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Abstract 
The advent of targeted therapies, combined with an unsustainable rate of failure in oncology drug 

development, has resulted in a number of new approaches to clinical trials. Early clinical trials are no 
exception, with efforts to improve the eventual success rate of late stage trials through evolving phase I 
trial methodologies, the addition of extensive pharmacodynamic studies, and early adoption of patient 
selection strategies. Unfortunately, some of these new approaches have met with mixed results. 
Furthermore, no clear metrics are available to determine whether these designs are more successful than 
previous strategies. This review examines the evolution of phase I trials and draws upon several examples 
of strategies that have been successful as well as those that have not, and outlines a pragmatic approach 
to phase I trials as our understanding of the molecular biology of individual malignancies emerges. 
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In most disciplines of medicine, the objectives of  a 
phase I trial are to determine the maximum tolerated 
dose (MTD), characterize the pharmacokinetics of the 
agent in question, and recommend a dose and schedule 
for further study. In addition, secondary objectives 
include the determination of whether target engagement 
can be documented or a therapeutic effect can be 
observed. These objective(s) and the emphasis on dose 
determination have served medical research and drug 
development well for many decades. In contrast to the 
field of oncology, the majority of these phase I trials have 
been conducted in a normal healthy volunteer population 
that endures only limited periods of drug  exposure and 
has no expectation of therapeutic benefit. 

In oncology, however, the vast majority of phase I 
trials are performed within a patient population that has 
an incurable disease state, and both acute and 
cumulative toxicities are characterized over several 
treatment courses. During the era of cytotoxic 
chemotherapy, it would have been unthinkable to 

perform these trials in normal healthy volunteers. 
Moreover, although therapeutic gain was a low 
probability, early indications of activity were indeed 
observed with many agents, some of which led to 
eventual indications for approval. Furthermore, for the 
era of cytotoxic chemotherapy, several schedules of 
administration were concurrently examined in different 
phase I trials, detailed pharmacokinetics studies were 
performed, and the recommended dose and schedule 
was largely based on an analysis of the safety profiles, 
pharmacokinetics considerations, and preliminary hints of 
activity. Because the actual target of a cytotoxic agent 
was not always precisely known, target engagement was 
largely a speculative argument, with antiproliferative 
activity, the only pharmacodynamic parameter used to 
justify dose, in normal tissue (usually neutropenia) and 
tumor tissue. 

In contrast to this past era, the advent of molecular 
targeted therapies has changed the conduct  and 
expectations of phase I trials. Pharmacodynamic 
endpoints have greater weight in dose and schedule 
decisions, and the expectation of objective responses in 
phase I trials are more prominent. However, three key 
and recurrent missteps have occurred for many 
investigational drugs that have limited success in later 
clinical development. These are best summarized in the 
following categories: (1) non­validated pharmacodynamic 
assays that can supplant the use the standard phase I 
objectives (MTD and pharmacokinetics considerations); 
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(2) the presence of a response as an indicator of optimal 
dose(s); and (3) the presence of the presumed target of 
the drug as a patient selection criteria. Furthermore, 
increasing research and development costs along with a 
high regulatory hurdle of overall survival benefit, have 
heightened the desire for early and robust evidence of 
antitumor activity, which may create a disincentive for 
pursuing potentially important agents and combinations. 
Each of these themes will be examined and alternative 
options will be proposed. 

Pharmacodynamics, Target Inhibition, 
and Target Engagement Assays in 
Phase I Trials of Targeted Therapies: 
Lessons Learned 

Although there is considerable pharmacokinetics 
expertise in understanding the behavior of a drug 
product, pharmacodynamics, the effect of a drug on 
normal and diseased tissue, remains imprecise due to 
the surrogate nature of the assays. Thus, the results are 
difficult to interpret. There has been a proliferation of 
pharmacodynamic endpoints appended to standard 
phase I trials in the last decade, including tissue biopsies 
of normal and tumor tissues for protein or RNA 
expression analysis or target inhibition, dynamic contrast 
magnetic resonance imaging (DCE­MRI) for 
angiogenesis inhibition, and positron emission imaging 
(PET) for tumor inhibition. When subjected to scrutiny, 
as described in the following examples, these 
pharmacodynamic studies have not performed 
admirably, and in some circumstances, may have misled 
investigators and industry to choose a wrong dose 
despite evidence to the contrary from the standard phase 
I trial results. 

Gefitinib: good drug, wrong dose and population 

Gefitinib is illustrative of several learning 
opportunities in clinical development. In the phase I 
trials of this agent, two schedules were initially 
examined, and the pharmacokinetics behavior and MTD 
were determined for both the continuous and intermittent 
dosing schedule [1,2] . Notably, encouraging antitumor activity 
was observed in several patients with non­small cell  lung 
cancer (NSCLC) for both schedules [1,2] .  Pharmacodynamic 
studies included in the daily  continuous dosing schedule 
demonstrated significant  inhibition of epithelial growth 
factor receptor (EGFR) phosphorylation and downstream 
members of MAPK pathway by immunohistochemistry at 
early, as well as  multiple dose levels [3] . This led the 
investigators and  authors to propose that dosing at the 
MTD (750 mg/day)  was unnecessary [3] . A subsequent 
randomized phase II  trial used doses (500 and 250 

mg/day) lower than the MTD, with the objective response 
rate as the benchmark  for dose selection [4,5] . Both  dose 
levels were equally, although marginally active (9%), leading 
to the  conclusion that 250 mg could be  moved  into 
phase III trials. In hindsight, the response rate was not a 
good  choice for dose selection because  the highly 
gefitinib­sensitive population of NSCLC  patients likely 
had activating EGFR mutations  (discovered 
post­marketing), and the dose required for  stable 
disease in a less sensitive patient population was 
unknown but may have indeed been higher [6] . Phase  III 
trials comparing gefitinib to best supportive care in 
unselected NSCLC patients were negative, along with a 
number of other combination trials [7­10] . In contrast, parallel 
development of erlotinib, in which the MTD was  used 
throughout phase II and III trials, was ultimately 
successful, not because of a higher response rate, but 
likely due to a positive effect on the stable disease rate 
and altered natural history of disease progression in the 
treated population [11,12] . 

This dose and population example raises some 
interesting yet unanswered questions. Why did the dose 
not prove effective for the population as a whole if early 
pharmacodynamic markers indicated target inhibition? 
Although inhibition was demonstrated in the assays used 
(immunohistochemistry), was this assay sufficiently 
sensitive to detect retained and still important EGFR 
activity? Also, there was an absence of information 
regarding the optimal inhibition rate to indicate efficacy in 
phase III studies要should it have been 90%, 99%, or 99.9% 
inhibition? 

To address these questions, one must examine  the 
requirements for a validated pharmacodynamic test.  To 
be validated in drug development, the pharmacodynamic 
test must demonstrate a perturbation  due to therapeutic 
intervention, and a change that must be reproducible and 
not subject to disparate, random, or  hard to explain 
variability. The test must also reliably  predict a positive 
or negative outcome for therapeutic  intervention. 
Because the outcome necessary for most  new drugs in 
oncology to meet regulatory approval is an  improvement 
in overall survival, the only way to meet the  last criterion 
and to validate a pharmacodynamic marker  would be to 
prove that marker predicts overall survival要something 
very hard to accomplish. The absence of a  validated 
pharmacodynamic biomarker should not, in  itself, stop 
the use or development of these markers  during the 
course of clinical development, but should merely frame 
the discussion of their relative merits for  dose and/or 
patient selection. 

Further confounding the gefitinib story, the  absence 
of an identified population that would attain all  the 
response benefits at the time of the randomized phase II 
trial led to false assumptions that dose did not  matter, 
resulting in the utilization of the lower dose in the phase 
III trial comparing gefitinib with standard best  supportive 
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care [7] . In retrospect, the reason that the two doses were 
equivalent in response rate was the  presence of a 
mutation within the tumors of a NSCLC  subpopulation [6] . 
For these patients, dose may not have  been important. 
However, it is incorrect to assume that  dose may not be 
important for patients with other, less sensitive NSCLC. 

PTK787: did a non 鄄  validated imaging endpoint 
outweigh dose and pharmacokinetics data? 

The multi­targeted tyrosine kinase inhibitor of 
vascular endothelial growth factor receptor 2 (VEGFR2), 
PTK787, underwent a standard phase I design with 
dynamic contrast­enhanced magnetic resonance imaging 
(DCE­MRI), proposed at the time to be a novel 
pharmacodynamic endpoint. Although a MTD was 
determined for PTK787 and the pharmacokinetics profile 
indicated a rapid systemic clearance, the DCE­MRI data 
suggested that a lower dose could result in decreased 
tumor blood flow [13,14] . Ultimately, a lower dose and  less 
frequent schedule (for example, twice per day) of  this 
oral angiogenesis inhibitor was adopted for the 
randomized study in front­line metastatic colorectal 
carcinoma comparing FOLFOX combined with PTK787 
to FOLFOX alone , mirroring the successful design 
for  bevacizumab approval in colorectal cancer [15] . 
Unfortunately, the endpoint of an improvement in overall 
survival was not achieved in this study [15] . 

Retrospectively, several issues may have 
contributed to the failed phase III trial. PTK787 is rapidly 
cleared, and therefore, sustained inhibition of tumor 
angiogenesis may not have been achieved with a once­ 
or twice­daily schedule. The dose for optimal inhibition 
may also have been inferior, due to the misleading 
information gained from the positive pharmacodynamic 
effects of PTK787 on the DCE­MRI images. A logical 
question in this regard is whether DCE­MRI is a 
validated pharmacodynamic marker. DCE­MRI appeared 
to meet the first criteria of validated markers, showing 
that perturbation occurred due to drug effect and that the 
results were potentially reproducible from usual 
day­to­day variation (the investigators never 
demonstrated the variability of the test in a control 
situation). However, the last of the aforementioned 
criteria was not met, as DCE­MRI alterations did not 
predict ultimate success in the only endpoint that 
mattered for the randomized study (overall survival). The 
conclusion is that DCE­MRI is a surrogate endpoint for 
drug effect but not otherwise validated against the one 
endpoint that is meaningful in oncology. The standard 
phase I trial endpoints of MTD, pharmacokinetics 
characterization, and selection of a recommended dose 
and schedule should have prevailed compared to 
decisions made based upon DCE­MRI studies. This has 
important implications for other pharmacodynamic 
markers currently being developed; they must predict 
ultimate success in phase III trial to be truly validated要a 

non­trivial challenge. 
Since the early development and subsequent  failure 

of PTK787, many investigational angiogenesis  inhibitors 
have included DCE­MRI analysis as part of the  early 
development process. To date, no agent with a  positive 
effect on DCE­MRI in early clinical trials that  affected 
dose has yielded later success in regulatory  approval. 
Those agents that did succeed and reach  regulatory 
approval following successful randomized  studies, 
including bevacizumab, sorafenib, and sunitinib,  had the 
dose and schedule determined using conventional phase 
I design without direction from a  DCE­MRI 
pharmacodynamic endpoint. 

Positron emission tomography 

Positron emission tomography (PET) scans are 
increasingly being incorporated into early clinical trials. 
Although frequently used, there appears little evidence to 
support the routine adoption of this imaging modality as 
a pharmacodynamic endpoint, as it appears to have only 
limited advantages compared to conventional imaging. 
The oft­cited example of PET scans providing useful 
information in drug development was the development of 
imatinib and sunitinib in gastrointestinal tumors (GIST) [16] . 
Nonetheless, both drugs had already met 
proof­of­concept in other disease indications (chronic 
myelogenous leukemia and renal cell carcinoma, 
respectively), so the utility of PET in phase I 
development is open to debate. A more common 
outcome in early clinical trials is a change in PET 
standard uptake values (SUV) post­treatment without a 
corresponding change in measurements in CT scan. 
This result gives little direction to investigators. 
Furthermore, the less common circumstance that a PET 
response is observed before a later confirmed CT 
response raises the question of whether the PET 
response merely indicates what will later be determined 
with CT anyway. Lastly, as most phase I trials include 
low doses that are unlikely to have either a therapeutic 
or biological effect, the performance of PET scans is 
hard to justify based on cost and the potential for 
misleading SUV variability for the majority of populations 
enrolled in phase I trials. Based on this analysis, PET 
studies should be viewed as an investigational, 
non­validated and an expensive tool in phase I trials. 
Clear objectives for their use in clinical trials and metrics 
to assess their value should be defined before this 
surrogate endpoint is used for dose selection. 

It must be clearly stated that these  aforementioned 
arguments in no way diminish the use of  conventional 
PET or PET CT in validated settings such as monitoring 
response in non­Hodgkin爷s lymphoma, the  detection of 
metastases in early workup for potentially  curative 
surgery, or as a modality that may decide  effective 
therapy. These indications have an extensive  literature 
to support their use. 
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Molecularly targeted therapy: only with an 
improved understanding of molecular hierarchy 
may we improve success 

Despite an impressive list of investigational  targeted 
therapies to known receptors and signal  transduction 
pathway members, the ability to determine  which 
patients will respond in early clinical trials remains 
elusive. Initially, tumor biopsies were interrogated for the 
presence or absence of the target or activation of the 
specific pathway. Unfortunately, this area of scientific 
enquiry did not yield results and, to some extent, created 
unintended consequences. The EFGR­targeting 
antibody, cetuximab, was developed with activity noted in 
colorectal carcinoma [17,18] . Detection of the target  EGFR 
frequently accompanied early clinical studies, with  levels 
of EGFR expression or activated (phosphorylated) EGFR 
hypothesized to be predictive of response though  never 
confirmed in controlled studies. Following the  regulatory 
approval of cetuximab in colorectal carcinoma,  some 
third party payers required detection of EGFR in  tumor 
specimens for reimbursement, thereby restricting  the 
agent from some patients [19] . Ultimately, EGFR expression 
was found not have any predictive value for  cetuximab 
efficacy, whereas an apparently unrelated  genetic 
alteration, mutation of KRAS, predicted  resistance to 
cetuximab therapy [20­22] . To date, a positive­predictivemarker 
for response has not been defined [23] . 

This case illustrates the difficulty with several 
targeted therapies currently being developed. Although 
intuitive that the target be present for therapeutic benefit, 
this is not always the case [20] . In addition, pathway activation 
may be part of a constellation of events  secondary to 
upstream molecular events, and inhibition  of one target 
alone may have little effect. Lastly, some  events are 
hypothesized to have a greater impact than  others; 
sometimes described as the 野RASness冶 of a genotype, 
indicating that drugs targeting other molecular  events 
such as PTEN deletions and PIK3Ca mutations  have 
little impact in the presence of an activating RAS 
mutation. 

This uncertainty calls into question some designs  for 
patient selection for phase I trials when the molecular 
genetic hierarchy is unknown. Does a BRAF V600E 
mutation in colorectal cancer have the same impact in 
melanoma? Preliminary clinical data with investigational 
RAF inhibitors suggests that they have little activity in 
colorectal carcinomas with BRAF V600E but profound 
activity in a melanoma population with the same 
molecular alteration [24] . Furthermore, does the presence 
or absence of a PTEN deletion influence the response to 
a MEK or BRAF inhibitor? Emerging data appear to 
suggest this finding, but further scrutiny will be required. 
These two questions illustrate that an absence of a 
thorough understanding of the hierarchy and 
relationships of discrete molecular genetic events may 

lead to the misinterpretation of the results of clinical 
studies and potentially miss indications that benefit from 
therapy. 

Two successful targeted therapies offer a word of 
caution about patient selection based upon a premature 
assessment of the target. Sorafenib was originally 
presumed to be an inhibitor of RAF signaling. If patients 
had been selected based upon RAF status, such as the 
activating mutation of V600E in melanoma, the drug 
would never have succeeded because no significant 
activity was found in this indication. Rather, the 
inhibitory effects of sorafenib on VEGFR2 ultimately led 
to a successful strategy in renal cell and hepatocellular 
carcinoma [25,26] . Similarly, crizotinib was initially  thought 
to primarily inhibit c­MET [27] . If selection in the phase I trial 
had been confined to patients with activating  mutations 
or amplifications of c­MET, the remarkable  activity in 
NSCLC patients with EML4­ALK fusion may  have been 
missed. 

A Path Forward 

Although our understanding of the molecular biology 
of numerous malignancies has improved, we are  far 
from demonstrating a complete or sophisticated 
understanding of existing genetic changes and their 
inter­relationships and network functions, as well as the 
hierarchy amongst multiple genetic alterations. Recently 
paired tumor and normal tissue analysis in NSCLC 
convincingly illustrates that our view of drug development 
in this disease may be embarrassingly na觙  ve, as we may 
be treating patient tumors that posses more than  30­40 
major genetic alterations, while developing and 
celebrating the success of agents that a target single 
genetic change [28] . This recent work puts into perspective 
the magnitude of the problem and na觙  vety of  the 
expectation that any single agent can routinely 
demonstrate responses in early clinical trials. In fact, it 
implicates the opposite outcome will occur. Individual 
targeted therapies will fail to demonstrate significant 
antitumor activity even if one of the catalogued mutations 
is present, unless this genetic change has significant 
proliferation potential alone (an outlier perhaps). 
Therefore, single genetic changes are not yet justified as 
routine patient selection criteria in phase I trials. The 
implication, based upon the aforementioned conclusion, 
is that we must intensify our efforts to develop safe 
combinations in phase Ib trials, and it is with these 
combinations that we will have significant impact in 
selected populations with most of the common tumors. 

To accomplish rational drug development in the 
coming decade, the focus in phase I trials must remain 
on the determination of safety and defining a 
recommended dose and schedule. The characterization 
of the molecular genetics of the few patients whose 
tumors respond should be intensified to explore these 
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infrequent opportunities and determine unique features 
that may predict both future indications and patient 
selection. Expansion cohorts in selected patients at the 
end of phase I trials may, in some circumstances, 
abrogate the need for phase II trials. This strategy 
represents an innovative and practical solution to the 
rising cost and time in clinical development and has 
been successfully deployed with some agents [29] . In the 

next decade, as widespread molecular screening of 
cancer patients for common mutations occurs, patient 
pre­selection for participation on phase I trials will no 
doubt improve and perhaps increase the likelihood of 
observed responses. 
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