
An improved parallel fuzzy connected
image segmentation method based on CUDA
Liansheng Wang, Dong Li and Shaohui Huang*

Background
Vessel segmentation is important for evaluation of vascular-related diseases and has
applications in surgical planning. Vascular structure is a reliable mark to localize a
tumor, especially in liver surgery. Therefore, accurately extracting the liver vessel from
CT slices in real time is the most important factor in preliminary examination and
hepatic surgical planning.

In recent years, many methods of vascular segmentation have been proposed. For
example, Gooya et al. [1] proposed a level-set based geometric regularization method
for vascular segmentation. Yi et al. [2] used a locally adaptive region growing algorithm

Abstract 

Purpose:  Fuzzy connectedness method (FC) is an effective method for extracting
fuzzy objects from medical images. However, when FC is applied to large medical
image datasets, its running time will be greatly expensive. Therefore, a parallel CUDA
version of FC (CUDA-kFOE) was proposed by Ying et al. to accelerate the original FC.
Unfortunately, CUDA-kFOE does not consider the edges between GPU blocks, which
causes miscalculation of edge points. In this paper, an improved algorithm is proposed
by adding a correction step on the edge points. The improved algorithm can greatly
enhance the calculation accuracy.

Methods:  In the improved method, an iterative manner is applied. In the first itera-
tion, the affinity computation strategy is changed and a look up table is employed for
memory reduction. In the second iteration, the error voxels because of asynchronism
are updated again.

Results:  Three different CT sequences of hepatic vascular with different sizes were
used in the experiments with three different seeds. NVIDIA Tesla C2075 is used to
evaluate our improved method over these three data sets. Experimental results show
that the improved algorithm can achieve a faster segmentation compared to the CPU
version and higher accuracy than CUDA-kFOE.

Conclusions:  The calculation results were consistent with the CPU version, which
demonstrates that it corrects the edge point calculation error of the original CUDA-
kFOE. The proposed method has a comparable time cost and has less errors compared
to the original CUDA-kFOE as demonstrated in the experimental results. In the future,
we will focus on automatic acquisition method and automatic processing.

Keywords:  Fuzzy connectedness, CUDA, Vessel segmentation

Open Access

© 2016 Wang et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/
zero/1.0/) applies to the data made available in this article, unless otherwise stated.

RESEARCH

Wang et al. BioMed Eng OnLine (2016) 15:56
DOI 10.1186/s12938-016-0165-2 BioMedical Engineering

OnLine

*Correspondence:
hsh@xmu.edu.cn
Department of Computer
Science, School
of Information Science
and Engineering, Xiamen
University, Xiamen, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12938-016-0165-2&domain=pdf

Page 2 of 10Wang et al. BioMed Eng OnLine (2016) 15:56

to segment vessel. Jiang et al. [3] employed a region growing method based on spectrum
information to perform vessel segmentation.

In 1996, Udupa et al. [4] addressed a theory of fuzzy objects for n-dimensional digital
spaces based on a notion of fuzzy connectedness of image elements and presented algo-
rithms for extracting a specified fuzzy object and identifying all fuzzy objects present in
the image data. Lots of medical applications of the fuzzy connectedness are proposed,
including multiple abdominal organ segmentation [5], tumor segmentation [6], vascu-
lar segmentation in liver, and so on. Based on fuzzy connectedness algorithm, Harati
et al. [6] developed a fully automatic and accurate method for tumor region detection
and segmentation in brain MR images. Liu et al. [7] presented a method for brain tumor
volume estimation via MR imaging and fuzzy connectedness.

However, with the size of medical data increasing, the sequential FC algorithm, which
depends on the sequential performance of CPU, is greatly time-consuming. On the
other hand, parallel technology developments in many domains, such as high-through
DNA sequence alignment using GPUs [8], accelerating advanced MRI reconstructions
on GPUs [9]. Therefore, some researchers proposed parallel implementations of FC.
An OpenMP-based FC was proposed in 2008, the authors adapted a sequential fuzzy
segmentation algorithm to multiprocessor machines [10]. Thereafter, Zhuge et al. [11]
addressed a CUDA-kFOE algorithm which is based on NVIDIA’s compute unified device
architecture (CUDA) platform. CUDA-kFOE computes the fuzzy affinity relations and
the fuzzy connectedness relations as CUDA kernels and executes them on GPU. The
authors improved their method in 2011 [12] and 2013 [13]. However, their methods has
expensive computational cost because their method is in an iterative manner and lacks
of interblock communication on the GPU [13].

In this paper, we proposed a novel solution to the limited communication capability
between threads of different blocks. The purpose of our study is to improve the imple-
mentation of CUDA-kFOE and enhance the calculation accuracy on GPU by CUDA.
The main contributions of the proposed method are in two folds. Firstly, the improved
method doesn’t need large memory for large data set since we use a look up table. Sec-
ondly, the error voxels because of asynchronism are updated again and corrected in the
last iteration of the proposed method.

The paper is organized as follows. In "Background" section, we first summarize the lit-
erature of fuzzy connectedness and the CPU-based FC algorithms. Then a brief descrip-
tion of fuzzy connectedness and the original CUDA-kFOE is presented in the "Fuzzy
connectedness and CUDA executing model" and "Previous work" sections respectively.
The proposed improved CUDA-kFOE is explained in the "Methods" section. The experi-
ments and conclusion are given in the "Results and discussion" and "Conclusion" sec-
tions respectively.

Fuzzy connectedness and CUDA executing model
Fuzzy connectedness

Fuzzy connectedness segmentation method [14] was first proposed by Udupa et al. in
1996. The idea of the algorithm is by comparing connectivity of seed points between tar-
get area and background area to separate the target and background.

Page 3 of 10Wang et al. BioMed Eng OnLine (2016) 15:56

Let’s define X be any reference set. Fuzzy subset A of X is a set of ordered pairs,

where µA : X → [0, 1] is the member function of A in X. A fuzzy relation ρ in X is a
fuzzy subset of X × X, ρ =

{(

x, y
)

,µρ

(

x, y
)

|x, y ∈ X
}

, where µρ : X × X → [0, 1].
In addition, ρ is reflexive if ∀x, ∀x ∈ X ,µρ(x, x) = 1 ; ρ is symmetric, if

∀x, y ∈ X ,µρ

(

x, y
)

= µρ

(

y, x
)

; ρ is transitive, if ∀x, z ∈ X ,µρ(x, z) = maxy∈x[min(µρ
(

x, y
)

,µρ(y, z))].
Let C = (C , f) be a scene of (Zn, a), and if any fuzzy relation k in C is reflexive and

symmetric, we said k to be a fuzzy spel affinity in C. We define µk as

where g1, g2 are Gaussian function represented by f (c)+f (d)
2

 and |f (c)−f (d)|
2

 respectively.
The mean and variance of g1 are computed by the intensity of objects surrounded in
fuzzy scene, g2 is a zero-mean Gaussian.

CUDA executing model

The basic strategy of CUDA is for all computing threads to run concurrently in logic.
Actually, tasks will divide thread blocks according to the equipments of different CUDA
devices, and GPU will automatically distribute task blocks to each stream multiproces-
sor (SM). Figure 1 shows a procedure of blocks divided from software level to hardware
level. In this procedure, all SMs will run in parallel independently. This means any task
blocks in different SMs won’t execute synchronization instructions [15].

(1)A = {x,µA(x)|x ∈ X}

(2)µk(c, d) = µα(c, d)
√

g1(f (c), f (d))g2(f (c), f (d))

Fig. 1  Automatic scalability in CUDA [17]

Page 4 of 10Wang et al. BioMed Eng OnLine (2016) 15:56

Previous work
In this section, a brief introduction of the CUDA-kFOE Algorithm proposed by Ying
Zhuge et al. is presented, in which the kFOE is well parallelized. The CUDA-kFOE algo-
rithm consists of two parts.

1.	 Affinity computation. We can use Eq. (2) to compute the affinity of voxel (c, d), and
the result of affinity µk(c, d) is stored in the special GPU device memory.

2.	 Updating fuzzy connectivity. The nature of computation for the fuzzy connectiv-
ity is a single-source-shortest-path (SSSP) problem. How to parallelize the SSSP is
a challenge problem. Fortunately, CUDA-based SSSP algorithm proposed by Harish
and Narayanan solves the problem [16]. With the computing capability of Eq. (2),
the atomic operations are employed to solve multiple threads by accessing the same
address conflict which basically achieve SSSP parallelization, and the algorithm is
presented in [11].

Methods
Performance analysis and improvement

In the first step of CUDA-kFOE algorithm, we need release enormous memory space to
store the six-adjacent affinity when computing large CT series data. In addition, CUDA-
kFOE will suffer from errors in some voxels in the scenario of different blocks hard to
execute synchronously.

In order to overcome these drawbacks of the CUDA-kFOE algorithm, in this section,
we propose an improved double iterative method which can be implemented easily and
has more accurate performance. The main advantages of the improved method are as
follows.

1.	 The proposed algorithm needs less memory compared to CUDA-kFOE when pro-
cessing large data sets. (We change the affinity computation strategy by using look up
table for memory reduction).

2.	 The proposed algorithm doesn’t need CPU involved to handle extra computing and
therefore achieve more accurate results. (The main idea is to process twice the error
voxels because of asynchronism. Therefore those error voxels will be processed again
in the last iteration).

Let’s analyze the performance of CUDA-kFOE. Considering a single seed to start the
CUDA-kFOE algorithm, and using breadth-first for computing fuzzy scenes. Figure 2
illustrates the processing of edge points, where red points represent its neighbors
required to be updated and blue points represent being updated points. If the red points
denote fuzzy affinity for propagation outside, the competition problem will be triggered
when red points reach the blocks’ edge. The reason is that the fuzzy affinity must be
propagated between different blocks. Since the procedure of outward propagation of
seed point looks like a tree shape and therefore the path will not appear in a circle. Thus
the calculation procedure can be seen as the generation of tree structure which is built
on seed points as the tree root.

Page 5 of 10Wang et al. BioMed Eng OnLine (2016) 15:56

In Fig. 2, pixel 1, (2, 4), 3 and 5 locate at different thread blocks. Pixel 1, 2 and 3 are in
C1(c) array and pixel 4 and 5 are updated points which are the neighbors of pixel 2. Con-
sidering the worst situation: because the runnings of thread blocks are disorder, when
judging fmin > f (e), pixel 5 will be influenced by pixel 2 and 3 together. The running
orders have six situations:

(a)	2 → 5, 3 → 5;

(b)	3 → 5, 2 → 5;

(c)	1 → 3, 1 → 2, 3 → 5, 2 → 5;

(d)	1 → 3, 1 → 2, 2 → 5, 3 → 5;

(e)	2 → 1, 2 → 5, 1 → 3, 3 → 5;

(f)	3 → 1, 3 → 5, 1 → 2, 2 → 5;

Because updating the pixel 5 only need selecting the max values of fuzzy affinity
between pixel 1 and 2, the orders of situation (a) and (b) won’t influence the propagating
result of fuzzy affinity. Therefore, situation (a) and (b) won’t generate errors because of
thread block asynchrony. In the situation (c) and (d), if the pixel 1 doesn’t influence the
values of pixel 2 and 3, the results are the same as the situation (a) and (b). However, If
pixel 1 influences the pixel 2 or 3, the pixel 5 will be influenced by updating the pixel 2
and 3. At this condition, if run 2 → 5, 3 → 5 or 3 → 5, 2 → 5 first, new value of pixel
won’t reach pixel 5, thus pixel 5 can’t compute the correct value. Therefore, we can run a
correction iterator to propagate the correct value of pixel 1. Double iterations can solve
the problem of situation (c) and (d). In the situation (e) and (f), pixels will cross 3 thread
blocks. It’s the same situation as (c) and (d), thus we can run triple iterations to solve the
asynchronous problem.

Improved algorithm and implementation

The flow chart of improved GPU implementation is illustrated in Fig. 3, which is modi-
fied from Ref. [13]. The pseudo code of the proposed method is given in the following
algorithm.

As shown in the procedure of the algorithm, improved CUDA-FOE is an iteration
algorithm. In the first iteration, only one voxel will participate in computing affinity and

Fig. 2  Illustration of edge points processing situation. Red points means their neighborhood points are
needed to be updated. Blue points means they are being updated

Page 6 of 10Wang et al. BioMed Eng OnLine (2016) 15:56

updating the six-adjacent connectivity. While the number of iteration increase, more
and more voxels will be computed in parallel until there is no any update operation from
all threads, which means every voxel value in C1 is all false. In the step 6 of algorithm
improved CUDA-kFOE, we use atomic operation for consistency [16] since more than
one thread in update operation may access the same address simultaneously. In addition,
the edges of different blocks can not be easily controlled which may cause error values
for the voxels at the edge of blocks. Therefore we use two iterations to solve the problem.

Fig. 3  The flow char of improved CUDA-kFOE

Page 7 of 10Wang et al. BioMed Eng OnLine (2016) 15:56

Results and discussion
In the experiments, the accuracy of the proposed method is evaluated by compared to
original CUDA-kFOE and the CPU version of FC at the same condition. The CPU ver-
sion source code of fuzzy connectedness is from Insight Segmentation and Registration
Toolkit (ITK).

The experiments use a computer of DELL Precision WorkStation T7500 Tower which
is equipped with two quad-cores 2.93 GHz Intel Xeon X5674 CPU. It runs Windows
7 (64 bit) with 48 GB device memory. We use NVIDIA Quadro 2000 for display and
NVIDIA Tesla C2075 for computing. The NVIDIA Tesla C2075 is equipped with 6 GB
memory and 14 multiprocessors, in which each multiprocessor consists of 32 CUDA
cores. Table 1 shows the data set used in the experiments and the results of CPU ver-
sion, original GPU version and improved GPU version in running time and accuracy.
Error pointers is defined as the difference between CPU version and GPU version and its
result is displayed in a new image.

Figure 4a shows the result of original CUDA-kFOE in one slice and (b) is the result
of improved CUDA-kFOE. There are error points in the result of original CUDA-kFOE
compared to our improved one. we choose one region with red rectangle in the results
to demonstrate the error points. The region are blown up at the left-upper corner of
the results, in which we can clear see there are missing pixels in the result of original
CUDA-kFOE compared to the improved one.

Figure 5 demonstrates the performance comparison of the original CUDA-kFOE and
the improved one in different size of data set. In each row, column (a) shows one slice of
origin CT series; column (b) and (c) show original fuzzy scenes and threshold segmen-
tation result respectively; column (d) is the different points of origin GPU version and
CPU version. From top to bottom, the data set size is 512 ∗ 512 ∗ 131 in the first row,
512 ∗ 512 ∗ 261 in the second row, 512 ∗ 512 ∗ 576 in the third row. It is demonstrated
that the bigger vascular, the more different points generated.

In addition, the improved method is further evaluated in different iteration directions
as shown in Table 2. The results are also visualized in the Fig. 6. It is illustrated that the
results have higher accuracy and less number of error points when choosing more adja-
cent edges during iterations.

Table 1  Experimental data set and performance comparison of original and improved
CUDA-kFOE

Dataset Small Medium Large

Seed position (166, 224, 88) (189, 245, 175) (220, 217, 497)

Scene domain 512 * 512 * 131 512 * 512 * 261 512 * 512 * 576

Voxel size (mm3) 0.69 * 0.69 * 1.0 0.70 * 0.70 * 1.0 0.87 * 0.87 * 0.8

CPU time (s) 386 783 1157

Origin GPU version (s) 6.5 15.5 39.9

Error points (original) 1169 4800 736

Improved GPU time (s) 7.2 16.8 41.9

Error points (improved) 0 1 0

Page 8 of 10Wang et al. BioMed Eng OnLine (2016) 15:56

The time cost of each iteration direction is shown in the Fig. 7. For each data set, time
cost slightly change while increase the iteration directions, because in the proposed
twice-iteration method, most pointers reach their right values and only a few threads
will participate in re-computing step.

Fig. 4  a The result of original CUDA-kFOE, b the result of improved CUDA-kFOE

Fig. 5  a One slice of origin CT series; b original fuzzy scenes; c threshold segmentation result; d different
pointers. Images in column a are in cross sectional view. Columns b, c, and d are in longitudinal view of -Y
direction.

Page 9 of 10Wang et al. BioMed Eng OnLine (2016) 15:56

Conclusions
In this study, we proposed an improved CUDA-kFOE to overcome the drawbacks of the
original one. The improved CUDA-kFOE is in an two iterations manner. Two advan-
tages are in the improved CUDA-kFOE. Firstly, the improved method doesn’t need
large memory for large data set since we use a look up table. Secondly, the error voxels
because of asynchronism are updated again in the last iteration of the improved CUDA-
kFOE. To evaluate the proposed method, three data sets of different size are used. The
improved CUDA-kFOE has a comparable time cost and has less errors compared with
the original one as demonstrated in the experiments. In the future, we will study auto-
matic acquisition method and complete automatic processing.

Fig. 6  Error points of the improved method in different iteration directions

Table 2  Error points of the improved method in different iteration directions

Direction 0 1 2 3 4 5 6

Small 1187 897 348 164 2 0 0

Medium 4800 3868 880 578 1 0 0

Large 693 619 254 30 0 0 0

Fig. 7  Time consuming (Data 1 small, Data 2 medium, Data 3 large)

Page 10 of 10Wang et al. BioMed Eng OnLine (2016) 15:56

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

Abbrevations
CUDA: compute unified device architecture; FC: fuzzy connectedness; CUDA-kFOE: CUDA version of FC; CT: computed
tomography; MR: magnetic resonance; SM: stream multiprocessor.

Authors’ contributions
LSW and SHH developed the algorithm. LSW and DL carried out the experiments and drafted the manuscript. LSW, SHH
and DL analyzed the data and provided suggestions and comments. All authors read and approved the final manuscript.

Acknowledgements
This work was supported by National Natural Science Foundation of China (Grant No. 61301010, 61327001, 61271336),
the Natural Science Foundation of Fujian Province (Grant No. 2014J05080), Research Fund for the Doctoral Program of
Higher Education (20130121120045) and by the Fundamental Research Funds for the Central Universities (Grant No.
2013SH005, 20720150110).

Competing interests
The authors declare that they have no competing interests.

Received: 4 January 2016 Accepted: 26 April 2016

References
	1.	 Gooya A, Liao H, Matsumiya K, Masamune K, Masutani Y, Dohi T. A variational method for geometric regularization of

vascular segmentation in medical images. IEEE Trans Image Process. 2008;17(8):1295–312.
	2.	 Yi J, Ra JB. A locally adaptive region growing algorithm for vascular segmentation. Int J Imaging Syst Technol.

2003;13(4):208–14.
	3.	 Jiang H, He B, Fang D, Ma Z, Yang B, Zhang L. A region growing vessel segmentation algorithm based on spectrum

information. Comput Math Methods Med 2013;2013:743870. doi: 10.1155/2013/743870
	4.	 Saha PK, Udupa JK, Odhner D. Scale-based fuzzy connected image segmentation: theory, algorithms, and valida-

tion. Comput Vis Image Underst. 2000;77(2):145–74.
	5.	 Zhou Y, Bai J. Multiple abdominal organ segmentation: an atlas-based fuzzy connectedness approach. IEEE Trans

Inform Technol Biomed. 2007;11(3):348–52.
	6.	 Harati V, Khayati R, Farzan A. Fully automated tumor segmentation based on improved fuzzy connectedness algo-

rithm in brain mr images. Comput Biol Med. 2011;41(7):483–92.
	7.	 Liu J, Udupa JK, Odhner D, Hackney D, Moonis G. A system for brain tumor volume estimation via mr imaging and

fuzzy connectedness. Comput Med Imaging Graph. 2005;29(1):21–34.
	8.	 Lu M, Zhao J, Luo Q, Wang B, Fu S, Lin Z. GSNP: a DNA single-nucleotide polymorphism detection system with GPU

acceleration. In: 2011 International conference on parallel processing (ICPP). New York: IEEE; 2011. p. 592–601.
	9.	 Stone SS, Haldar JP, Tsao SC, Sutton B, Liang Z-P, et al. Accelerating advanced mri reconstructions on gpus. J Parallel

Distrib Comput. 2008;68(10):1307–18.
	10.	 Garduño E, Herman GT. Parallel fuzzy segmentation of multiple objects. Int J Imaging Syst Technol. 2008;18(5–6):336–44.
	11.	 Zhuge Y, Cao Y, Miller RW. Gpu accelerated fuzzy connected image segmentation by using cuda. In: Engineering in Medi-

cine and Biology Society, 2009. EMBC 2009. Annual international conference of the IEEE. New York: IEEE; 2009. p. 6341–4.
	12.	 Zhuge Y, Cao Y, Udupa JK, Miller RW. Parallel fuzzy connected image segmentation on gpu. Med Phys.

2011;38(7):4365–71.
	13.	 Zhuge Y, Ciesielski KC, Udupa JK, Miller RW. GPU-based relative fuzzy connectedness image segmentation. Med

Phys. 2013;40(1):011903.
	14.	 Udupa JK, Samarasekera S. Fuzzy connectedness and object definition: theory, algorithms, and applications in

image segmentation. Graph Model Image Process. 1996;58(3):246–61.
	15.	 Kirk DB, Wen-mei WH. Programming massively parallel processors: a hands-on approach. Oxford: Newnes; 2012.
	16.	 Harish P, Narayanan P. Accelerating large graph algorithms on the gpu using cuda. In: High performance comput-

ing—HiPC 2007. Berlin: Springer; 2007. p. 197–208.
	17.	 Documentation CT. v6. 0. Santa Clara (CA, USA): NVIDIA Corporation; 2014.

http://dx.doi.org/10.1155/2013/743870

	An improved parallel fuzzy connected image segmentation method based on CUDA
	Abstract
	Purpose:
	Methods:
	Results:
	Conclusions:

	Background
	Fuzzy connectedness and CUDA executing model
	Fuzzy connectedness
	CUDA executing model

	Previous work
	Methods
	Performance analysis and improvement
	Improved algorithm and implementation

	Results and discussion
	Conclusions
	Authors’ contributions
	References

