (Kovacs et al., 1998).

Although this review summarizes the inability of ligands to

bind one mAChR subtype, this obstacle can be overcome. It is

possible to use relatively specific ligands under well-defined

conditions (concentration, time, and temperature), as

described in KO models. Thus, pirenzepine, which is far from

a selective ligand (it binds to M1 and M4 mAChRs with similar

affinity), has been shown to selectively bind with a specific

protocol to M1 mAChRs (Valuskova et al., 2018a).

3.2 Established antagonists of GPCRs with
mAChRs as off-target with a special
accent to antipsychotic drugs

Some drugs mainly act at other receptors that can antagonize

the activation of mAChRs. This was described for the 5-HT1A

receptor agonist 7-(dipropylamino)-5,6,7,8-

tetrahydronaphthalen-1-ol (8-OH-DPAT) (Fowler et al., 1991;

Chidlow and Osborne, 1997). Similarly, the 5-HT4 receptor

agonists RS 67333 and RS 67506 also reveal a low affinity to

mAChRs (Eglen et al., 1995).

Special attention should be given to antipsychotics. These

drugs are a perfect example of multitargeting advantage in

treating specific diseases. All drugs listed here can bind not

only to “classical” antipsychotic targets like serotonin,

dopamine, or histamine receptors but also inhibit muscarinic

receptors which are additional, desirable effects that could widen

the action of antipsychotics. This is valid for the following drugs.

Haloperidol, a typical antipsychotic medication, in addition to its

classical effects on dopamine and serotonin receptors, is also able

to inhibit the M2 mAChRs, although the affinity is not too high

(pKi = 6.62, (Ronsisvalle et al., 1998)). Olanzapine, which is an

atypical antipsychotic with a higher affinity for 5-HT2A, SERTs,

and D2 dopamine receptors, has also been shown to antagonize

the effects of pilocarpine on phosphoinositide hydrolysis,

although with lower affinity (Zhang and Bymaster, 1999). In

general, many drugs used as antipsychotics (usually targeting

dopamine and serotonin receptors), such as chlorpromazine,

fluphenazine, levomepromazine, perphenazine [for all these

drugs see (Hals et al., 1988)], and blonanserin (Tenjin et al.,

2013) have anticholinergic effects and can antagonize the binding

of mAChRs. In the first generation of antipsychotics, thioridazine

reveals a wide spectrum of effects which also include muscarinic

(M1-M5) antagonism in the range pKi = 6-10 (Vass et al., 2018).

Clozapine is one of the first atypical antipsychotics. Besides its

antagonistic effects on histamine, serotonin, adrenergic, and

dopamine receptors, it also reveals positive allosteric effects on

M1 mAChRs (Flamez et al., 1994) with high affinity (pKIC50 = 7.9

(Sur et al., 2003), antagonistic effects on M2 mAChRs pKi =

7.32–7.36 (Ohmori et al., 1996), and on M3-M5 mAChRs

(Bandyopadhyaya et al., 2012) with pKi = 7-8). This also led

to the possibility that muscarinic receptors can be targeted when

treating schizophrenia (Foster et al., 2021). In this review,

clozapine, xanomeline, and specific allosteric modulators

targeting to mAChR subtypes (MK-801 (M4 mAChR

selective), BQCA (M1 mAChR selective), VU0238429 (M5

mAChR selective) are discussed. It is necessary to mention

that there can also be a possibility that xanomeline act on

dopaminergic neurons through its action on M1 and M4

mAChRs (Weiden et al., 2022). Similarly, the effects of MK-

801, BQCA, and VU0238429 are the most probably via the

mAChRs expressed on dopaminergic/serotoninergic or other

neurons (Foster et al., 2021). An important aspect of

antipsychotic action has been investigated by (Obara et al.,

2019) who determined the inhibitory effects on brain

mAChRs in therapeutically achievable concentrations. They

found that the pKi values of chlorpromazine (pKi =

5.85–7.55), levomepromazine (pKi = 6.21–7.35), and zotepine

(pKi = 6.14–7.04), olanzapine (pKi = 6.37–7.38), and clozapine

(pKi = 5.23–6.30) overlapped with their clinically achievable

blood concentrations. Importantly, clozapine act as a positive

allosteric modulator (see Table 3) with pKIC50 = 7.7–7.9 at M1

mAChRs (Sur et al., 2003; Spalding et al., 2006) and together with

this action it also competes with M1 mAChRs [pKi = 7.0–9.01
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(Rowley et al., 2001; Bandyopadhyaya et al., 2012)], with M2

mAChRs [pKi = 6.77–7.34 (Gaulton et al., 2016)], with M3

mAChRs [pKi = 7.0–7.77 (Bandyopadhyaya et al., 2012;

Gaulton et al., 2016)], with M4 mAChRs [pKi = 7.0–8.2

(Bandyopadhyaya et al., 2012; Gaulton et al., 2016)], and with

M5 mAChRs [pKi = 7.0–8.02 (Bandyopadhyaya et al., 2012;

Gaulton et al., 2016)]. Another antipsychotic, dosulepin, act

with high affinity on histamine receptors (Sánchez and Hyttel,

1999), SERT, and NET(Tatsumi et al., 1997) and, of course, on all

mAChR subtypes (Stanton et al., 1993). Thus, it is possible to

conclude that mAChRs play important role in antipsychotic

action, arising from the effects on mAChR subtypes that are

integral to the regulation of DA neural circuits (Weiden et al.,

2022).

Imipramine, a tricyclic antidepressant, has a wide range of

targets: besides M2 (Kovacs et al., 1998) and M5 mAChRs

(Griffith et al., 1984), it binds also to α1A-AR (Yardley et al.,

1990), D2 DR (Peters, 2013), H1 R (Peters, 2013), 5-HT2A,C

(Peddi et al., 2004), NET, and SERT (Runyon et al., 2001).

Similar multitarget effects can be found (Vass et al., 2018) for

astemizole, an H1 histamine receptor antagonist, and cinnarizine

was used primarily as an anti-histaminic. All these three drugs

were withdrawn from the market because of their side effects.

Similarly, econazole - an antifungal agent, primarily acting on

TRPM and TRPV channels (Hill et al., 2004) has also anti-

muscarinic effects (M1, M3, M4) (Vass et al., 2018).

One should keep it in mind when applying antipsychotics in

an experimental condition. As it can be seen one also should be

cautious when limiting the effects of antipsychotics on serotonin,

dopamine, and histamine receptors only.

An interesting aspect of interneurotransmitter effects has

recently been shown—the simple replacement of a flexible alkyl

chain with a semirigid aryl or cycloalkyl ring leads to increased

mAChR affinity of specific ligands, detrimentally affecting

histamine receptor binding (Staszewski et al., 2021). However,

these newly synthesized ligands continued to bind to histamine

receptors, although with lower affinity.

4 Muscarinic receptor allosteric
ligands

The allostery concept was introduced in 1961 by Monod and

Jacob and suggests conformational changes in a two-state model

[see (Coughlin et al., 2019)]. The search for allosteric mAChRs

ligands began in the 1970s (Clark and Mitchelson, 1976) and was

further developed in the 1980s.

The general principle of allosteric action lies in the fact that

binding to allosteric sites can modulate the activity of orthosteric

ligands (Kruse et al., 2014). The common mechanisms of

allosteric modulation have been indicated to be generalizable

and can be found for many if not all, GPCRs. However, marked

structural differences also exist. Mainly amongmAChR subtypes,

the receptors reveal different sequence homology. While

orthosteric site sequence homology is high between all

mAChR subtypes, in the extracellular parts of the

transmembrane domains and extracellular loops of these

receptors, there is a low degree of sequence homology. In

summary, the interactions of ligands with receptors can

occur as follows (Mohr et al., 2013): 1) positive allosteric

modulators (PAMs) increase the affinity or efficacy of an

orthosteric ligand or orthosteric agonist–receptor complex,

increase the equilibrium binding of the simultaneously

bound endogenous or exogenous orthosteric ligand, enhance

either the affinity of an orthosteric agonist or lower the

activation barrier for the transition from the inactive to the

active conformation of the receptor, 2) negative allosteric

modulators (NAMs) decrease the affinity or efficacy of an

orthosteric ligand or orthosteric agonist–receptor complex,

inducing a rightward shift of the concentration-effect curve

of the endogenous agonist (as an example), 3) neutral allosteric

ligands (NALs) bind to an allosteric site but have no effect on

the affinity or efficacy of orthosteric or allosteric ligands, and 4)

allosteric agonists activate the receptors themselves.

We can also define some strengths and disadvantages of each

mode of mAChR targeting. Orthosteric sites exhibit high affinity

to ligands, but mAChR subtype selectivity remains largely

unfeasible. Allosteric sites exhibit greater receptor selectivity

and promote more physiological response patterns, but there

was a problem with low-affinity modulators that have been

reported (Melancon et al., 2012b). Recently, some drugs that

overcame this obstacle advanced to the preclinical or clinical

phase of testing in the treatment of neurological disorders

(Moran et al., 2019).

The possible solution to this problem could be bitopic

(dualsteric) ligands. Research has been conducted to

rationally design hybrid molecules that simultaneously bridge

orthosteric and allosteric sites within a single receptor. These

compounds have been termed “bitopic,” “dualsteric,” or

“multivalent.” These drugs attempt to target allosteric sites to

achieve selectivity and orthosteric sites to provide high affinity

(Bock et al., 2018).

At the beginning of the 21st century (Disingrini et al., 2006),

first combined a nonselective, high-affinity orthosteric agonist

(iperoxo) with an M2 receptor-selective allosteric modulator to

generate an M2 receptor-selective agonist. However, although

bitopic agonists with mAChR subtype selectivity and signaling

tendencies have been described, substantial improvements in

affinity were not observed [see (Kruse et al., 2014)]. On the other

hand, the bitopic mAChR antagonist THRX-160209 has been

shown to exhibit both affinity and selectivity for the M2 receptor

(Steinfeld et al., 2007b).

The selective ligands (the current situation) are summarized

in Table 4. It is necessary to stress that very well-established

ligands (with a long history of use in mAChR research, e.g.,

atropine) are expected to have more additional targets than less
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TABLE 3 Effects of allosteric ligands on muscarinic receptors and other targets. The compounds are listed alphabetically. The numbers indicate pKi
values. Please note that a higher pKi indicates higher affinity. Unavailable data are shown as blank spaces. The affinities of nicotinic receptors are
not divided among specific subunits. The affinities of other, noncholinergic targets are divided into nanomolar (pKi>6) and micromolar (pKi<6)
groups. The categorization of pKi is compromise between extremely large Table and fast orientation how much are other targets are affected in
specific concentration of ligand used (see also examples in Chapter 5). Data are from or adapted from (Pascuzzo et al., 1984; Eglen and Whiting,
1987; Buckley et al., 1989; Buckley et al., 1990; Hudkins et al., 1991;Wess et al., 1991; Bolden et al., 1992; Kashihara et al., 1992; Sowell et al., 1992;
Doods et al., 1993; Shen et al., 1993; Stanton et al., 1993; Doods et al., 1994; Ferrari-Dileo et al., 1994; Kleinschroth et al., 1995; Waelbroeck et al.,
1996; McKenna et al., 1997; Boess et al., 1998; Bolognesi et al., 1998; Cantı´ et al., 1998; Caulfield and Birdsall, 1998; Lazareno et al., 1998;
Choppin et al., 1999; Sánchez andHyttel, 1999; Eglen andNahorski, 2000; Kozlowski et al., 2000; Lazareno et al., 2000; Becerra et al., 2001; Dhein
et al., 2001; Huang et al., 2001; Lockhart et al., 2001; Apelt et al., 2002; Carlsson et al., 2002; Harvey et al., 2002; Cheng et al., 2002; Lazareno et al.,
2002; Böhme et al., 2003; Samochocki et al., 2003; Sur et al., 2003; Jakubik et al., 2004; Kobayashi et al., 2004; Wang et al., 2004; Ghoneim et al.,
2006; Spalding et al., 2006; Butini et al., 2008; Langmead et al., 2008; Bridges et al., 2009; Heinrich et al., 2009; Prat et al., 2009; von Coburg et al.,
2009; Bridges et al., 2010a; Harada et al., 2010; Hern et al., 2010; Lange et al., 2010; Rook et al., 2010; Sinha et al., 2010; Watt et al., 2011; Daval
et al., 2012; Samadi et al., 2012; Sykes et al., 2012; Arunotayanun et al., 2013; Nenasheva et al., 2013; Salmon et al., 2013; Croy et al., 2016; Gaulton
et al., 2016; Alexander S. P. et al., 2017; Alexander S. P. H. et al., 2017; Chen et al., 2017; Carr et al., 2018; Hegde et al., 2018; Broad et al., 2019;
Myslivecek, 2019; Xu et al., 2019; Olianas et al., 2020; Okimoto et al., 2021) and the IUPHAR/BPS Guide to Pharmacology (www.
guidetophamacology.org). For specific ligand references see text. The activity represents the main effect of a specific ligand.

Target Muscarinic receptors Nicotinic
receptors

Cholinester-
ases (ChEs)
AChE/
BChE

Other targets

M1 M2 M3 M4 M5 Nanomolar
(pKi > 6)

Micromolar
(pKi < 6)

AC-260584 (5.9)P* 5.0(An) 5.23(An) 5.0(An) 6.0(Ag)

ASP8302 P
(20.1 fold
increase
with
0.3 µmol/
L)

P
(22.1 fold
increase
with
0.3 µmol/
L)

Alcuronium (5.0)N (6.1–6.9)
N

(5.8)N (5.6)N 7.3

Amiodarone (5.5–6.3) (7.3) σR Nav1.5, Kv1.7, β1,3-
AR, α2A,B-AR, AR,
D1-4DR, 5-HT1A,
HT2A,B,C, 5-HT6,
TRα, TRβ1

Brucine (4.5–5.8) P (4.3–4.6)
P

(3.6–4.0)
N

(4.7–6.0)
N

(2.9) N

(4.5) Neu (4.3) N

brucine N-oxid (3.2) P,Neu (3.5) N,P (2.5)
P, Neu

(3.6)
P, Neu

(3.3) N,P

Clozapine 7.0–9.01 (*) 6.77–7.34 7.0–7.77 7.0–8.2 7.0–8.02 5-HT1A,B,D,e,F 5-
HT2A,B,C 5-HT5A

5-HT6, 5-HT7

SERT D1-5 DR
H1,4 R α1A,B,D-AR
Kv11.1/HERG

Kir3.2

(7.7–7.9)*P

Gallamine 5.07 (5.6-7-6) 6.0 4.43–4.82

Gö 7874 (5.8)N (5.0)N (5.1)N (5.7)Neu cGMP-PK, MLCK

K-252a (5.1)P Ca2+/calmo-dulin
PK II MAPK
9 MAPK
10 MAPK
11 MLCK, cGMP-
PK,neurotrophic
rectyrK1/NGF
receptor Trk-A

KT5720 (6.4)P (6.4)N PKA

KT 5823 (5.7)P (5.7)P

Lu AE51090 (7.2) Pa 5.66 5.15 5.16 5.05 6.0 α1A,B-AR
H1 R

LY20332298 (6.0) P N (6.7)

(Continued on following page)
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TABLE 3 (Continued) Effects of allosteric ligands on muscarinic receptors and other targets. The compounds are listed alphabetically. The numbers
indicate pKi values. Please note that a higher pKi indicates higher affinity. Unavailable data are shown as blank spaces. The affinities of nicotinic
receptors are not divided among specific subunits. The affinities of other, noncholinergic targets are divided into nanomolar (pKi>6) and micromolar
(pKi<6) groups. The categorization of pKi is compromise between extremely large Table and fast orientation howmuch are other targets are affected in
specific concentration of ligand used (see also examples in Chapter 5). Data are from or adapted from (Pascuzzo et al., 1984; Eglen and Whiting, 1987;
Buckley et al., 1989; Buckley et al., 1990; Hudkins et al., 1991;Wess et al., 1991; Bolden et al., 1992; Kashihara et al., 1992; Sowell et al., 1992; Doods et al.,
1993; Shen et al., 1993; Stanton et al., 1993; Doods et al., 1994; Ferrari-Dileo et al., 1994; Kleinschroth et al., 1995; Waelbroeck et al., 1996; McKenna
et al., 1997; Boess et al., 1998; Bolognesi et al., 1998; Cantı´ et al., 1998; Caulfield and Birdsall, 1998; Lazareno et al., 1998; Choppin et al., 1999; Sánchez
and Hyttel, 1999; Eglen and Nahorski, 2000; Kozlowski et al., 2000; Lazareno et al., 2000; Becerra et al., 2001; Dhein et al., 2001; Huang et al., 2001;
Lockhart et al., 2001; Apelt et al., 2002; Carlsson et al., 2002; Harvey et al., 2002; Cheng et al., 2002; Lazareno et al., 2002; Böhme et al., 2003;
Samochocki et al., 2003; Sur et al., 2003; Jakubik et al., 2004; Kobayashi et al., 2004; Wang et al., 2004; Ghoneim et al., 2006; Spalding et al., 2006;
Butini et al., 2008; Langmead et al., 2008; Bridges et al., 2009; Heinrich et al., 2009; Prat et al., 2009; von Coburg et al., 2009; Bridges et al., 2010a;
Harada et al., 2010; Hern et al., 2010; Lange et al., 2010; Rook et al., 2010; Sinha et al., 2010;Watt et al., 2011; Daval et al., 2012; Samadi et al., 2012; Sykes
et al., 2012; Arunotayanun et al., 2013; Nenasheva et al., 2013; Salmon et al., 2013; Croy et al., 2016; Gaulton et al., 2016; Alexander S. P. et al., 2017;
Alexander S. P. H. et al., 2017; Chen et al., 2017; Carr et al., 2018; Hegde et al., 2018; Broad et al., 2019; Myslivecek, 2019; Xu et al., 2019; Olianas et al.,
2020; Okimoto et al., 2021) and the IUPHAR/BPS Guide to Pharmacology (www.guidetophamacology.org). For specific ligand references see text. The
activity represents the main effect of a specific ligand.

Target Muscarinic receptors Nicotinic
receptors

Cholinester-
ases (ChEs)
AChE/
BChE

Other targets

M1 M2 M3 M4 M5 Nanomolar
(pKi > 6)

Micromolar
(pKi < 6)

LY2119620 (5.5–5.7)
P, Pa

(5.5)
P, Pa

McNeil-A-343$$ 4.8–5.2 4.7–6.0 5.0–5.3 5.6–6.7 4.9 5-HT3, 5-HT4

MK-7622 (7.0)P arachidonate 5-
lipoxygenase,
Kv11.1/HERG

MT3 toxin 7.1 <6 <6 8.5 (8.7) <6 α2A-AR
MT7 toxin 9.8 (10.95) <6 <6 <6 <6
N-benzyl-brucine (4.4)N (4.8)N,P (3.8)N,P (4.5)

N,Neu
(3.7)
N,Neu

N-chloromethyl-
brucine

(4.1)N (4.6)N,P (3.3)P (4.4)Neu (4.4)N

N-desmethylclozapine (6.8–7.3)P 5-HT1A, δ-OR,
5-HT6

5-HT2C

staurosporine (5.9)P (5.1)P (5.3)Neu Ca2+/calmodulin
PK II, ser/thr
kinase 3, DAPK1

Strychnine (4.9–5.0)
Neu, N

(4.9–5.0)
P

(4.2–5.7)N (4.8–5.0)
P

(3.6)N GlyR (α1, β,
α2, α3),

TAS2R10

TAS2R46

Tacrine (5.7)N (5.7)N 6.82 7.5/7.2 α1A-AR, CB1, CB2,
GluN1/GluN2A,
MAOA, MAOB,
histamine
N-methyltransfer-
ase, SERT,
SLC22A1

thiochrome (4.1)Neu (3.9)Neu (4.4)Neu (4.0)P

Vinburnine (5.1)Neu (4.2)Neu (5.2)Neu (4.6)P

Vincamine (4.8)Neu (5.1)Neu (5.7)Neu (4.2)P

VU0119498 (5.2)P (4.52)P (5.2)P (4.52)P (5.4)P

W-84 (6.0–7.5)
P (7.6)N

WIN 51,708 (5.8)N (5.9)N (5.5)N (6.2)N

WIN 62,577 (5.5)N (5.3)N (5.1)P (5.9)N NK1

5-HT, serotonin receptors (with specific subtypes); AANAT, serotonin N-acetyltransferase (arylalkylamine N-acetyltransferase); A1R, adenosine A1 receptor; A2AR, adenosine A2A

receptor; A3R, adenosine A3 receptor; AR, androgen receptors; ASL, argininosuccinate lyase; α1-AR, α1-adrenoceptors (with specific subtypes); α2-AR, α2-adrenoceptors (with specific

subtypes); β-AR, β-adrenoceptors (with specific subtypes); BTLP, brain tumor-like proteins; CANCA1C, voltage-dependent L-type calcium channel subunit alpha-1C subunit; Cav1.2,

voltage-gated L-type calcium channel alpha-1C subunit; Ca2+/calmodulin PK II, calcium/calmodulin protein kinase II; CB R, cannabinoid receptors; CCK R, cholecystokinin receptor;

cGMP-PK, cGMP dependent protein kinase; ChT, high-affinity choline transporter; CYP2C19, CYP2C9, cytochrome P450 enzymes; δ-OR, δ-opioid receptor; D1,2,3,4,5DR, dopamine
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established ligands (e.g., allosteric ligands with a short history of

use or only recently discovered), simply because they are better

investigated. Thus, one should consider Table 4 as the present

state of knowledge.

Despite their relatively short history of use, some allosteric

ligands have also been shown to target multiple receptors.

Following are examples of such allosteric (or bitopic) ligands.

Some of these drugs can act not only on mAChRs but also on

other neurotransmitter receptors. This is the case for McNeil-A-

343, which acts on all mAChR subtypes as a partial agonist

(Alexander S. P. et al., 2017). In addition, it is also considered a

bitopic ligand of mAChRs in that it modulates allosteric and

orthosteric binding sites (Christopoulos et al., 2014). In addition,

this compound can also act as an antagonist of 5-HT4 and 5-HT3

receptors at a range of concentrations overlapping with those

relevant to its interaction with mAChRs (Sagrada et al., 1994). An

example of a compound with unprecedented selectivity and

procognitive potential is Lu AE51090, an allosteric muscarinic

M1 mAChR agonist. Although the selectivity to M1 mAChR is

really nice (between 36-145× better than to M2-M5 mAChRs),

there is still binding to α1A,B-adrenoceptors, and to histamine H1

receptors (pKis between 6.07-6.59, (Sams et al., 2010)). Thus, this

compound shows the advantage of multitarget binding in

treatment.

Another example of mAChR allosteric ligands acting on other

neurotransmitter receptors is as follows. MT3 toxin from the green

mamba is considered an M4 mAChR NAM. However, it has also

been demonstrated to be an α2A-adrenoceptor antagonist (Carr
et al., 2018). The opposite mAChR allosteric ligand situation is

seen in amiodarone, which is a classical blocker of voltage-gated

potassium channels (Kv1.7) (Bardien-Kruger et al., 2002) and

voltage-gated sodium channels (Nav1.5)(Sheldon et al., 1989).

Relatively recently, it has also been identified as a PAM of M5

mAChRs (Stahl and Ellis, 2010), but it has an alternative allosteric

binding site (Burger et al., 2021). This drug also acts as an M3

mAChR PAM (Stahl et al., 2011). However, this molecule has

additional targets, including β-adrenoceptors (Chatelain et al.,

1995), thyroid hormone receptors α and β (Carlsson et al.,

2002), and other molecules [α2-adrenoceptors, dopamine

receptors, 5-HT receptors, and σ nonopioid receptors; see

(Gaulton et al., 2016)].

The first pioneer molecules with described allosteric effects

on mAChRs were originally targeted toward NRs. This is the

case for alcuronium, which is a neuromuscular-blocking drug

with negative allosteric effects on mAChRs (Nedoma et al.,

1985) that acts as a NAM of M1, M2, M3, and M4 mAChRs.

Gallamine (defined as a nondepolarizing muscle relaxant) is a

NAM of M2 mAChRs and has a similar affinity to the α1
subunits of NRs, which are inhibited by this drug [e.g.,

(Psaridi-Linardaki et al., 2003)]. Higher concentrations of

gallamine can also inhibit AChE (Butini et al., 2008).

Gallamine also exhibits competitive inhibition of M1 mAChR

(Daval et al., 2012). Tacrine was first synthesized as a dual

inhibitor of butyrylcholine esterase and acetylcholinesterase

with the aim to treat Alzheimer’s disease (Fisher, 2008). In

addition to these effects (both cholinesterases have a relatively

high affinity to tacrine with pKi ≈ 7), this drug also reveals

negative allosterism on M1 and M2 mAChRs [pIC50 = 5.7,

(Sowell et al., 1992)]. Tacrine also inhibits nicotinic receptor

subunit ε (Xu et al., 2019), at a similar concentration as for

mAChRs it inhibits α1A-adrenoceptors (Gaulton et al., 2016),

cannabinoid receptors CB1, CB2 (Lange et al., 2010), GluN1/

GluN2A/Glutamate NMDA receptor subunits (Rook et al.,

2010), histamine N-methyltransferase (Apelt et al., 2002),

MAOA and MAOB (Samadi et al., 2012), SERT (McKenna

et al., 1997), and SLC22A1 (Chen et al., 2017).

Staurosporine, as another example of a drug with a classical

function, is described mainly as a protein kinase inhibitor but is

also a PAM of M1 and M2 mAChRs (Lazareno et al., 2000). In

addition, it can affect many other molecules, such as calcium

calmodulin protein kinase II, serine/threonine kinase 3, and

death-associated protein kinase 1 [see (Hall et al., 2009)].

Brucine is a natural alkaloid product with many effects on

organisms (Lu et al., 2020), such as antitumor, anti-

inflammatory, analgesic effects, and effects on the

cardiovascular system and nervous system. This molecule is

also a PAM of M1 and M2 mAChRs and a NAM of M3, M4,

and M5 mAChRs (Jakubík et al., 1997; Lazareno et al., 1998;

Birdsall et al., 1999). WIN 62,577, as another allosteric

modulator, is a NAM of M1, M2, M4, and PAM of M3

mAChR that was originally synthesized as an NK1 antagonist

(Lazareno et al., 2002). Another allosteric ligand, AC-260584 has

D1,2,3,4,5 receptors; DAT, dopamine transporter; DAPK1, death-associated protein kinase 1; ETAR, endothelin ETA receptors; GluN1/GluN2A subunits of NMDA glutamate receptor, GlyR:

glycine receptor (subunits in parentheses), GR: glucocorticoid receptor, H1R, H2R, H3R: histamine receptors 1, 2, and 3, Kir: potassium inward rectifier; Kv1.7, voltage-gated potassium

channel 1.7; Kv11.1, rapid delayed inward rectifying potassium current; Kv7.1, voltage-gated potassium channel; Kv4.3, voltage-gated potassium channel subunit Kv4.3; LPA,

Lysophospholipid receptors; MAOA,B, monoaminoxidase A, B; MAPK, mitogen-activated protein kinase; MC4R, melanocortin receptor 4; MLCK, myosin light chain kinase; MT1AR,

melatonin receptor 1A; NMDA GluN1/GluN2A, subunits of NMDA receptors; NA, noradrenaline; NaV, sodium channels (batrachotoxin site); Nav1.5, sodium channel protein type V;

OCT-2, organic cation transporter 2; TRPV, transient receptor potential vanilloid ion channel; SLC22A1, solute carrier 22, type 1; NET, norepinephrine transporter, neurotrophic rectyrK1/

NGF receptor Trk-A, neurotrophic receptor tyrosine kinase 1/Nerve growth factor receptor Trk-A; NPY R, neuropeptide Y receptor; σR, sigma nonopioid receptor; SERT, serotonin (5-HT)

transporter; ser/thr kinase 3, serin/threonine kinase 3; TAS2R46, TAS2R10, Taste receptor type 2 (member 46, 10), TRα; TRβ1, thyroid receptors subtypes; VAChT, vesicular acetylcholine
transporter.

(Ag) agonist. (An) antagonist. (*): also acts as an allosteric modulator. The values in parentheses are the values for allosteric binding. The values in brackets are the values when ligand also

act as partial agonist. P, PAM; N, NAM; Neu, neutral allosteric modulator; F, full allosteric agonist; Pa, partial allosteric agonist (shownwhen dual effects are present; otherwise, see the text).
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TABLE 4 The list of selective MR ligands. The present state of knowledge. The values in parentheses represent pKi (pKD, respectively) for M1, M2, M3,
M4, and M5 MRs). Some orthosteric agonists ((-)YM796, AZD6088, LSN3172176, butylthio-TZTP are not sufficiently documented with respect to
selectivity. The same can be stated about allosteric agonist listed in this table (ML169, PF-06767832, T-495) that have been reported as selective but
the data on other MR subtypes are missing. VU0029767 and VU0090157 showed selectivity on M1 MRs over other subtypes but values were not
reported.

Muscarinic subtypes

M1 M2 M3 M4 M5

Agonist benzoquinazolinone 12*P dimethyl-W84*P VU0010010*P ML380$P

(6.55) (8.5) (6.4) $ (5.25, 4.5, 5.6, 4.5, 6.72)

Abdul-Ridha et al. (2014) Tränkle et al. (2003) Shirey et al. (2008) Gentry et al. (2014b)

BQCA P,F Duo3*P VU0152099*P VU0238429 (ML 129)$P

(4.0–4.8, all other subtypes are not affected by 10−4 mol/L
BQCA)

(7.1) (6.4)$ (4.52, 4.52, 4.52, 4.52, 5.96)

Ma et al. (2009) Tränkle et al. (2005) Brady et al. (2008) Gentry et al. (2013a)

ML169*P WDuo3*P VU0152100*P ML326 (VU0467903)$P

(5.9) (6.9) (6.64)$ (<4.52, <4.52, <4.52, <4.52, 6.39)
Tarr et al. (2012) Tränkle et al. (2003) Le et al. (2013b) Gentry et al. (2013a)

PF-06767832* compound-110# VU0400265$ P

(7.2)P Wang et al. (2022) (<4.52<4.52, <4.52, <4.52, 5.72)
Davoren et al. (2016) Bridges et al. (2010b)

T-495*P compound 24# VU0365114$ P

(6.19) Schubert et al. (2019) (<4.52<4.52, <4.52, <4.52, 5.56)
Mandai et al. (2020) Bridges et al. (2010b)

VU0029767#P VU0467154$ P

Marlo et al. (2009) (NA,NA,NA,
7.75, NA)

Bubser et al. (2014)

VU0090157#P ML293$*P

Marlo et al. (2009) (5.89)

Salovich et al. (2012)

AZD6088$ ML253$*P

(8.3, 6.82, <6,<6,<6) (7.25)

(MRC/AstraZeneca: Mechanisms of Disease) Le et al. (2013a)

Antagonist VU0255035 N-methylpiperidyl benzilate
(NMPB)*

PCS1055# ML381 (VU 0488130-1) N

(7.8, 6.2, 6.1, 5.9, 5.6) (9.4) (<5, <5, 4.5, >4.5, 6.3)
Sheffler et al. (2009) Stein et al. (1988) Croy et al. (2016) Gentry et al. (2014a)

MT7 toxin (*) ML375$ N

(9.8 [10.95], <6, <6, <6, <6) (<4.52, <4.52, <4.52, <4.52, 6.52)
Caulfield and Birdsall, (1998) Gentry et al. (2013b)

quinuclidinyl-4-fluoromethyl-benzilate# dexetimide* (8.9)

Kiesewetter et al. (1997) Kovacs et al. (1998)

levetimide*

(5.0)

Kovacs et al. (1998)

THRX160209 N (*)

(≤8.0, 9.5, ≤8.0, 8.78, ≤8.0)

Steinfeld et al. (2007a)

C7/3-phth N*

(7.1)

Avlani et al. (2007)

Orthosteric ligands are shown in normal typeface, allosteric ligands are shown in bold typeface. *value for only one MR subtype was referred. #values not given. $pEC50 given instead of pKi.
$$pEC50 given instead of pKi. (*): orthosteric binding, but also acts as an allosteric modulator (value in brackets is pKi for allosteric action). P, PAM; N, NAM; Neu, neutral allosteric

modulator; F, full allosteric agonist; Pa, partial allosteric agonist (shown when dual effects are present; otherwise, see the text). NA, no action; i.e. no effect on the receptor.
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also complicated action: it acts as PAM on M1 mAChR (pIC50 =

5.9) and other mAChR subtypes (M2-M4) reveal similar affinity

when it acts as a full antagonist. On M5 mAChR it has agonist

action and the affinity is also similar (Melancon et al., 2012a).

Strychnine, glycine antagonist (Gaulton et al., 2016)—with action

onmany subunits (Zlotos et al., 2019), can allosterically modulate

the muscarinic transmission: positively, negatively, as well as it

has a neutral effect on mAChRs (Jakubík et al., 1997) also affects

taste receptors (Gaulton et al., 2016).

Another M1 and M4 mAChR PAM, KT5720 (Lazareno et al.,

2000), is also a protein kinase A inhibitor (Birdsall et al., 2001).

Kinases (cGMP-dependent protein kinase and myosin light

chain kinase) are inhibited in mAChRs (M1-M4) action rank

by Gö 7874 (Kleinschroth et al., 1995; Lazareno et al., 2000).

Another positive allosteric modulator, K-252a, selective to M1

mAChRs (Lazareno et al., 2000), is, however, a potent inhibitor of

many kinases in rank (pKi (pIC50, respectively, between 6.44 and

8.74) above the action on M1 mAChRs (pKd = 5.1)—see Table 3.

N-desmethylclozapine is a specific M1mAChR PAM but also has

the properties of an atypical agonist of M1-M4 mAChRs (Sur

et al., 2003). In addition, N-desmethylclozapine is a potent 5-

HT1A (Heusler et al., 2011) partial receptor antagonist, an

antagonist of 5-HT2C receptors (Hasuo et al., 2002) and

cloned 5-HT6 receptors (Dupuis et al., 2008) and an agonist

of δ-opioid receptors (Olianas et al., 2009).

An example of a selective drug (PAM) for M1 mAChRs is

MK-7622. The pEC50 = 7.0 (Bertron et al., 2018) seems to be far

from the pIC50s (see (Beshore et al., 2018)) for arachidonate 5-

lipoxygenase (pIC50 = 5.36) and Kv11.1/HERG (pIC50 = 4.22).

With respect to the common criteria for receptor selectivity, it

looks good, and one could consider MK-7622 as an M1 selective

ligand. This is true but a cautious attitude is recommended

concerning possible future discoveries (the drug showing the

selectivity at present would be less investigated than notoriously

known drugs).

Other examples present the situation in which the activities

of ligands depend on the number of mAChRs present in the

tissue in which the agonist is used for receptor activation. For

example, the M1 mAChR selective modulator BQCA acts solely

as a PAM of ACh activity when assayed in a cell line with low M1

mAChR density (Canals et al., 2012), and although signaling

pathways are weakly coupled to the M1 mAChR, it acts as both a

full allosteric agonist and a PAM in a system with a high M1

mAChR reserve. Another example of such a ligand is LY2033298,

which is usually considered an M4-selective agonist and has a

more complicated mode of action. It also binds to M2 mAChRs

(Valant et al., 2012) and mediates both positive and negative

allosteric effects, depending on the orthosteric ligand. More

concretely, it is a PAM of oxotremorine-M signaling at M2

mAChRs but a NAM of xanomeline at the same receptor

(Valant et al., 2012). Another ligand with mixed

pharmacodynamics is LY2119620. LY2119620 acts as a PAM

of ACh onM2mAChRs andM4mAChRs but also exhibits partial

allosteric agonism of M2 and M4 mAChRs (Croy et al., 2014;

Schober et al., 2014). Dual effects are seen inW-84 which act both

as PAM and NAM on M2 mAChRs (Tränkle et al., 2003).

Relatively recently, the allosteric modulator of M3 mAChR

was described and introduced in the clinic for the treatment

of underactive bladder (Okimoto et al., 2021). This drug acts as

PAM, potentiate activation, not only on M3 mAChR but with

similar effects on M5 mAChR.

Another characteristic of GPCR allostery is biased agonism,

which refers to the abilities of different ligands to stabilize a

subset of functionally relevant GPCR conformations, such that

different signaling outputs are achieved with the exclusion of

others (see (Kruse et al., 2014)). An example of this type of ligand

is the compound VU0029767, which potentiates ACh-mediated

phospholipase C activity via the M1 mAChR. ACh-induced

phospholipase D activation is not, however, affected (Marlo

et al., 2009).

Similarly, the development of multitarget drugs with anti-

psychotic effects (antagonists on D2 dopamine receptors and 5-

HT2A serotonin receptors) with allosteric agonism is a promising

strategy how to minimize the side effects of drugs (Szabo et al.,

2015).

5 Nonsimple targeting of muscarinic
drugs

In this section, three examples of experiments in which

orthosteric mAChR agonists/antagonists were used are

described. These papers were selected to demonstrate not only

the need for selectivity awareness but also the role of the mAChR

subtype ratio in the respective tissue. This section aims to show

the trickiness of muscarinic ligand use and possible ways to avoid

misinterpretations of obtained data. The reader can thereby be

aware of the problems associated with mAChR agonist and

antagonist specificity.

As an example (Morales-Weil et al., 2020), used different

muscarinic antagonists to determine the subtype responsible for

long-term GABAergic (inhibitory) potentiation. In a conclusion

from their experiments, they declared that M1 mAChRs are

responsible for the blockade of long-term inhibitory

potentiation at GABA synapses in the hippocampus. The

authors used pirenzepine at a concentration (100 nmol l−1,

i.e., 10−7mol l−1) with which it was not possible to exclude the

blockade of not only M1 mAChRs but also other mAChR

subtypes, at least in part. Considering the pKis of pirenzepine

for specific mAChR subtypes (Myslivecek, 2019) (M1: pKi =

7.8–8.5, M2: pKi = 6.3–6.7, M3: pKi = 6.7–7.1, M4: pKi = 7.1–8.1,

and M5: pKi = 6.2–7.1), it is evident that at 10−7 mol l−1,

pirenzepine would block the majority of M1 mAChRs and the

majority of M4mAChRs.We can also assume that approximately

one-half of M3 mAChRs were occupied by pirenzepine (pKi =

6.7–7.1), that M5 mAChRs were probably occupied in the same
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way, and that M2 mAChRs were also partly occupied. Under this

condition, focal ACh induced short-term depression of

GABAergic transmission, which led to the suggestion that

presynaptic M2 mAChRs are responsible for this

phenomenon. The authors also used AFDX-116 (10 μmol l−1,

i.e., 10−5 mol l−1) as an M2 mAChR antagonist and found no

effects of this antagonist on long-term inhibitory potentiation,

concluding that M2 mAChRs are not involved in this form of

long-term plasticity. However, upon comparing the pKis of

AFDX-116 for specific mAChR subtypes (Myslivecek, 2019)

(M1: pKi = 5.8–6.9, M2: pKi = 7.1–7.3, M3: pKi = 5.5–6.6, M4:

pKi = 6.2–7.0, and M5: pKi = 5.4–6.6), it is apparent that not only

M2 mAChRs but also M4 mAChRs and some M1, M3 and M5

mAChRs were inhibited by 10−5 mol l−1 AFDX-116. However,

considering that the relative density of M1 mAChRs in the whole

hippocampus ranges between 69% (Oki et al., 2005) and 91%

(Valuskova et al., 2018a) and is approximately 89% in the

CA1 hippocampal area (Valuskova et al., 2018a) and that

separate studies indicated that M2 and M4 mAChRs were

undetectable/insignificant in the hippocampus and CA1 area

(Valuskova et al., 2018a) or that M2 mAChRs represented 31% of

receptors (Oki et al., 2005) while M4 mAChRs were undetectable

(Oki et al., 2005; Valuskova et al., 2018a), it is possible to

conclude that the role of M1 mAChRs is indisputable and that

M2 mAChRs are not highly present in hippocampal areas. In

summary, it is necessary to consider not only the limited

selectivity of mAChR antagonists but also the relative

presence (or subtype ratios) of the respective mAChR subtypes.

Another aspect that can lead to problems in results

interpretations is the in situ hybridization of mAChR subtype

nucleotide transcripts in binding studies of receptor presence in

target tissues. In very interesting and fundamental work in the

field of cholinergic control of biological rhythms, Dojo et al.

(2017) described carbachol-induced phase shifts of

Per1 rhythms. The authors used cultured suprachiasmatic

nucleus (SCN) slices to overcome problems with

intracerebroventricular carbachol treatment. Previously,

intracerebroventricular carbachol treatment was shown to

cause phase delays during the subjective early night and phase

advances in the subjective late night [see (Dojo et al., 2017) for

details]. Dojo et al. found a carbachol-induced biphasic effect on

the phase shift, which was blocked by atropine but not

mecamylamine (nicotinic blocker). Thus, the authors

concluded that these phase shifts are mAChR-dependent and

used in situ hybridization to detect mAChR subtypes, finding M3

and M4 mAChRs expressed in SCN cells. The first effect that

cannot be excluded concerning atropine properties is antagonism

at nicotinic receptors (see Section 3.1). Although mecamylamine

failed to block the phase shift, it is necessary to stress that

mecamylamine blocks only some nicotinic receptors or

subunits (α3 with pIC50 = 6.4 and α4 with IC50 = 5.3–6.5)

(Alexander S. P. H. et al., 2017), while atropine blocks not

only mAChRs but also the α5 subunits of nicotinic receptors

and other receptors (see above—α2A- and α1D-adrenoceptors,
glycine receptors, and SERTs 5-HT1A and 5-HT2C). Thus, the

exclusion of nicotinic receptors cannot be absolute. Additionally,

other receptors could be affected by the 100 μmol l−1

(10−4 mol l−1) atropine concentration used in this experiments.

α4-containing NRs (which form heteropentameric NRs) have a

high affinity for nicotine and are the most frequent receptor

subtype in both the rodent and human brains (Weinhart et al.,

2021). The α5 subunit does not directly contribute to the agonist-
binding site but plays a critical role in the functional properties of

the receptor (Weinhart et al., 2021). Concerning mAChR

subtypes, by in situ hybridization, the authors found that M3

and M4 mAChRs are expressed in SCN cells. However, no M4

mAChRs were found in the SCN (Valuskova et al., 2018b) in KO

animals, and the overall density of mAChRs in the SCN was low.

The general problem with the method of using nucleotide

sequence detection is that this method localizes specific

nucleotide transcripts within a portion or section of tissue but

does not detect the presence of target proteins or binding sites.

As the last example, we would like to demonstrate the role of

mAChRs in addiction. The study by (Wu et al., 2020) described

the role of the rostromedial tegmental nucleus (also known as the

tail of the ventral tegmental area) in mAChR-regulated opioid

addiction. For the identification of mAChRs involved in opioid

modulation of rostromedial tegmental GABAergic neurons, the

authors used pilocarpine, 4-DAMP, LY2033298, and

tropicamide. They concluded that M3 mAChRs are

responsible for the opioid modulation of GABAergic neurons.

In detail, pilocarpine (considered an M3 mAChR agonist)

inhibited the acquisition of morphine-induced conditional

place preference, and 4-DAMP (considered an M3 mAChR

antagonist) reversed the inhibitory effect of pilocarpine. 4-

DAMP also increased locomotor activity, while pilocarpine

partially decreased locomotor activity (when combined with

morphine). LY2033298 is usually considered an M4-selective

agonist and has a more complicated mode of action—it also

binds to M2 mAChRs and mediates both positive and negative

allosteric effects, depending on the orthosteric ligand. More

concretely, it is a PAM of oxotremorine-M signaling at the

M2 mAChR but a NAM of xanomeline at the same receptor.

LY2033298 and tropicamide (considered an M4 mAChR

antagonist) did not affect the acquisition of morphine-induced

conditional place preference or locomotor activity. As discussed

above, pilocarpine, which is declared an M3 selective agonist, has

comparable effects on all mAChR subtypes, and 4-DAMP, which

is known as an M3 mAChR-selective antagonist, reveals similar

affinity to M4 mAChRs. Tropicamide is a drug with a similar

affinity to all mAChRs and is also far from selective in blocking

M4 mAChRs. The exact numbers of M3 and M4 mAChRs in the

rostromedial tegmental area are not known. Thus, we can use the

numbers of these mAChRs in the midbrain as reference values,

although with reservation. According to (Oki et al., 2005), 38% of

receptors in the midbrain are M3 mAChRs, and no significant
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number of M4 mAChRs are present. However, this study (Oki

et al., 2005) experienced an important problem: in some cases,

the total number of mAChRs when summing the numbers of

specific mAChR subtypes exceeded the number of mAChRs in

WT animals. Thus, one should be cautious in relying on the

respective percentages of specific mAChR subtypes. The most

abundant subtype in the midbrain is M2 mAChRs. Thus, it

should be concluded that the role of M3 mAChRs in mAChR-

regulated opioid addiction is highly probable, but we cannot

exclude the roles of other mAChR subtypes (M2 mAChRs).

6 Discussion

We have shown in the previous sections that both agonists

and antagonists and some allosteric ligands do not have single

target (see Figure 1). Thus, the muscarinic drugs can be

considered “multitargeting.”

Importantly, the pharmacological data are not identical, and

one should also consider which constant is given. From that point

of view, the correct assessment (proper steady-state) of the

inhibition constant (Ki) is important information. Half-

maximal inhibitory concentration (IC50) is not a good

predictor of pharmacodynamics properties. It does not

account for many factors in drug action (Lamba and Pesaresi,

2022).

This type of drug action is not specific to mAChRs but is, at

least in some cases, an advantage of drugs, allowing them to affect

more pathway changes in specific diseases (Abatematteo et al.,

2021). Surprisingly, we can find that ligands believed to

specifically bind to one neurotransmitter receptor type had

much wider activities. For example, dopamine receptor

ligands have also a wide spectrum of targets (Myslivecek,

2022). This is just one example of such similar affinities to

different neurotransmitter receptors, and many others can be

found, which indicates that binding ligands that are believed to be

specific to other neurotransmitter receptors are a general

property of neurotransmitter receptors. Compared to other

cholinergic targets, mAChRs are less selective in their

orthosteric binding sites; thus, the selection of drugs for

mAChR functions must involve more caution.

The use of mAChR agonists and/or antagonists in research

on physiological/pathophysiological functions should thus

include caution. When choosing a ligand for mAChR subtype

FIGURE 1
The main receptor targets of muscarinic agonists, antagonists and allosteric ligands. See the legend below.
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determination, one should consider the limited selectivity. As it

can be deduced from ligand structures, the ligands have, in many

cases, similar structures. Together with the high degree of amino

acid sequence homology, this is the reason for the difficulties in

subtype function determination.

This structural similarity is one of the causes of subtype

similarity in orthosteric ligands binding (see Figure 2). mAChR

subtypes are mainly conserved within seven transmembrane

zones - the structure to which ligands are bound (e.g., there is

approximately 64% of identity between all mAChR subtypes,

i.e., M1-M5 (Peralta et al., 1987; Bonner, 1989). In other words,

64% of amino acids are the same in all mAChRs. Thus, if the

identical amino acid residue is present in the same position

between mAChR subtypes, then the binding of ligand could be

similar to mAChR subtypes. This can be demonstrated by

similarities of binding for different substances revealed by

crystal structure description (Thal et al., 2016). This high

degree of sequence conservation does not exclude that

orthosteric ligands can differently bind thanks to differences

in tertiary structure. The molecular distinction is present in the

third intracellular loop (participating in the G protein

interactions) between odd- and even-numbered mAChRs

(Caulfield and Birdsall, 1998). The overall amino acid chain

identity display 43, 35, and 37% between M4 mAChR and M1,

M2, and M3 mAChR, respectively (Peralta et al., 1987). In detail,

the comparison of the M1, M2, M3, and M4 tiotropium-bound

structures (using crystallization) with the structurally similar

ligand QNB, revealed considerable differences around residues

D3.32, Y7.39, and Y7.43 (Thal et al., 2016), interacting with an

amine group. Similarly, other structure–binding properties are

discussed in this review (Thal et al., 2016). Recently, the cryo-

electron microscopy structures of M1 and M2 mAChR was

described (Maeda et al., 2019), the crystal structure of M5

mAChR (Vuckovic et al., 2019), as well as structural insights

into the subtype-selective antagonist binding to the M2 mAChR

(Suno et al., 2018).

In detail, the similarities in orthosteric ligand structures as

seen in Figure 2 are one reason for the limited selectivity of

ligands. It is possible to demonstrate this by the effort to

substitute the part of chains in mAChR ligand structure with

other residues (methyl, benzyl, and others) that significantly

change the properties of molecules. For examples of these

efforts see data on the synthesis of selective ligands (e.g.,

(Melancon et al., 2012a; Salovich et al., 2012; Gentry et al.,

2013a; Gentry et al., 2013b; Le et al., 2013b; Beshore et al.,

2018; Nabulsi et al., 2019)). The second reason is the

similarities in amino acid residues structure. For example

(Suno et al., 2018), have constructed the thermostabilized

mutant of M2 mAChRs (S110R) that had a significantly lower

affinity for the agonist iperoxo than the wild type, whereas the

affinity was unchanged or slightly lower for the inverse agonists

(QNB, tiotropium and NMS). There was also difference in

binding of antagonists (AF-DX 384 and pirenzepine), versus

the inverse agonists with this mutation. This suggest that

antagonists bind the M2 mAChR in an allosteric sodium

ion–dependent manner, whereas inverse agonists do not. In

contrast to these ligands, AFDX-384 had a remarkably higher

affinity for the S110R mutant. It is notable that AFDX-384 is

bound by M2 mAChR than pirenzepine (see Table 2). Another

point is the conformations of critical residues that are needed for

the receptor activation (Maeda et al., 2019). These motifs (see

(Maeda et al., 2019) for details) are also similar in active

conformations of M1 mAChR and M2 mAChR. This suggests

that the activation mechanism is shared between M1 and M2

mAChRs, although these receptors are coupled with different

G-proteins. (Maeda et al., 2019). Similarly, the amino acid

residues, responsible for allosteric binding have been also

identified (or more exactly are gradually identified). For

example, key residues involved in the activity of BQCA,

including Y179 in the second extracellular loop and

W4007.35 in TM7, were critical for the activity of all PAMs

tested by (Khajehali et al., 2018). This indicates that structurally

distinct PAMs share a similar binding site with BQCA. More

specifically, an extracellular allosteric site is defined by residues in

TM2, TM7 and ECL2 (Khajehali et al., 2018). Similarly (Abdul-

Ridha et al., 2014), have optimized the synthesis of

benzoquinazolinone 12. They also fully characterized the

pharmacology of this drug, finding that its improved potency

derived from a 50-fold increase in allosteric site affinity as

compared with BQCA, while retaining a similar level of

positive cooperativity with acetylcholine.

Important data on the interaction of allosteric compounds

with M4 mAChRs were reported by (Wang et al., 2022), where

the binding of newly synthesized compound-110, iperoxo, or

iperoxo-LY2119620 to M4 mAChR-Gi complex was studied. The

authors described different interaction modes and activation

mechanisms of M4 mAChR, and the receptor-iperoxo -LY-

2119620-Gi cooperativity.

In this review, we tried to include as many ligands as possible

for which the relevant off-target were found. The compounds

with not clearly defined targets or those that do not target CNS-

relevant molecules were excluded.

Most importantly, one should notice that ligands targeting

similar (or same structures) reveal also structural similarity. For

example, AC-260584 and 77-LH-28-1 (Heinrich et al., 2009)

reveal structural similarities (see Figure 2) and can affect D2 DR

in nanomolar concentration (see Table 1). In detail, Ki for D2 DR

is 0.05, and 0.06, respectively, for AC-260584 and 77-LH-28-1

(Heinrich et al., 2009). Similarly, the structural similarity of

atropine and bezatropine could be the reason for nanomolar

affinity (pKi = 6.28, and pKi = 7.49) for atropine and

benzatropine, respectively) of 5-HT2C serotonin receptors to

these ligands (Modell et al., 1989; Gaulton et al., 2016).

To overcome the limited selectivity of orthosteric ligands,

it is recommended to carefully study the presence of respective

subtypes in specific tissues via KO studies. Two studies
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conducted on mice with specific deletions of mAChR subtypes

can serve as references. The first study by Ito et al., employed

KO animals to determine the mAChR subtype numbers in

peripheral tissues, such as the salivary glands, lung, heart,

stomach, pancreas, bladder, and prostate (Ito et al., 2009). The

second study by Oki et al., employed KO animals to investigate

the presence of mAChR subtypes in specific areas in the CNS

(Oki et al., 2005), including the cerebral cortex, corpus striatum,

hippocampus, hypothalamus, thalamus, midbrain, pons-medulla,

cerebellum, and spinal cord. Although one may assume that this

type of study would provide a clear picture of the presence of

mAChR subtypes in specific tissues, a compensatory mechanism

also exists—if one subtype is knocked down, the presence of the

remaining subtypes in the specific tissue would increase. In fact, an

additional problem can also lie in themethodology. (Oki et al., 2005)

and (Ito et al., 2009) used direct radioligand binding with

hydrophilic ligands in tissue homogenates, which can slightly

artificially increase binding. This problem can be overcome by

using autoradiography, in which binding can be determined in

very small brain areas (Farar and Myslivecek, 2016). Another

method reported by (Lebois et al., 2018) employed the detection

of mRNA transcript levels expressed as reads per kilobase per

million mapped reads. These results are in better agreement with

our data obtained using autoradiography.

Thus, the total amount of all mAChR subtypes (i.e., the sum

of the density of M1+M2+M3+M4+M5 mAChRs), as reported by

(Oki et al., 2005; Ito et al., 2009), could exceed the density of all

receptor subtypes determined in WT animals. For example, in

the submandibular gland (Ito et al., 2009), 35% M2 mAChRs

and 79% M3 mAChRs were found, totaling 114%. It is,

therefore, necessary to consider that the major subtype is M3

mAChRs, which are present at more than 70%, and that the

second subtype, M2 mAChRs, is present at slightly less than half

of the number of M3 mAChRs (i.e., the ratio is approximately 2:

1). To present another example of how knocking down a

specific subtype can increase the numbers of other subtypes,

according to (Oki et al., 2005), 45% of M1 mAChRs, 34% of M2

mAChRs, 19% of M3 mAChRs, and 54% M4 mAChRs are

present in the striatum. These numbers total 152% (the total

should be 100%). Thus, it is better to count the subtypes

FIGURE 2
The schematic representation of selectivity problem with muscarinic orthosteric ligands. The binding of orthosteric ligands to transmembrane
(TM) zones and binding site of allosteric ligands is also sechamatically shown. The similarity in amino acid chain is shown in the frame. Three examples
of ligands with similar structure demonstrate that not only amino acid similarity but also ligand structural similarity are the basis of selectivity
problems.
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according to the M1:M2:M3:M4 ratio, which is 20:22:13:35.

According to our measurements using autoradiography

(Valuskova et al., 2018a), 37% M1 mAChRs and 46% M4

mAChRs were found, while we did not detect M2 mAChRs.

Unfortunately, we did not have M3 (or M5)-KO animals at our

disposal. Although the numbers are different, it is evident that

the most abundant subtype in the striatum is M4 mAChRs and

that a substantial number of M1 mAChRs are present. Recently,

we proposed an algorithm for subtype determination

(Myslivecek, 2021). Here, we would like to provide the

reader with a more detailed procedure for subtype

identification. First, as described above, it is necessary to

establish a rough ratio of the mAChR subtypes present in

the tissue of interest. Let us use the example of the striatum,

with an M1:M4 ratio between 36-45:55-64. The second step is

the selection of a ligand able to discriminate between M1

mAChRs and M4 mAChRs. This criterion is partly fulfilled

by antagonist PD102807 (the orthosteric site does not provide

enough selectivity—see Section 3), which has a selectivity for

M4mAChRs over 2 grades of magnitude higher than that for M1

mAChRs (pKi = 7.3–7.4 vs. pKi = 5.3–5.5; see (Myslivecek,

2019)). As mentioned above, to date, no interactions with other

targets are known. Thus, the third step, which is the most

difficult, is the choice of the antagonist concentration. The pKi

defines the concentration at which a ligand binds to 50% of

available binding sites. In our case, the pKi = 7.3–7.4 indicates

approximately 39.8–50.1 nmol/L. This means that PD

102807 at a concentration of approximately 45 nmol/L will

occupy approximately 50% of M4 mAChRs. Virtually no M1

mAChRs will be inhibited at this concentration (Bohme et al.,

2002). The affinity of M1 mAChRs for PD 102807 is 72-fold

lower than that of M4 mAChRs (Augelli-Szafran et al., 1998).

This means that at concentrations approaching 1 μmol/L, all M4

mAChRs will be blocked, but almost no M1 mAChRs will be

affected by this drug. However, the affinity of M3 mAChRs for

this drug is higher (there is a 10-fold difference—see (Augelli-

Szafran et al., 1998)) than that of M2 mAChRs by 38 fold.

According to the possible ratios (Oki et al., 2005; Valuskova

et al., 2018a), and assuming that the researcher uses PD

102807 at 1 μmol/L, all M4 mAChRs will be blocked, and

almost no M1 or M2 mAChRs will be affected by this drug.

M3 mAChRs are present at only one-third of the number of M4

mAChRs and have a 10-fold lower affinity for PD 102807.

However, discriminating between M3 and M4 mAChRs is

impossible, as no drug with an appropriate difference in

selectivity is known. Thus, it is necessary to conclude that

there is a possibility of minor involvement of M3 mAChRs

(with respect to their 10-fold lower affinity for PD 102807 and

one-third lower density in comparison to M4 mAChRs).

As additional examples (Oki et al., 2005), identified three

mAChR subtypes in the hippocampus (M1-M3) and pons

medulla (M2-M4), two mAChR subtypes in the hypothalamus

and midbrain (M2-M3), and only M2 mAChRs in the cerebellum

and spinal cord. If M1-M3 mAChR subtypes are present in the

hippocampus, then it is possible to use pirenzepine, which has

approximately one grade of magnitude higher selectivity for M1

mAChRs than M2 and M3 mAChRs. According to (Oki et al.,

2005), 69% M1, 30% M2, and 17% M3 mAChRs were present,

totaling 116%. The corrected ratio should thus be 59:26:15. On

the other hand, we used tritiated pirenzepine for M1 mAChR

determination and showed that in M1 mAChR-KO animals

(Valuskova et al., 2018a), the binding of 3H-pirenzepine was

almost completely abolished in hippocampal areas (dorsal

hippocampus, CA1, CA3 area, and dentate gyrus). Examples

of antagonists that could be used in specific areas according to the

presence of mAChR subtypes are as follows: in the pons-medulla

(M2-M4), PD12807 would identify M4 mAChRs, and in the

hypothalamus and midbrain (M2-M3), methoctramine would

identify M2 mAChRs.

As mentioned above, a new method for identifying mAChR

subtypes involved in specific functions involves the use of

allosteric ligands (PAMs and NAMs), as recently

demonstrated in M4 and M5 mAChR determination as

important structures in alcohol-seeking behaviors (Walker

et al., 2021). Similarly, some new positron emission

tomography (PET) tracers have exhibited promising selectivity

(Ozenil et al., 2021).

7 Conclusion

The main conclusion of this review is that the cholinergic

system in different peripheral/CNS functions should first be

studied by searching for the mAChR subtype affinities of

ligands of choice. Although it is sometimes difficult to

differentiate between specific subtypes, there are some

exceptions in which a ligand can be used as a specific means

of mAChR subtype identification (Valuskova et al., 2018a).

Another search should determine the respective densities of

mAChR subtypes in specific tissues. The combination of these

two searches should increase accurate conclusions concerning

mAChR subtypes involved in specific functions.

One way to identify the subtypes involved is to use

conditional KO animals. However, it is also necessary to keep

in mind that targeting one receptor can affect the functions of

other receptors. Typically, this is the case for mAChRs vs.

adrenoceptors in the heart (Myslivecek et al., 1996; Myslivecek

et al., 1998; Myslivecek et al., 2004; Myslivecek et al., 2008c; Benes

et al., 2012; Laukova et al., 2014; Tomankova et al., 2015).

Moreover, conditional, tissue-specific KO is a better option

than classical KO. The finding that muscarinic agonists or

antagonists have a multitarget nature is not unique, and one

should be aware that this can be true for many GPCR agonists/

antagonists.

Importantly, limited binding selectivity for specific

neurotransmitter receptors is not a property relevant to only
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mAChRs but is also a general attribute of most neurotransmitter

receptors (see the examples for dopamine receptors in the

Discussion).
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