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Background
Vessel segmentation is important for evaluation of vascular-related diseases and has 
applications in surgical planning. Vascular structure is a reliable mark to localize a 
tumor, especially in liver surgery. Therefore, accurately extracting the liver vessel from 
CT slices in real time is the most important factor in preliminary examination and 
hepatic surgical planning.

In recent years, many methods of vascular segmentation have been proposed. For 
example, Gooya et al.  [1] proposed a level-set based geometric regularization method 
for vascular segmentation. Yi et al. [2] used a locally adaptive region growing algorithm 

Abstract 

Purpose:  Fuzzy connectedness method (FC) is an effective method for extracting 
fuzzy objects from medical images. However, when FC is applied to large medical 
image datasets, its running time will be greatly expensive. Therefore, a parallel CUDA 
version of FC (CUDA-kFOE) was proposed by Ying et al. to accelerate the original FC. 
Unfortunately, CUDA-kFOE does not consider the edges between GPU blocks, which 
causes miscalculation of edge points. In this paper, an improved algorithm is proposed 
by adding a correction step on the edge points. The improved algorithm can greatly 
enhance the calculation accuracy.

Methods:  In the improved method, an iterative manner is applied. In the first itera-
tion, the affinity computation strategy is changed and a look up table is employed for 
memory reduction. In the second iteration, the error voxels because of asynchronism 
are updated again.

Results:  Three different CT sequences of hepatic vascular with different sizes were 
used in the experiments with three different seeds. NVIDIA Tesla C2075 is used to 
evaluate our improved method over these three data sets. Experimental results show 
that the improved algorithm can achieve a faster segmentation compared to the CPU 
version and higher accuracy than CUDA-kFOE.

Conclusions:  The calculation results were consistent with the CPU version, which 
demonstrates that it corrects the edge point calculation error of the original CUDA-
kFOE. The proposed method has a comparable time cost and has less errors compared 
to the original CUDA-kFOE as demonstrated in the experimental results. In the future, 
we will focus on automatic acquisition method and automatic processing.
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to segment vessel. Jiang et al. [3] employed a region growing method based on spectrum 
information to perform vessel segmentation.

In 1996, Udupa et al. [4] addressed a theory of fuzzy objects for n-dimensional digital 
spaces based on a notion of fuzzy connectedness of image elements and presented algo-
rithms for extracting a specified fuzzy object and identifying all fuzzy objects present in 
the image data. Lots of medical applications of the fuzzy connectedness are proposed, 
including multiple abdominal organ segmentation  [5], tumor segmentation  [6], vascu-
lar segmentation in liver, and so on. Based on fuzzy connectedness algorithm, Harati 
et al.  [6] developed a fully automatic and accurate method for tumor region detection 
and segmentation in brain MR images. Liu et al. [7] presented a method for brain tumor 
volume estimation via MR imaging and fuzzy connectedness.

However, with the size of medical data increasing, the sequential FC algorithm, which 
depends on the sequential performance of CPU, is greatly time-consuming. On the 
other hand, parallel technology developments in many domains, such as high-through 
DNA sequence alignment using GPUs [8], accelerating advanced MRI reconstructions 
on GPUs  [9]. Therefore, some researchers proposed parallel implementations of FC. 
An OpenMP-based FC was proposed in 2008, the authors adapted a sequential fuzzy 
segmentation algorithm to multiprocessor machines  [10]. Thereafter, Zhuge et al. [11] 
addressed a CUDA-kFOE algorithm which is based on NVIDIA’s compute unified device 
architecture (CUDA) platform. CUDA-kFOE computes the fuzzy affinity relations and 
the fuzzy connectedness relations as CUDA kernels and executes them on GPU. The 
authors improved their method in 2011 [12] and 2013 [13]. However, their methods has 
expensive computational cost because their method is in an iterative manner and lacks 
of interblock communication on the GPU [13].

In this paper, we proposed a novel solution to the limited communication capability 
between threads of different blocks. The purpose of our study is to improve the imple-
mentation of CUDA-kFOE and enhance the calculation accuracy on GPU by CUDA. 
The main contributions of the proposed method are in two folds. Firstly, the improved 
method doesn’t need large memory for large data set since we use a look up table. Sec-
ondly, the error voxels because of asynchronism are updated again and corrected in the 
last iteration of the proposed method.

The paper is organized as follows. In "Background" section, we first summarize the lit-
erature of fuzzy connectedness and the CPU-based FC algorithms. Then a brief descrip-
tion of fuzzy connectedness and the original CUDA-kFOE is presented in the "Fuzzy 
connectedness and CUDA executing model" and "Previous work" sections respectively. 
The proposed improved CUDA-kFOE is explained in the "Methods" section. The experi-
ments and conclusion are given in the "Results and discussion" and "Conclusion" sec-
tions respectively.

Fuzzy connectedness and CUDA executing model
Fuzzy connectedness

Fuzzy connectedness segmentation method [14] was first proposed by Udupa et al. in 
1996. The idea of the algorithm is by comparing connectivity of seed points between tar-
get area and background area to separate the target and background.
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Let’s define X be any reference set. Fuzzy subset A of X is a set of ordered pairs,

where µA : X → [0, 1] is the member function of A in X. A fuzzy relation ρ in X is a 
fuzzy subset of X × X, ρ =

{(

x, y
)

,µρ

(

x, y
)

|x, y ∈ X
}

, where µρ : X × X → [0, 1].
In addition, ρ is reflexive if ∀x, ∀x ∈ X ,µρ(x, x) = 1 ; ρ is symmetric, if  

∀x, y ∈ X ,µρ

(

x, y
)

= µρ

(

y, x
)

; ρ is transitive, if ∀x, z ∈ X ,µρ(x, z) = maxy∈x[min(µρ
(

x, y
)

,µρ(y, z))].
Let C = (C , f ) be a scene of (Zn, a), and if any fuzzy relation k in C is reflexive and 

symmetric, we said k to be a fuzzy spel affinity in C. We define µk as

where g1, g2 are Gaussian function represented by f (c)+f (d)
2

 and |f (c)−f (d)|
2

 respectively. 
The mean and variance of g1 are computed by the intensity of objects surrounded in 
fuzzy scene, g2 is a zero-mean Gaussian.

CUDA executing model

The basic strategy of CUDA is for all computing threads to run concurrently in logic. 
Actually, tasks will divide thread blocks according to the equipments of different CUDA 
devices, and GPU will automatically distribute task blocks to each stream multiproces-
sor (SM). Figure 1 shows a procedure of blocks divided from software level to hardware 
level. In this procedure, all SMs will run in parallel independently. This means any task 
blocks in different SMs won’t execute synchronization instructions [15].

(1)A = {x,µA(x)|x ∈ X}

(2)µk(c, d) = µα(c, d)
√

g1(f (c), f (d))g2(f (c), f (d))

Fig. 1  Automatic scalability in CUDA [17]
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Previous work
In this section, a brief introduction of the CUDA-kFOE Algorithm proposed by Ying 
Zhuge et al. is presented, in which the kFOE is well parallelized. The CUDA-kFOE algo-
rithm consists of two parts.

1.	 Affinity computation. We can use Eq. (2) to compute the affinity of voxel (c, d), and 
the result of affinity µk(c, d) is stored in the special GPU device memory.

2.	 Updating fuzzy connectivity. The nature of computation for the fuzzy connectiv-
ity is a single-source-shortest-path (SSSP) problem. How to parallelize the SSSP is 
a challenge problem. Fortunately, CUDA-based SSSP algorithm proposed by Harish 
and Narayanan solves the problem  [16]. With the computing capability of Eq. (2), 
the atomic operations are employed to solve multiple threads by accessing the same 
address conflict which basically achieve SSSP parallelization, and the algorithm is 
presented in [11].

Methods
Performance analysis and improvement

In the first step of CUDA-kFOE algorithm, we need release enormous memory space to 
store the six-adjacent affinity when computing large CT series data. In addition, CUDA-
kFOE will suffer from errors in some voxels in the scenario of different blocks hard to 
execute synchronously.

In order to overcome these drawbacks of the CUDA-kFOE algorithm, in this section, 
we propose an improved double iterative method which can be implemented easily and 
has more accurate performance. The main advantages of the improved method are as 
follows.

1.	 The proposed algorithm needs less memory compared to CUDA-kFOE when pro-
cessing large data sets. (We change the affinity computation strategy by using look up 
table for memory reduction).

2.	 The proposed algorithm doesn’t need CPU involved to handle extra computing and 
therefore achieve more accurate results. (The main idea is to process twice the error 
voxels because of asynchronism. Therefore those error voxels will be processed again 
in the last iteration).

Let’s analyze the performance of CUDA-kFOE. Considering a single seed to start the 
CUDA-kFOE algorithm, and using breadth-first for computing fuzzy scenes. Figure  2 
illustrates the processing of edge points, where red points represent its neighbors 
required to be updated and blue points represent being updated points. If the red points 
denote fuzzy affinity for propagation outside, the competition problem will be triggered 
when red points reach the blocks’ edge. The reason is that the fuzzy affinity must be 
propagated between different blocks. Since the procedure of outward propagation of 
seed point looks like a tree shape and therefore the path will not appear in a circle. Thus 
the calculation procedure can be seen as the generation of tree structure which is built 
on seed points as the tree root.
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In Fig. 2, pixel 1, (2, 4), 3 and 5 locate at different thread blocks. Pixel 1, 2 and 3 are in 
C1(c) array and pixel 4 and 5 are updated points which are the neighbors of pixel 2. Con-
sidering the worst situation: because the runnings of thread blocks are disorder, when 
judging fmin > f (e), pixel 5 will be influenced by pixel 2 and 3 together. The running 
orders have six situations:

(a)	2 → 5, 3 → 5;

(b)	3 → 5, 2 → 5;

(c)	1 → 3, 1 → 2, 3 → 5, 2 → 5;

(d)	1 → 3, 1 → 2, 2 → 5, 3 → 5;

(e)	2 → 1, 2 → 5, 1 → 3, 3 → 5;

(f )	3 → 1, 3 → 5, 1 → 2, 2 → 5;

Because updating the pixel 5 only need selecting the max values of fuzzy affinity 
between pixel 1 and 2, the orders of situation (a) and (b) won’t influence the propagating 
result of fuzzy affinity. Therefore, situation (a) and (b) won’t generate errors because of 
thread block asynchrony. In the situation (c) and (d), if the pixel 1 doesn’t influence the 
values of pixel 2 and 3, the results are the same as the situation (a) and (b). However, If 
pixel 1 influences the pixel 2 or 3, the pixel 5 will be influenced by updating the pixel 2 
and 3. At this condition, if run 2 → 5, 3 → 5 or 3 → 5, 2 → 5 first, new value of pixel 
won’t reach pixel 5, thus pixel 5 can’t compute the correct value. Therefore, we can run a 
correction iterator to propagate the correct value of pixel 1. Double iterations can solve 
the problem of situation (c) and (d). In the situation (e) and (f ), pixels will cross 3 thread 
blocks. It’s the same situation as (c) and (d), thus we can run triple iterations to solve the 
asynchronous problem.

Improved algorithm and implementation

The flow chart of improved GPU implementation is illustrated in Fig. 3, which is modi-
fied from Ref. [13]. The pseudo code of the proposed method is given in the following 
algorithm.

As shown in the procedure of the algorithm, improved CUDA-FOE is an iteration 
algorithm. In the first iteration, only one voxel will participate in computing affinity and 

Fig. 2  Illustration of edge points processing situation. Red points means their neighborhood points are 
needed to be updated. Blue points means they are being updated
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updating the six-adjacent connectivity. While the number of iteration increase, more 
and more voxels will be computed in parallel until there is no any update operation from 
all threads, which means every voxel value in C1 is all false. In the step 6 of algorithm 
improved CUDA-kFOE, we use atomic operation for consistency [16] since more than 
one thread in update operation may access the same address simultaneously. In addition, 
the edges of different blocks can not be easily controlled which may cause error values 
for the voxels at the edge of blocks. Therefore we use two iterations to solve the problem.

Fig. 3  The flow char of improved CUDA-kFOE
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Results and discussion
In the experiments, the accuracy of the proposed method is evaluated by compared to 
original CUDA-kFOE and the CPU version of FC at the same condition. The CPU ver-
sion source code of fuzzy connectedness is from Insight Segmentation and Registration 
Toolkit (ITK).

The experiments use a computer of DELL Precision WorkStation T7500 Tower which 
is equipped with two quad-cores 2.93 GHz Intel Xeon X5674 CPU. It runs Windows 
7 (64 bit) with 48  GB device memory. We use NVIDIA Quadro 2000 for display and 
NVIDIA Tesla C2075 for computing. The NVIDIA Tesla C2075 is equipped with 6 GB 
memory and 14 multiprocessors, in which each multiprocessor consists of 32 CUDA 
cores. Table 1 shows the data set used in the experiments and the results of CPU ver-
sion, original GPU version and improved GPU version in running time and accuracy. 
Error pointers is defined as the difference between CPU version and GPU version and its 
result is displayed in a new image.

Figure 4a shows the result of original CUDA-kFOE in one slice and (b) is the result 
of improved CUDA-kFOE. There are error points in the result of original CUDA-kFOE 
compared to our improved one. we choose one region with red rectangle in the results 
to demonstrate the error points. The region are blown up at the left-upper corner of 
the results, in which we can clear see there are missing pixels in the result of original 
CUDA-kFOE compared to the improved one.

Figure 5 demonstrates the performance comparison of the original CUDA-kFOE and 
the improved one in different size of data set. In each row, column (a) shows one slice of 
origin CT series; column (b) and (c) show original fuzzy scenes and threshold segmen-
tation result respectively; column (d) is the different points of origin GPU version and 
CPU version. From top to bottom, the data set size is 512 ∗ 512 ∗ 131 in the first row, 
512 ∗ 512 ∗ 261 in the second row, 512 ∗ 512 ∗ 576 in the third row. It is demonstrated 
that the bigger vascular, the more different points generated.

In addition, the improved method is further evaluated in different iteration directions 
as shown in Table 2. The results are also visualized in the Fig. 6. It is illustrated that the 
results have higher accuracy and less number of error points when choosing more adja-
cent edges during iterations.

Table 1  Experimental data set and  performance comparison of  original and  improved 
CUDA-kFOE

Dataset Small Medium Large

Seed position (166, 224, 88) (189, 245, 175) (220, 217, 497)

Scene domain 512 * 512 * 131 512 * 512 * 261 512 * 512 * 576

Voxel size (mm3) 0.69 * 0.69 * 1.0 0.70 * 0.70 * 1.0 0.87 * 0.87 * 0.8

CPU time (s) 386 783 1157

Origin GPU version (s) 6.5 15.5 39.9

Error points (original) 1169 4800 736

Improved GPU time (s) 7.2 16.8 41.9

Error points (improved) 0 1 0
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The time cost of each iteration direction is shown in the Fig. 7. For each data set, time 
cost slightly change while increase the iteration directions, because in the proposed 
twice-iteration method, most pointers reach their right values and only a few threads 
will participate in re-computing step.

Fig. 4  a The result of original CUDA-kFOE, b the result of improved CUDA-kFOE

Fig. 5  a One slice of origin CT series; b original fuzzy scenes; c threshold segmentation result; d different 
pointers. Images in column a are in cross sectional view. Columns b, c, and d are in longitudinal view of -Y 
direction.
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Conclusions
In this study, we proposed an improved CUDA-kFOE to overcome the drawbacks of the 
original one. The improved CUDA-kFOE is in an two iterations manner. Two advan-
tages are in the improved CUDA-kFOE. Firstly, the improved method doesn’t need 
large memory for large data set since we use a look up table. Secondly, the error voxels 
because of asynchronism are updated again in the last iteration of the improved CUDA-
kFOE. To evaluate the proposed method, three data sets of different size are used. The 
improved CUDA-kFOE has a comparable time cost and has less errors compared with 
the original one as demonstrated in the experiments. In the future, we will study auto-
matic acquisition method and complete automatic processing.

Fig. 6  Error points of the improved method in different iteration directions

Table 2  Error points of the improved method in different iteration directions

Direction 0 1 2 3 4 5 6

Small 1187 897 348 164 2 0 0

Medium 4800 3868 880 578 1 0 0

Large 693 619 254 30 0 0 0

Fig. 7  Time consuming (Data 1 small, Data 2 medium, Data 3 large)
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