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Abstract
Purpose Low molecular weight heparins (LMWHs) are a group of heterogenous moieties, long used in the prevention and 
treatment of thrombosis. They derive from heparin and since they are prepared by different methods of depolymerization, 
they differ in pharmacokinetic properties and anticoagulant profiles, and thus are not clinically interchangeable.
Methods In this review we provide an overview of tinzaparin's main characteristics and uses.
Results Tinzaparin which is produced by the enzymatic depolymerization of unfractionated heparin (UFH) can be used 
for the treatment and prevention of deep venous thrombosis (DVT) and pulmonary embolism (PE); it has been also used in 
special populations such as elders, obese, pregnant women, and patients with renal impairment and/or cancer with favorable 
outcomes in both safety and efficacy, with a once daily dose regimen. Furthermore, LMWHs are extensively used in clinical 
practice for both thromboprophylaxis and thrombosis treatment of COVID-19 patients.
Conclusion Tinzaparin features support the hypothesis for having a role in immunothrombosis treatment (i.e. in the context 
of cancer ,COVID-19), interfering not only with coagulation cascade but also exhibiting anti-inflammatory potency.
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Introduction

Tinzaparin sodium belongs to the family of heparinoids 
and more specifically to low molecular weight heparins 
(LMWHs). LMWHs are a group of heterogenous mixtures 
of oligosaccharides deriving from unfractionated heparin 
(UFH), produced by depolymerization. The method of depo-
lymerization (chemical cleavage with different agents such 
as nitrous acid, isoamyl nitrate, alkaline treatment, or enzy-
matic treatment with heparinase) gives each agent specific 
chemical and pharmacological characteristics, resulting in 
differences in molecular weights (MWs), bioavailability, and 
indications for use [1].

Heparin is structurally like endogenous heparan sulfate 
(HS), which is involved in various biological procedures 
such as thrombosis, angiogenesis, inflammation, and tumor 

metastasis. That similarity concedes to UFH anti-inflammatory 
and anti-oncogenic properties [2].

Hemostasis, the process that leads to cessation of bleed-
ing, involves a series of clotting factors’ activation (coagu-
lation cascade) ultimately leading to the polymerization of 
fibrin and the formation of a clot with platelets and fibrin 
polymers. Extensive activation of this process leads to 
thrombosis, highlighting the importance of interim equi-
poise on the activation/inactivation of the cascade [3]. 
Very recently, close interactions between innate immunity, 
inflammation, and coagulation have also been described. 
The process, which is called immunothrombosis is an innate 
immune response in which the local activation of blood 
coagulation exerts a protective effect against microbes or 
trauma. Neutrophils recruitment and activation with sub-
sequent NETosis (release of neutrophil extracellular traps), 
endothelial cell damage and activation, platelet activation 
and aggregation, and platelet direct interactions with innate 
immune cells (i.e., neutrophils) or secretion of cytokines/
chemokines together with coagulation protease activation, 
all participate in the complex process of immunothrombo-
sis. The key role of immunothrombosis in pathologic states 
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including thrombosis, cancer, sepsis, and trauma has been 
also recognized [4].

LMWHs have been used in clinical practice for about 
half a century, since 1980s. Their main administration 
route is subcutaneously, and they are used both for proph-
ylaxis and treatment of thrombosis [5]. The main indica-
tions of LMWHs are treatment of deep venous thrombosis 
(DVT) with or without pulmonary embolism (PE) and 
prophylaxis in patients undergoing surgery, coronary syn-
dromes, and hemodialysis. Unlike UFH, their main elimi-
nation route is renal and as they convey a lower affinity 
for plasma proteins, demonstrating a more predictable 
bioavailability profile [6]. Tinzaparin sodium is a LMWH, 
produced by depolymerization via heparinase, an enzyme 
derived from Flavobacterium heparinum. It is available 
on the market in several forms of prefilled syringes and 
multi-dose vials for once daily administration according 
to product’s monograph, thus making the use more con-
venient. It is recommended for the treatment of DVT with 
or without PE, for extended treatment of venous thrombo-
embolism and prevention of recurrences in adult patients 
with active cancer but also for VTE prophylaxis for both 
non-surgical immobilized patients (due to acute heart 
failure, acute respiratory failure, severe infections, active 
cancer, as well as exacerbation of rheumatic diseases) as 
well as in adult patients undergoing surgery, particularly 

orthopedic, general, or oncological surgery. It is also indi-
cated for prevention of clotting in extracorporeal circuits 
during hemodialysis and hemofiltration in adults [6, 7] 
and in our knowledge, tinzaparin is widely used in vari-
ous European countries, especially for the management of 
cancer-associated thrombosis (CAT) [8–10].

The main characteristics of UFH and LMWHs, tinzapa-
rin, enoxaparin, and dalteparin, are summarized in Table 1 
and further analyzed in the main part of this review.

LMWHs interfere with the coagulation cascade (see 
Fig. 1) by enhancing the inhibitory effect of Antithrom-
bin III (ATIII) mainly on activated factor X (FXa) and 
thrombin (FIIa), but also on activated FIX, and activated 
FXII by several orders of magnitude. LMWHs also influ-
ence the regulation of the tissue factor (TF) pathway by 
releasing the tissue factor pathway inhibitor (TFPI) from 
the endothelium, but also in part by inhibiting the gen-
eration and activity of FVIIa in an AT-dependent manner 
[19]. Differences in molecular weight result in differences 
in ATIII binding affinity affecting the subsequent half-life, 
anti-Xa, and anti-IIa activities of LMWHs. Furthermore, 
the release of endothelial tissue factor pathway inhibitor 
(TFPI) is directly dependent on the molecular weight and 
the degree of sulfation. Thus, different LMWHs demon-
strate different capacity of releasing endothelial TFPI [20].

Table 1  Main characteristics of tinzaparin, enoxaparin, dalteparin, UFH

a Further analysis in Discussion

Characteristic UFH LMWHs

Tinzaparin Enoxaparin Dalteparin

Average MW
(Daltons-Da) [7, 11]

5000–30000 Da 6500 Da 4500 Da 6000 Da

Metabolism [1–4, 12] Liver
Kidneys

Kidneysa

Reticuloendothelial system 
(RES)

Kidneysa Kidneysa

Elimination half-life [1–4, 
12]

Dependent on the dose 3–4 h 5 h (single dose) 3–4 h

Renal accumulation [1–4, 
12]

No No Yes No (prophylaxis doses)
Yes (treatment doses)

Anti-Xa/anti-IIa activity 
ratio [13–16]

1 1.9 3.6 2.5

Monitoring  + (aPTT) - (Anti-Xa levels, not rou-
tinely needed)

- (Anti-Xa levels, not rou-
tinely needed)

- (Anti-Xa levels, not rou-
tinely needed)

Antidote [7] Protamine sulfate Protamine  sulfatea

(anti-Xa neutralization 
85.7%)

Protamine  sulfatea

(anti-Xa neutralization 
54.2%)

Protamine  sulfatea

(anti-Xa neutralization 
74.0%)

Dose
Regimen [1–4]

IV (mainly), SC
Continuous infusion

SC
Once daily

SC
Once daily/twice daily

SC
Once daily/twice daily

Preparation [17, 18] - Enzymatic depolymeri-
zation via heparinase (Fla-
vobacterium heparinum)

Chemical depolymeriza-
tion OR

chemical cleavage—alkaline 
treatment

Chemical depolymerization 
OR chemical cleavage—
nitrous acid
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The aforementioned differences in PD profiles do not 
allow the interchangeable clinical use of LMWH [1, 21].

PK/PD

Enzymatic preparation of tinzaparin offers some advantages 
in its chemical composition. Being a “more natural” method, 
it is thought to cause less damage to the molecules while 
a high degree of sulfation of the chains is retained. This 
compound contains a range of short and long chains, with 
an average molecular weight (MW) of 6500 Da, greater than 
all other LMWHs available. The proportion of ultra-short 
chains of < 2000 Da does not exceed 10% [6, 22]. Barrett 
et al. conducted a study with tinzaparin and a tinzaparin-like 
agent with a higher proportion of short chains to estimate 
the pharmacodynamic changes and the importance of low 
molecular weight chains’ presence, without finding signifi-
cant differences in anti-Xa and anti-IIa activities in vivo 
[21]. The longer chain lengths of tinzaparin seem to result 
in greater inhibition of factor IIa compared to LMWHs 
with shorter chains. Binding of LMWHs to AT depends on 
a unique, highly sulfated, five-residue sequence found in 
approximately 30% of heparin molecules. A longer aver-
age length of the chains in a LMWH preparation increases 
the probability that they will contain this pentasaccharide 
sequence, allowing them to exert the AT-dependent effects. 
The chains must consist of at least 18 saccharide units to 
have an anti-IIa activity. Molecules in a LMWH preparation 
that are less than 18 saccharide units in length are still able 
to inactivate factor Xa. However, they are too short to form 

the ternary complex that is required to inactivate thrombin. 
The combination of partial inactivation of thrombin (factor 
IIa, by the longer chains in the mixture) and the inactivation 
of factor Xa (an essential component in the formation of new 
thrombin) provide to tinzaparin an adequate anticoagulant 
effect [13].

In the past, the activity of LMWHs was sometimes 
expressed as an anti-Xa/anti-IIa ratio. Since tinzaparin has 
a higher anti-IIa activity, this is reflected in a lower anti-Xa/
anti-IIa ratio. The anti-Xa/anti-IIa ratio of tinzaparin is 1.9, 
a ratio closer compared to other LMWHs to that of UFH 
(anti-Xa/anti-IIa ratio of UFH is 1.0) demonstrating a similar 
anti-Xa activity with other LMWHs but a higher anti-IIa 
activity [5, 7, 19].

TFPI represents an alternative natural anticoagulant 
mechanism (separate from the AT mechanism). The main 
function of TFPI is to eliminate from the clotting cascade 
the factor VIIa-tissue factor (FVIIa-TF) complex (a complex 
formed early in the coagulation cascade, after endothelium 
damage). It exerts its effect through a factor Xa-dependent 
mechanism: TFPI forms a complex with Xa, thereby inhib-
iting Xa activity. The TFPI-FXa complex then binds to the 
VIIa-TF complex on the endothelial cell membrane surface 
and blocks its activity. In addition to its anticoagulant role, 
TFPI, also has other non-anticoagulant roles; e.g., it may 
have beneficial effects in reducing sepsis, inflammation, and 
angiogenesis [23–28].

LMWHs stimulate release of TFPI from endothelium, a 
function depending on the chain length, with fractions with 
a molecular weight of > 6–8 kDa stimulating the highest 

Fig. 1  A simplified depiction 
of coagulation cascade and 
LMWHs sites of action
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release. Additionally, a high degree of sulfation of the chains 
also appears to contribute to the release of TFPI [20]. Tinza-
parin has been shown to cause a greater TFPI release com-
pared to bemiparin, a property which has been attributed to 
its larger mean molecular weight and the higher sulfatation 
level of its chains [29]. Also, patients treated with long-
term (90 days) tinzaparin had 2–2.5-fold increased TFPI 
levels throughout their treatment period while TFPI levels 
of patients treated with UFH dropped significantly after 
20 days of treatment [28].

Due to the higher proportion of long chains and high sul-
fate content, which correlates with high reversal of antico-
agulation effect, an efficient neutralization via the protamine 
sulfate is achieved for tinzaparin, at about 85.7% for anti-Xa 
activity [7].

LMWHs’ clearance depends also on their chain length 
and molecular weight which affect the potency of binding 
to both ATIII and endothelial cells. In early studies LMWHs 
were thought to be eliminated by the kidneys in a so-called 
non-saturable way. However, new studies have demonstrated 
a relationship between MW and elimination route [30, 31]. 
The broader distribution of heparin chain lengths in tinzapa-
rin leads to a higher affinity for plasma proteins and thus to 
an elimination which is less dependent on the kidneys and is 
performed via the reticuloendothelial system (RES), offering 
a more favorable profile for patients with renal impairment 
[31, 32].

Unlike UFH, whose activity and dosing need a continu-
ous monitoring via aPTT measurements, LMWHs seem to 
lack such a need because of their more predictable bioavail-
ability and safety. Although anti-Xa IU/ml concentration in 
plasma constitutes an acceptable marker for the indirect esti-
mation of LMWHs’ activity, since LMWHs are mixtures of 
polysaccharides that cannot be assessed directly in plasma, 
anti-Xa plasma levels is not definitively related to the clini-
cal anticoagulant effect of LMWH and thus, its measurement 
is not routinely advised in clinical practice except in specific 
populations [33].

The standardized dose of LMWHs is expressed in anti-Xa 
International Units (IU). Tinzaparin’s recommended treatment 
dose is 175 IU/kg subcutaneously (SC) once daily, according 
to agent’s summary of product characteristics (SmPC). The 
lack of need for monitoring, the administration route, pharma-
cokinetics and pharmacodynamics, and the option for use in 
outpatient basis render LMWHs advantageous over UFH [34]. 
In addition, the risk for heparin-induced thrombocytopenia 
(HIT) is lower with these agents [35]. Heparin-induced throm-
bocytopenia (HIT) is an immune-mediated disorder caused 
by antibodies that recognize complexes of platelet factor 4 
(PF4) and heparin. Thrombosis is a central and unpredictable 
feature of this syndrome; HIT occurs in 0.5 to 1% of patients 
exposed to unfractionated heparin for medical and surgical 

indications. The incidence is markedly lower (0.1–0.5%) in 
patients receiving LMWH.

Tinzaparin’s absolute bioavailability based on anti-Xa 
activity after subcutaneous administration is approximately 
90% and the time to reach maximal activity is 4–6 h. The 
terminal elimination half-life is approximately 3.7 h. Due to 
the long half-life of the pharmacological effect for tinzapa-
rin, once daily administration is sufficient.

The anti-Xa profile of tinzaparin supports the pharmaco-
dynamic superiority of low molecular weight heparins over 
standard intravenous (IV) heparin administration. The latter 
demonstrates a bioavailability of about 30%, attributed to 
its binding to plasma proteins and intracellular degradation, 
with a great extent of inter-individual variability [6].

The elimination half-life of tinzaparin is estimated at 
about 1.5 h for anti-Xa and 1.25 h for anti-IIa after SC 
administration, with no residual anti-Xa activity occurring 
after 24 h, consequently allowing for once daily dose [6].

Once vs twice daily administration

Once daily administration of LMWHs is preferable for 
patients, especially those with cancer and elders, since it 
causes less discomfort [36, 37]. Nonetheless the equilibrium 
between safety and efficacy must always be balanced since 
concerns of inefficiency in one-dose schemes have arisen. 
In a Cochrane database systematic review by Bhutia et al., 
the safety and efficacy of the administration of different 
LMWHs once or twice daily were studied and it was found 
that there was no significant difference for either recurrence 
of thromboembolism or major bleedings [36].

There is a controversy in regard of enoxaparin, with stud-
ies showing no difference between once and twice daily dose 
[38], or even a better safety profile (with fewer major bleeds 
and deaths in patients with the once daily regimens while 
others demonstrated a lower efficacy for once daily scheme) 
[39]. In terms of tinzaparin, an early study of Siegbahn et al. 
demonstrated no significant difference between once and 
twice daily dose neither in efficacy nor safety [40], a finding 
that was confirmed by a retrospective analysis of Nelson-
Piercy et al., in pregnant women [41].

Specific populations

It is worth mentioning that most PK studies are conducted 
in healthy volunteers and despite the predictable anticoagu-
lant potential described above, a concern for special popu-
lations such as pregnant women, elders, and patients with 
renal impairment remains. Physiologic changes in these 
populations lead to differences in pharmacokinetics and 
pharmacodynamics. Increased or decreased plasma volume, 
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the fluctuation of glomerular filtration rate (GFR), and the 
presence of placental heparinase lead to re-estimation of 
dosing and pharmacologic profile of the drug in these popu-
lations [33].

Pregnancy

Pregnant women are at high risk for thrombosis, with VTE 
and PE being important causes of maternal morbidity and 
mortality and LMWHs are the preferred agent for treatment 
of thrombosis in pregnancy [42]. The majority of the stud-
ies demonstrate a favorable profile for tinzaparin [41–44], 
and monitoring Xa activity may be an attractive option 
especially for long-term treatment in this population [45, 
46]. No neonatal adverse effects related to tinzaparin were 
described [45]. LMWH preparations contain benzyl alcohol, 
as a preservative, which may cause toxic and anaphylactoid 
reactions in infants, but prefilled syringes of tinzaparin do 
not contain benzyl alcohol and therefore can be used during 
pregnancy. Tinzaparin seems to be well tolerated in preg-
nancy; thus, larger studies are needed to confirm the afore-
mentioned results.

Obesity

Obese patients are at higher risk for VTE. According to 
Barrett et al., tinzaparin dose adjusted to body weight is 
preferable for all individuals, thus anti-Xa activity is not 
related to body weight [21]. According to Hainer et al., tin-
zaparin dose should be adjusted to body weight even in 
overweight patients, since there is no maximum permis-
sible daily dose [47]. Moreover, it has been speculated that 
tinzaparin may favor obese patients by lowering the cardio-
vascular risk through the reduction of the levels of common 
inflammatory markers such as von Willebrand factor (vWF) 
and TNF-a [48].

Chronic kidney disease (CKD)‑renal impairment (RI)

Patients with end-stage renal disease are at risk of develop-
ing thrombosis due to increased levels of vWF, fibrinogen, 
and lipoprotein(a). Patients undergoing hemodialysis may 
have additional prothrombotic risk factors such as catheter 
placements and erythropoietin therapy. The equilibrium 
between thrombotic complications and bleeding is fragile, 
requiring an antithrombotic agent with both efficacy and 
safety, with tinzaparin offering several advantages [32]. As 
mentioned above, LMWHs are mainly eliminated by the kid-
neys, with a fluctuating elimination rate depending on their 
MW [30, 49]. Tinzaparin’s clearance is less dependent on 
renal elimination route [31, 32]. In a study of Hainer et al., 
tinzaparin at the fixed dose of 75 IU/kg SC as prophylaxis 
on the off-dialysis day and intravenous (IV) on the day of 

hemodialysis session was administered to patients with ade-
quate tolerance [50]. Tinzaparin pharmacokinetics seems not 
to be affected by renal impairment (RI) since anti-Xa activity 
measurement has not demonstrated tinzaparin’s accumula-
tion in patients with mild to moderate renal insufficiency 
and creatinine clearance (CrCl) down to 20–30 ml/min as an 
estimate of GFR for up to 30 days of treatment [51–54]. In 
patients with a CrCl < 20 ml/min, the dose can be adjusted 
based on anti-Xa level measurement [51, 52, 55, 56].

In terms of safety, tinzaparin has shown similar bleeding 
rates in patients with and without renal insufficiency while 
long-term therapy in cancer patients with RI did not increase 
clinically relevant bleedings.

When compared to enoxaparin in patients with RI, tin-
zaparin has shown no statistically significant accumulation 
[56] while enoxaparin was associated with increased bleed-
ing risk and a dose adjustment was recommended especially 
when GFR < 30 ml/min [57].

Elders

Patients aged > 70 years old constitute a large proportion of 
patients in need for anticoagulants as the risk for VTE and 
atrial fibrillation increases with age [58]. The major concern 
for this group is renal impairment, analyzed above, as GFR 
decreases with age. Very old individuals (> 80 years old) are 
also prone to falls and bleeding disorders, due to their frailty.

According to Mahe et  al., tinzaparin showed a more 
favorable pharmacodynamic profile in elders with renal 
impairment compared to enoxaparin [56]. Monitoring and 
dose-adjustment are not generally needed and advised [52] 
but may offer great advantages for the treatment of espe-
cially very elderly patients [55].

Tinzaparin in oncology

Malignancies are strongly related with VTE, and apart 
from the tumor itself, many cofactors such as chemother-
apy, immunotherapy [59] erythropoietin use, and steroids 
augment the risk for thrombosis compared to general pop-
ulation. There is a well-characterized interplay between 
coagulation and cancer since tumor promotes procoagu-
lant agents and thrombin generation and the latter may 
promote tumor growth and metastases [60]. TF produced 
by several tumor cell types seems to play an important 
role in both coagulation and primary tumor growth and 
metastasis [61–65] contributing to the pathophysiology 
of cancer with either thrombin-dependent or independ-
ent mechanisms [66]. TF is primarily responsible for both 
tumor-induced thrombin generation (by direct activation 
of the coagulation pathway) and the formation of tumor 
cell-platelet aggregates [67]. TF bearing procoagulant 

1559European Journal of Clinical Pharmacology (2022) 78:1555–1565



1 3

microparticles can also contribute to that process [65, 
68]. Besides the pivotal role of thrombin in thrombo-
sis, it is traditionally acknowledged that many effects of 
thrombin in cancer may be independent of its clotting 
activity. Thrombin might contribute to cancer biology 
by activating platelet-tumor aggregation and promoting 
cellular proliferation, tumor adhesion to subendothelial 
matrix, or act through direct protease-activated receptor 
(PAR)–mediated cell signaling, leading to production of 
soluble cytokines and angiogenic growth factors interfer-
ing with tumor growth, tumor-associated angiogenesis, 
and metastasis [65, 69]. Because of the pivotal role of 
TF and thrombin generation in cancer growth and spread 
[70], it is conceivable that their inhibition could play a role 
not only in reducing the prothrombotic properties of the 
tumor but also affecting its growth and metastatic potential 
[63, 71].

LMWHs are used for the treatment and prophylaxis of 
VTE in cancer patients [72, 73]. Patients with cancer may 
also have comorbidities such as obesity, renal failure and 
they are usually of older age. Therefore, it is important to 
use an antithrombotic agent that can reduce the thrombotic 
risk while maintaining a low bleeding risk [74]

Due to its pharmacokinetics and pharmacodynamics, 
there is evidence supporting the use of tinzaparin in patients 
with active malignancies [75].

In the largest trial (ClinicalTrials.gov Identifier: 
NCT01130025) that has studied the efficacy and safety of 
full dose tinzaparin (175 IU/kg) daily compared to warfarin 
for the treatment of acute VTE in patients with active can-
cer, recurrent VTE occurred in 31 patients in the tinzaparin 
group and 45 patients in the warfarin group (cumulative 
risks, 7.2% for the tinzaparin group vs 10.5% for the war-
farin group; hazard ratio [HR], 0.65 [95% CI, 0.41–1.03]; 
P = 0.07, while tinzaparin was associated with a lower rate 
of clinically relevant non major bleeding [76].

In a systematic review of Martinez et al., tinzaparin was 
found to be superior in the 12-monthsfollow-up in terms of 
VTE recurrence [77] suggesting that tinzaparin is also a safe 
option for extended long-term treatment [78]. Furthermore, 
tinzaparin seems to be superior to vitamin K antagonists 
(VKAs) for preventing both post-thrombotic syndrome and 
venous ulcers [79, 80].

Despite the many and various mechanisms involved in the 
multifaceted relationship between cancer and thrombosis, 
anticoagulants might represent an attractive therapy, as cur-
rent research supports the hypothesis that such drugs might 
also offer a better control of cancer progression. In vitro 
studies have demonstrated an anti-oncogenic and an anti-
metastatic effect of tinzaparin which have been attributed to 
(a) the TFPI, and its property of inhibiting both procoagu-
lant and non-coagulant effects of TF [81], (b) its interfer-
ence in the angiogenesis process which was shown to be 

dose-related and dependent on the relatively higher molecu-
lar weight tinzaparin fragments, and (c) its ability to prevent 
chemo-resistance in certain cancer types [81–84].

Metastases’ development may be reduced because of 
chemokine receptor 4 (CXCR4) signaling inhibition by 
LMWH. According to a study on Chinese hamsters, tin-
zaparin can inhibit CXCR4-SDF1 interaction by binding 
stromal cell–derived factor-1 (SDF-1). In that study, tinza-
parin reduced the frequency of metastases of breast cancer 
[85]. The anti-metastatic effect of LMWH may depend on 
the inhibition of endothelial cell adhesion. Tinzaparin was 
confirmed to inhibit selectins more effectively than other 
LMWHs [86].

In an experimental model of human colon cancer, tinza-
parin administration 24 h after angiogenesis stimulation by 
VEGF led to a decrease of the angiogenic index to the con-
trol level [87]. The effect of tinzaparin on lung metastases of 
melanoma B16 was also studied in a mouse model. A single, 
subcutaneous drug dose before the cancer cell inoculation 
reduced metastatic tumor formation by 89% in comparison 
to the control. Repeated tinzaparin administration once a 
day for 14 days before the cancer cell infusion caused a 
96% reduction of the frequency of lung tumors [83]. In a 
recently published study, based on combinatorial therapy 
approaches to treat highly malignant and refractory cancers 
such as pancreatic cancer (PC), the authors hypothesized 
that tinzaparin can augment the effectiveness of traditional 
chemotherapeutic drugs and induce efficient antitumor activ-
ity. PANC-1 and MIAPaCa-2 cells were incubated alone or 
in combination with tinzaparin, nab-paclitaxel and gemcit-
abine. In vivo evaluation of these compounds was performed 
in a NOD/SCID mouse using a model injected with PANC-
1. The triple regimen provided an extra 24.3% tumor reduc-
tion compared to the double combination (gemcitabine plus 
nab-paclitaxel) [88].

Whether such an in vitro effect is translated in progres-
sion free survival (PFS) was questioned in PaCT study [89] 
and the investigators demonstrated that the administration 
of tinzaparin in advanced pancreatic cancer (PaC) patients 
undergoing chemotherapy resulted in 39.5% higher PFS than 
in patients without such thromboprophylaxis.

COVID‑19

During the COVID pandemic era, it was soon observed that 
COVID patients were at a high risk for developing both arte-
rial and venous thrombosis [90]. SARS-CoV infection causes 
a proinflammatory environment and immunothrombosis 
seems to play an important role in COVID-19 pathogenesis.

Although all guidelines recommend starting anticoagu-
lation for venous thromboprophylaxis in all hospitalized 
patients with COVID-19, preferably with LMWH, they 
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currently represent living guidance in view of the results of 
randomized clinical trials. Open questions remain regard-
ing the choice of agent, the optimal dosing of anticoagula-
tion based on illness severity, as well as the utility of VTE 
prophylaxis after hospital discharge. Based on the latest evi-
dence, in moderately ill hospitalized COVID-19 patients on 
low flow oxygen, full dose anticoagulant prophylaxis with 
LMWH can be considered in patients with low bleeding risk, 
for 14 days or until discharge (whichever happens first), as 
this may improve patient survival until hospital discharge 
without the need for ICU-level organ support. Also, in criti-
cally ill hospitalized COVID-19 patients with no contra-indi-
cations to anticoagulation, prophylactic dose of anticoagulant 
is suggested over full treatment dose [91, 92].

Considering the key role of increased thrombin genera-
tion (factor IIa) and tissue factor (TF) pathway activation in 
COVID-19-associated thrombosis [93], the special features 
of tinzaparin (higher anti-IIa activity and TFPI release) sup-
port the hypothesis that tinzaparin may have an extended 
role, interfering not only with coagulation cascade but 
also exhibiting its anti-inflammatory potency when used 
for the thrombosis treatment and prophylaxis for COVID-
19 patients. In the hypothesis of Belen-Apak, inhibition of 
FXa could lead to lower SARS-CoV viral load, as FXa plays 
a role in the viral entrance mechanism. Hence, LMWHs 
and especially tinzaparin and dalteparin are suggested for 
COVID-19 treatment [94].

The trial of Jonmarker et al. (ClinicalTrials.gov identifier 
NCT04412304) supported the use of high-dose tinzaparin or 
dalteparin for thromboprophylaxis for critically ill patients, 
showing a reduction of mortality without major bleeding 
events [95]. The study compared only different dosage 
schemes and not differences between agents.

Three case reports of middle-aged males with PE, as a 
complication of COVID-19, all treated with tinzaparin are 
also presented in the literature [96–98]. In the first two cases, 
tinzaparin was used as bridge-treatment in hospital and both 
patients received an oral anticoagulant to continue treatment 
after hospital discharge with good outcome [96, 97]. The 
third case is of great interest as he presented, with both arte-
rial and venous thromboses, while being under thrombo-
prophylaxis with nadroparin. After the first event (stroke) 
occurred the dose was increased but a couple of days later, 
he developed PE. A new regimen with tinzaparin led to a 
favorable outcome [98].

In the recently published INTERACT study, a higher 
than conventionally used prophylactic dose of anticoagula-
tion with tinzaparin was administered for VTE prevention in 
705 hospitalized, non-critically ill COVID-19 patients with 
moderate disease severity. The median duration of treatment 
was 13 days, reflecting the hospitalization period. In total, 14 
thrombotic (2.0%) and four bleeding events were observed 

(0.6%) during the observation period. In-hospital death 
occurred in 12 patients (1.7%) due to disease progression. 
For the total cohort, laboratory parameters (d-dimers, CRP, 
and PLTs), and the  SpO2 measurements showed significant 
improvements over time. For most patients, the WHO pro-
gression scale score dropped over time indicating health 
improvement [99]. The authors concluded that prophylactic 
anticoagulation with an intermediate to full therapeutic dose 
of tinzaparin among non-critically ill patients hospitalized 
with COVID-19 was safe and effective; tinzaparin might be 
superior to other anticoagulants in treatment and prophy-
laxis for COVID-19 patients but further studies are needed 
to confirm these results.

Conclusion

Tinzaparin sodium is a LMWH, deriving from UFH via 
enzymatic depolymerization. Due to its specific way of prep-
aration, it presents several unique pharmacokinetic and phar-
macodynamic characteristics making its once daily adminis-
tration both efficacious and safe. Because of its higher MW 
(an average of 6500 Da) compared to other LMWHs, it is 
eliminated in both saturable and non-saturable way, thus 
having a favorable profile for specific populations such as 
elders or patients with renal insufficiency. There is evidence 
supporting its use in obese patients and during pregnancy as 
well. It also presents anti-inflammatory and anti-oncogenic 
action mediated mainly via the TFPI pathway. Further stud-
ies will elucidate its clinical utility on immunothrombosis 
treatment in context of cancer and infections.
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