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Abstract

Background This study aimed to evaluate the potential value of 3D multiple gradient echo Dixon-based magnetic resonance
imaging (MRI) sequence as a tool for thigh intramuscular fat quantification in Charcot–Marie–Tooth disease (CMT) patients.
Methods A prospective comparison study comprising 18 CMT patients and 18 age/sex-matched volunteers was performed.
MRI including 3D multiple gradient echo Dixon-based imaging was performed for each subject. Region of interest analyses
were performed at the upper and lower third of both thighs. The two-sample t-test or Wilcoxon rank sum test was used
for intergroup comparison of the mean muscle fat fraction. Intraclass correlation coefficients were used to evaluate the inter-
observer agreement and test–retest reproducibility. Semiquantitive analysis using the Goutallier classification (Grades 0–4)
was performed on T1-weighted images in upper thigh muscles. For Goutallier Grade 0 muscles, comparison of the mean intra-
muscular fat fraction between volunteers and CMT patients was performed.
Results The interobserver agreements were excellent for all measurements (intraclass correlation coefficients > 0.8). Mean
muscle fat fractions were significantly higher in all the measured muscles of CMT patients (P < 0.05) except in the adductor
magnus in the upper thigh (P = 0.109). Goutallier Grade 0 muscles of the CMT patients showed a significantly higher mean fat
fraction compared with that of the volunteers (P < 0.05).
Conclusions 3D multiple gradient echo Dixon-based MRI is a reproducible and sensitive technique which can reveal a signif-
icant difference in the fat fraction of thigh muscle, including comparison between Goutallier Grade 0 muscles, between CMT
patients and volunteers.
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Introduction

Charcot–Marie–Tooth disease (CMT) represents a group of
hereditary neuromuscular disorders linked to various gene
mutations responsible for either primary axonal degeneration
or primary myelin changes with eventual axonal degenera-
tion.1 The consequence is peripheral neuropathy with a char-
acteristic distal predominant limb-muscle wasting and

sensory loss.1 It has been reported that there is a substantial
variability in the clinical course of the disease among various
subtypes and even within the same subtype of the disease.1,2

Thus, careful monitoring of patients is necessary. Currently,
there exists no approved pharmacological treatment and sup-
portive measures remain the main treatment for CMT, but
several preclinical and clinical studies using pharmacological
agents have shown promising results.3–6 In addition, recent
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advances in knowledge regarding the genetic basis of CMT
with numerous genes identified to be associated with CMT
suggest potentials for developing possible treatment options
for the disease in the future.7 In this regard, an objective and
reliable tool for assessing the status of patients including the
evaluation of treatment response would be necessary.

In the management of CMT patients, careful assessment
and monitoring of the affected muscle is important. One of
the common problems encountered in these patients in clin-
ical practice is the lack of a standardized method to assess
muscle degeneration. Numerous scoring systems, which com-
posed of multiple clinical parameters including limb strength,
have been developed for diagnosis and monitoring of CMT
patients.8–10 Despite several revisions, there remain some
limitations including issues regarding inter-rater and intra-
rater agreement.8 Muscle biopsy may provide some informa-
tion on muscle fat infiltration, but it is impractical to use it on
a regular basis due to its invasiveness and limited number of
biopsy sites, which does not represent the true state of the
disease with multiple muscles involved.

Magnetic resonance imaging (MRI) allows general visual
assessment for the degree and distribution of intramuscular
fat infiltration in multiple muscle compartments, which is a
commonly associated finding in CMT patients.11,12 A semi-
quantitative grading system using a conventional T1-
weighted imaging sequence described by Goutallier et al. is
widely used scoring system for various muscular abnormali-
ties.13 This system has a significant shortcoming of being
highly observer dependent14,15 and lacking quantitative data.
Furthermore, because this classification relies on macroscopic
fat signal and only has five grades, it is not optimized for as-
sessment of early fat infiltration or interval progression that is
not severe enough to result in change of grades.16 Dixon MRI
is an emerging imaging technique for fat fraction measure-
ment that exploits the capability to differentiate the individ-
ual contributions of water and fat in each voxel of tissue
using the chemical shift difference between the two.17 Re-
cent Dixon-based MRI techniques generate fat fraction maps
that allows direct quantitative measurement of the fat pro-
portion within the designated region of interest (ROI).18 Stud-
ies have reported encouraging results with using Dixon-based
techniques for fat quantification in skeletal muscle.15,16 Given
the significant clinical implication of the muscle assessment in
CMT patient management, a reproducible quantitative imag-
ing parameter acquired through Dixon-based MRI would be
desirable.

In our study, the potential value of intramuscular fat quan-
tification using a 3D multiple gradient echo Dixon-based MRI
sequence was sought by performing a prospective compari-
son study encompassing CMT patients and volunteers. We
performed analyses in thigh, where fat infiltration is less
prominent compared to that in calf due to the predominant
nature of distal muscle involvement in CMT. Furthermore,
we aimed to evaluate the potential of 3D multiple gradient

echo Dixon sequence in terms of sensitivity by comparing
the fat fraction of grossly normal muscle, based on Goutallier
grading, between CMT patients and volunteers.

Materials and methods

Study population

The study was approved by our institutional review board.
Between February and June 2017, 18 patients diagnosed with
CMT Type I by genetic analysis and electrophysiologic study
prospectively underwent MRI. Seventeen patients who re-
ceived genetic analysis were diagnosed as CMT Type IA.
One patient who did not receive genetic testing was diag-
nosed with CMT Type I based on electrophysiologic study
and clinical history. The cohort was confined to patients aged
between 20 and 40 years old (mean ± standard deviation:
30.1 ± 4.3 years; range: 23–37 years; 8 male and 10 female
participants). Patients had no contraindication for MRI, such
as claustrophobia or metallic implant. A public notice was
posted to recruit 18 age-matched and sex-matched volun-
teers with no history of peripheral neuropathy or other path-
ologic condition in the lower extremities.

A neurologist (B.C, with 21 years of experience) performed
a neurologic examination to assess for signs of abnormality
prior to MRI. Finally, 18 age/sex-matched healthy volunteers
(mean age: 28.2 ± 1.2 years; age range: 20–36 years; 8 male
and 10 female participants) were recruited. All participants
gave written informed consent prior to MRI. No participant
dropped out, so data acquired from 18 subjects in each group
were used for analyses.

Magnetic resonance imaging acquisition

Magnetic resonance imaging (MRI) was obtained using a 3.0-
T MRI system (Ingenia; Philips Healthcare, Best, the
Netherlands) with a 16-channel anterior coil and posterior
built-in coil. The following MRI sequences were obtained for
morphologic imaging: coronal and axial T1-weighted turbo
spin echo sequences, and axial T2-weighted Dixon sequence.
From the Dixon sequence, water-only, fat-only, in-phase, and
out-of-phase images were produced. The MRI protocols are
detailed in Table 1.

A 3D multiple gradient echo Dixon-based MRI sequence
(mDixon-Quant; Philips Healthcare, Best, the Netherlands)
was obtained for fat fraction quantification which sampled
six-echo data. Images were obtained for the pelvic girdle
and the thighs at levels from the anterior inferior iliac spine
through the distal end of the femur, in the axial plane. Fat
and water-only images were consequentially reconstructed,
thereby automatically generating axial fat fraction maps with
correction for confounding effects of T2* decay.
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Data analysis

Water-only images and fat fraction maps were loaded into
image-processing software (IntelliSpace Portal, version 5.0;
Philips Healthcare). The segmentation of all muscle compart-
ments was manually performed by two independent radiolo-
gists (Y.C.Y and H.S.K, with 14 and 5 years of experience in
musculoskeletal radiology, respectively) who were blinded
to the clinical information. ROIs were initially drawn on
water-only images because it offers better visualization of
muscle boundaries. Using copy-and-paste function at the
workstation, ROIs with identical shape, size, and position
were generated on fat fraction maps.

Thigh muscles were segmented to define seven muscles:
rectus femoris, vastus lateralis, vastus medialis, biceps
femoris (long head), semitendinosus, adductor magnus, and
gracilis (Figures 1–3). These muscles were chosen for analysis
as they were constantly visualized with relatively discrete
margins. Two levels were considered to measure muscle fat
fraction—the upper and lower third of both thighs. Among
axial image slices containing the uppermost part of the fem-
oral heads to the lower most part of the femoral condyles,
these two levels were determined using the slice number of
the axial images. Measurement was not performed for the bi-
ceps femoris in the upper third and adductor magnus in the
lower third due to the small cross-sectional area and inconsis-
tent demonstration of muscle. The manual drawing of ROI
was performed so that the boundaries were within 1–2 mm
from the muscle fascia. A training session was conducted
prior to the measurements, to familiarize both radiologists
with the areas of measurement and defining ROI for muscle.
One radiologist again drew ROIs that best fit the muscle
boundaries to measure the cross-sectional area of the mus-
cles at the upper and lower third of both thighs.

All subjects were examined two times to evaluate the test–
retest reproducibility of the 3D multiple gradient echo Dixon-
based MRI. Using copy-and-paste function, each radiologist
independently generated ROIs on fat fraction maps of the
second image set.

Semiquantitative assessment

Two radiologists analysed T1-weighted images of thigh mus-
cles and graded the presence of fatty infiltration indepen-
dently based on a five-point semiquantitative scale
described by Goutallier et al.19: Grade 0, normal; Grade 1,
some fatty streaks; Grade 2, less fat than muscle; Grade 3,
fatty degeneration of 50%; Grade 4, fatty infiltration of more
than 50%. Radiologists were blinded to the clinical informa-
tion, and analyses were performed at the same level where
the fat fraction measurement for the upper thigh muscle
was performed on the fat fraction map.

Clinical assessment

Demographic and clinical data of the CMT patients are shown
in Table 2. Disease duration was determined by asking the pa-
tients when their symptoms, such as distal muscle weakness,
foot deformity, and/or sensory change, first appeared. The
severity of CMT was evaluated using the functional disability
scale20 and the CMT neuropathy score (CMTNS).21 The British
Medical Research Council scale was used to assess the thigh
muscle strength.22 Knee extension and flexion were tested
on both sides. One CMT patient showed Medical Research
Council Grade 4+ for knee extension for both sides while all
the other patients showed no abnormality. None of the pa-
tients experienced subjective weakness regarding thigh
movements. Electrophysiologic study result in the peroneal
and tibial nerves of the CMT patients are shown in Table 3.

Statistical analysis

Statistical analyses were performed using SAS version 9.4 (SAS
Institute, Cary, NC, USA). Interobserver agreements and test–
retest reproducibility of muscle fat quantification were calcu-
lated using intraclass correlation coefficients, interpreted as
follows: 0.81–1.00, excellent; 0.61–0.80, good, and ≤0.60, poor

Table 1. Summary of magnetic resonance imaging parameters

Imaging parameters
T1-weighted TSE

imaging in axial plane
T1-weighted TSE

imaging in coronal plane
T2-weighted Dixon

imaging in axial plane mDixon-Quant

Repetition time (ms) 613.7 450–650 4635.5 6.6
Echo time (ms) 16.7 15 80 1.01, 1.91, 2.81,

3.71, 4.61, 5.51
Flip angle (°) 90 90 90 3
No. of signals averaged 1 1 1 2
Reconstructed voxel size (mm) 0.68 0.68 0.68 1.82
Matrix size 320 × 320 320 × 317 320 × 320 192 × 192
Field of view (mm) 350 × 350 350 × 350 350 × 350 350 × 350
Section thickness (mm) 2 5 2 6
Gap (mm) 1 0.5 1 0
Number of slices 67 25 67 140
Imaging time (s) 162 200 194 72.5

mDixon-Quant, 3D multiple gradient echo Dixon-based sequence for fat quantification; N/A, not applicable; TSE, turbo-spin echo.
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agreement. Interobserver agreement of semiquantitative as-
sessment was performed using Cohen’s kappa analysis,
interpreted as follows: 0.81–1.00, almost perfect; 0.61–0.80,
substantial; 0.41–0.60, moderate; 0.21–0.40, fair; and ≤0.20,
slight agreement. Using Bland–Altman analysis, mean

difference and standard deviation of interobserver agree-
ments and test–retest reproducibility were also acquired.

Comparison of mean muscle fat fraction and cross-
sectional area in both thighs between CMT patients and vol-
unteers was conducted using the Wilcoxon rank sum test. For

Figure 1 An example of semiquantitative analysis and region of interest (ROI) measurement performed for intramuscular fat quantification in upper
thighs of a 33 year-old male volunteer. All the muscles of upper thigh were Graded 0 on axial T1-weighted image (A) based on semiquantitative scale
described by Goutallier et al. ROIs were initially drawn in muscles of corresponding level on water-only image (B) acquired from 3D multiple gradient
echo Dixon-based magnetic resonance imaging. Using copy-and-paste function, ROIs with identical shape, size, and position were generated on fat
fraction map (C). Measured intramuscular fat fraction ranged from 1.33 to 7.36%. [Rectus femoris, 1.48% (left) and 2.48% (right); vastus lateralis,
2.35% and 3.04%; vastus medialis, 1.33% and 1.68%; semitendinosus, 2.85% and 4.52%; adductor magnus, 2.92% and 2.50%; gracilis, 6.94% and
7.36%]. Notes: AM, adductor magnus; G, gracilis; RF, rectus femoris; S, semitendinosus; VL, vastus lateralis; VM, vastus medialis.
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thigh muscles classified as Goutallier Grade 0, comparison of
mean intramuscular fat fraction between the two groups
were performed using the Wilcoxon rank sum test. Fat frac-
tion of the upper and lower thigh muscles (rectus femoris,
vastus lateralis, vastus medialis, and semitendinosus) was
compared using Wilcoxon signed rank test in CMT patients.

The relationship between the thigh muscle fat fraction and
clinical data (i.e. disease duration, CMTNS, and functional dis-
ability scale) were evaluated using Spearman’s correlation
analysis in the CMT patients. Comparison of body mass index
(BMI) between both groups was conducted using the
Wilcoxon rank sum test to confirm the presence of a signifi-
cant difference that may affect the intramuscular fat fraction.
In addition, Spearman’s correlation analysis was performed
to find possible correlation between BMI and thigh muscle
fat fraction in both groups.

Result

Both sets of 3D multiple gradient echo Dixon-based MRI ob-
tained from one volunteer and one CMT patient, respectively,
showed fat-water swap. Also, a single set of 3D multiple gra-
dient echo Dixon-based MRI in one volunteer showed fat-
water swap. These image sets were not included in the anal-
ysis. Thus, interobserver agreement evaluation and compari-
son of muscle fat fraction between the two groups were
conducted for 17 volunteers and 17 CMT patients. Semiquan-
titative analyses of the upper thigh muscles were performed
in the same study population. Test–retest reproducibility
evaluation was performed for 33 subjects, which composed
of 16 volunteers and 17 CMT patients. There was no signifi-
cant difference in BMI between the two groups (P = 0.270;
volunteers: median ± standard deviation, 21.60 ± 3.09;

Figure 2 An example of region of interest (ROI) measurement performed for intramuscular fat quantification in lower thighs of 35 year-old male Char-
cot–Marie–Tooth disease patient. ROIs were initially drawn on water-only image (A) acquired from 3D multiple gradient echo Dixon-based magnetic
resonance imaging. ROIs with identical shape, size, and position were generated on fat fraction map (B). Measured intramuscular fat fraction ranged
from 2.87% to 20.79%. [Rectus femoris, 7.03% (left) and 2.87% (right); vastus lateralis, 7.37% and 7.35%; vastus medialis, 5.78% and 4.72%; biceps
femoris, 20.79% and 17.30%; semitendinosus,13.28% and 8.74%; gracilis, 16.18% and 10.36%]. Notes: BF, biceps femoris; G, gracilis; RF, rectus femoris;
S, semitendinosus; VL, vastus lateralis; VM, vastus medialis.
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interquartile range, 20.60–25.10; CMT patients: me-
dian ± standard deviation, 23.06 ± 4.99; interquartile range,
21.48–27.63).

The interobserver agreements in the muscle fat fraction
measurement were excellent for all fat quantification analy-
ses (Table 4). The result of the test–retest reproducibility of

quantitative fat fraction measurement was excellent in both
reviewers’ evaluation except for the adductor magnus muscle
in the left upper thigh measured by Reviewer 1, which
showed good agreement (intraclass correlation coeffi-
cients = 0.67). Data obtained by Reviewer 1 using the first im-
age set were used for comparison of the intramuscular fat

Figure 3 An example of semiquantitative analysis and region of interest (ROI) measurement performed for intramuscular fat quantification in upper
thighs of a 36 year-old male Charcot–Marie–Tooth disease patient. All the muscles of upper thigh were Graded 0 on axial T1-weighted image (A) based
on semiquantitative scale described by Goutallier et al. ROIs were initially drawn in muscles of corresponding level on water-only image (B) acquired
from 3D multiple gradient echo Dixon-based MRI. Using copy-and-paste function, ROIs with identical shape, size, and position were generated on fat
fraction map (C). Measured intramuscular fat fraction ranged from 3.54% to 7.29%. [Rectus femoris, 4.71% (left) and 4.64% (right); vastus lateralis,
6.86% and 4.49%; vastus medialis, 4.33% and 5.04%; semitendinosus, 4.47% and 6.33%; adductor magnus, 3.54% and 3.92%; gracilis, 7.29% and
7.00%]. Notes: AM, adductor magnus; G, gracilis; RF, rectus femoris; S, semitendinosus; VL, vastus lateralis; VM, vastus medialis.
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fraction. Bland–Altman analysis result for the interobserver
agreements and test–retest reproducibility are displayed in
Table S1.

In the upper thigh muscles, significantly higher mean fat
fractions were demonstrated in CMT patients compared with
volunteers in all the measured muscle besides the adductor
magnus (Table 5). In the lower thigh muscle, significantly
higher mean fat fractions were seen in CMT patients in all
the measured muscles. There was no significant difference
in the mean muscle cross-sectional area between the two
groups (Table 6). Wilcoxon signed rank test result for compar-
ison between upper and lower thigh muscle fat fractions in
the CMT patients showed significantly higher fat percentage

in the vastus lateralis muscle of the lower thigh with no signif-
icant difference in other muscles (rectus femoris, vastus
medialis, and semitendinosus) (Table S2).

The agreement between the two radiologists for semi-
quantitative analysis was almost perfect (kappa value of
0.843). There was disagreement of grading in nine muscles
(9/408, 2.20%; Grade 0 vs. 1, two cases; Grade 1 vs. 2, six
cases; and Grade 0 vs. 2, one case), all of which belonged
to the patient group. One of the readers’ data was used for
analysis. All the upper thigh muscles were Grade 0 in volun-
teers (100%, 204/204). The results in CMT patients showed
majority of muscles rated as Grade 0 (86.3%, 176/204),
followed by Grade 1 (12.7%, 26/204), and Grades 2 and 4

Table 2. Demographic and clinical data of the Charcot–Marie–Tooth disease patients

Patient
number Gender Age

Disease duration
(years)

Charcot–Marie–Tooth
neuropathy score

Functional
disability scale

Knee extensiona

(left/right)
Knee flexiona

(left/right)

1 Male 22 11 5 1 5/5 5/5
2 24 2 7 1 5/5 5/5
3 26 0 14 2 5/5 5/5
4 27 12 16 2 5/5 5/5
5 29 16 16 2 5/5 5/5
6 34 19 11 1 5/5 5/5
7 36 29 21 3 5/5 5/5
8 Female 20 5 15 3 5/5 5/5
9 22 6 9 1 5/5 5/5
10 23 2 7 1 5/5 5/5
11 28 11 18 2 5/5 5/5
12 32 30 9 1 5/5 5/5
13 35 16 16 2 5/5 5/5
14 33 33 6 1 5/5 5/5
15 25 12 17 2 4+/4+ 5/5
16 34 5 6 1 5/5 5/5
17 31 18 9 1 5/5 5/5

aAssessment based on British Medical Research Council scale.

Table 3. Electrophysiologic study result of the Charcot–Marie–Tooth disease patients

Patient
number

Peroneal nerve Tibial nerve

TL (ms)
(left/right)

CMAP (mV)
(left/right)

NCV (m/s)
(left/right)

TL (ms)
(left/right)

CMAP (mV)
(left/right)

NCV (m/s)
(left/right)

1 16.3/16.8 0.9/2.6 16.5/16.9 14.5/12.3 3.2/4.7 17.4/17.4
2 13.5/13.2 0.4/1.2 18.7/18.2 10.0/10.2 7.8/8.0 20.8/19.1
3 12.3/12.5 1.5/0.6 16.3/19.0 8.5/8.2 0.5/0.3 14.4/15.2
4 A/A A/A A/A 10.6/11.4 1.0/0.5 14.4/12.7
5 11/A 1.6/A 13.0/A 12.0/12.2 0.2/0.6 16.2/14.3
6 9/7.4 2.7/2.7 20.8/20.2 11.9/8.6 0.7/3.3 20.8/23.4
7 9.4/10.2 0.8/0.6 17.6/16.4 7.8/7.1 2.3/2.0 18.6/16.4
8 A/16.5 A/0.3 A/13.7 20.1/21.2 0.3/0.9 17.3/15.1
9 9.1/9.0 1.1/1.8 24.9/21.8 9.9/7.5 4.9/6.3 28.4/26.5
10 11.6/11.1 0.8/0.8 15.3/15.1 10.2/10.7 3.6/4.1 17.1/18.5
11 A/A A/A A/A 11.3/16.9 0.2/0.4 A/19.2
12 7.6/8.2 4.2/3.1 34.2/31.8 5.0/9.1 10.0/3.3 26.7/36.6
13 A/A A/A A/A A/A A/A A/A
14 12.9/9.6 2.9/4.6 17.2/19.5 10.5/10.5 7.7/7.7 19.3/19.3
15 A/A A/A A/A 10.4/12.6 0.6/0.5 13.7/10.0
16 A/A A/A A/A A/13.6 A/1.0 A/18.2
17 17.3/A 0.2/A 14.8/A 11.3/8.1 0.7/4.7 14.3/13.1

A, absent; CMAP, compound muscle action potential; NCV, nerve conduction velocity; TL, terminal latency.
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(0.05%, 1/204). Fat fractions of each grade were as follows:
Grade 0 (mean: 4.72; standard deviation, 2.61; range, 0.87–
18.60), Grade 1 (mean: 14.40; standard deviation, 5.19;
range, 7.07–26.34), Grade 2 (27.37%), and Grade 4 (72.08%)
(Figure 4). Goutallier Grade 0 muscles in the CMT patient
group (median ± standard deviation, 4.54 ± 3.03; interquartile
range, 3.58–6.82) showed significantly higher mean fat frac-
tion compared with that of the volunteer group (me-
dian ± standard deviation, 3.58 ± 1.86; interquartile range,
2.70–5.00) (P < 0.001).

There was a correlation between intramuscular fat fraction
of the upper thigh vastus medialis and CMTNS with correla-
tion coefficient of 0.5191 (P < 0.05) (Table S3). There was
no correlation between fat fraction of other muscles and
other clinical parameters. No significant correlation was
found between BMI and thigh muscle fat fraction in either
CMT patient or volunteer group (Table S4).

Discussion

In this study, the intramuscular fat fraction of the thigh ob-
tained using 3D multiple gradient echo Dixon-based MRI
showed significantly higher mean values in the CMT patients
compared to those in the volunteers for all the muscles be-
sides the adductor magnus. The excellent results of interob-
server agreement and test–retest reproducibility suggest
that fat measurement using this technique is highly reliable.
To our knowledge, little has been reported on MRI evaluation
of fat infiltration of thigh muscles in CMT patients. The signif-
icant difference in the degree of intramuscular fat fraction in
the thigh between the two groups demonstrated in our study
may be attributed to the sensitivity of the 3D multiple gradi-
ent echo Dixon-based MRI technique, which may not have
been revealed by less advanced MRI techniques. However,
further study with larger number of enrolled subjects and
longitudinal data is warranted to elucidate the true
significance.

With the characteristic predominant distal muscle wasting
in CMT patients, only a small proportion of patients are re-
ported to develop severe thigh muscle weakness late in the
clinical course.1,23 Most studies in the past also focused on
evaluation of fat infiltration in lower leg muscles.11,12 A re-
cent study by Morrow et al.24 comparing the intramuscular
fat fraction using a Dixon-based MRI technique between a
CMT Type IA group and a volunteer group showed a signifi-
cantly higher muscle fat fraction in the lower leg but not at
the thigh level. Besides the clinical factors of the enrolled sub-
jects, the difference between our study result and this recent
study may be related to technical factors. A three-point Dixon
technique, with no information regarding T2* correction, was
used for fat quantification in the study of Morrow et al. while
T2*-corrected six-point Dixon technique was used in ourTa
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study. A previous study using MR spectroscopy as a reference
standard reported that intramuscular fat quantification using
T2*-corrected six-echo Dixon sequences showed a signifi-
cantly better concordance with the spectroscopic data com-
pared with those of T2*-corrected three-echo Dixon or non-
T2*-corrected two-echo Dixon technique.25 The importance
of T2* correction has been proposed considering the pres-
ence of iron that causes local magnetic inhomogeneity and
has been emphasized in liver fat quantification.26 Skeletal
muscles are also reported to contain non-negligible amounts
of iron.27 Also, it has been suggested that it is necessary to
acquire at least six echoes for the optimal separation of water
and fat signals with T2*-correction28 as in our study. Our
study result may suggest that 3D multiple gradient echo
Dixon-based MRI can reveal intramuscular fat infiltration in
the thigh which may be present at a relatively early stage of
CMT. As with previous studies using Dixon-based MRI for
evaluation of CMT or other neuromuscular disorder pa-
tients,24,29,30 our result supports further application of this
imaging technique for quantitative data acquisition regarding
intramuscular fat fraction in future research.

Interobserver agreement and test–retest reproducibility
were excellent for 3D multiple gradient echo Dixon-based
MRI. Intramuscular fat quantification using Dixon-based
quantitative MRI sequence is reported to show high interob-
server and test–retest reproducibility.16 Our study result is
also in agreement with the previous results and suggests that
Dixon-based MRI can provide a reliable fat measurement that
is advantageous over subjective analysis based on Goutallier
classification, which is reported to be highly observer depen-
dent.14,15 Goutallier Grade 0 muscles in the CMT patient
group showed a significantly higher mean intramuscular fat
fraction compared to that of the volunteer group (Figure 4).
This result may imply that intramuscular fat measurement
using a Dixon-based quantitative MRI sequence can be a
more sensitive and objective tool for screening of muscular
degeneration. In addition, 3D multiple gradient echo Dixon-
based MRI could be obtained in a reasonable scan time

(72.5 s) which was even shorter than the time taken for other
conventional sequences (Table 1). Thus, it may easily be in-
corporated as part of a routine imaging sequence in neuro-
muscular disease patient evaluation.

None of the patients presented with subjective weakness
of the thigh muscles, and only one patient showed slightly de-
creased strength for knee extension on physical examination.
In this regard, our patients are subclinical in terms of proxi-
mal lower limb weakness, and intramuscular fat infiltration
observed through 3D multiple gradient echo Dixon-based
MRI may reflect early manifestation of the degeneration prior
to clinically evident muscle weakness. Morrow et al. reported
that calf muscle fat fraction measured using Dixon-based MRI
significantly increased over 12 months in their cohort of CMT
patients.29 It would be beneficial to investigate the longitudi-
nal change of thigh muscle fat fraction in a large cohort of
CMT patients in the future. Furthermore, because substantial
portion of the patients eventually develop hip muscle weak-
ness,31 it would be interesting to expand the evaluation to
encompass hip muscles in future research.

In our study, a correlation was found between fat fraction
of the upper thigh vastus medialis and CMTNS with correla-
tion coefficient of 0.5191. A recent study by Morrow
et al.29 reported a strong correlation between calf muscle
fat fraction with CMTNS. For thigh muscle, little is known
about relation between the degree of fat infiltration and clin-
ical status in CMT patients. Because our study mostly in-
cluded patients with relatively early thigh muscle fatty
degeneration, relation between thigh muscle fat fraction
and clinical parameters should also be sought in patients with
more advanced fat infiltration. Further investigation with
larger cohort is needed.

Among a total 72 sets of 3D multiple gradient echo Dixon-
based MRI, five image sets (6.9%) showed fat-water swap.
Fat-water swaps are commonly encountered problems in
Dixon technique attributed to phase shift errors.32 To over-
come this artefact by dealing with B0 field inhomogeneity,
multipoint Dixon techniques have been developed.32

Figure 4 Boxplots showing distribution of fat fraction in 408 thigh muscles of all subjects in each Goutallier grade (A) and Goutallier Grade 0muscles of
volunteer and Charcot–Marie–Tooth disease patient group (B). Numbers in the parentheses represent number of the measured muscles. ○, outliers.
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However, fat-water swaps still remain a problem in 3D multi-
ple gradient echo Dixon-based MRI.33 For further clinical ap-
plication and exact measurement of intramuscular fat
quantification by Dixon-based MRI, technical advances are
warranted to overcome this issue.

There were several limitations in our study. First, the
number of enrolled subjects was relatively small. However,
we used an age- and sex-matched volunteers for compari-
son. Second, we lack longitudinal data of the thigh muscle
fat fraction to clarify how these fat infiltration will change
and affect clinical status in the future. Third, there may have
been measurement errors in analyses. Fourth, the study
population was limited to subjects in their 20s and 30s to
evaluate MRI in detection of muscular changes in early stage
of CMT because the disease onset usually occurs in the first
two decades of life. Lack of patients with severe thigh mus-
cular fatty atrophy and overt clinical symptom limited corre-
lation of muscle fat fraction with clinical parameters such as
muscle strength or electrophysiologic parameters of the sci-
atic nerve. Furthermore, the ability of fat quantification MRI
for the distinction between intramuscular fat infiltration due
to a normal age-related process and that in denervated mus-
cle could not be sought. This may be beyond the range of
our study.

In conclusion, muscle fat quantification using 3D multiple
gradient echo Dixon-based MRI revealed a significant differ-
ence in the fat fraction in thigh muscle between CMT patients
and normal volunteers, where intramuscular fat infiltration is
less prominent compared with that in the calf muscle in CMT.
A significant difference in fat fraction in Goutallier Grade 0
muscle between the two groups demonstrated in our result
may suggest the sensitivity of the technique to indicate early
fat infiltration which may be difficult to identify through vi-
sual assessment of T1-weighted image. This technique was
highly reproducible and could be obtained in a relatively short

scan time. Incorporation of 3D multiple gradient echo Dixon-
based MRI as a part of the routine MRI for assessment of
CMT and other neuromuscular disease patients may have
clinical value.
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