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Simple Summary: Uveal melanoma (UM) is the most common primary intraocular tumor in
adults. Treatment options for UM include radiotherapy, thermotherapy and tumor resection. Elec-
trochemotherapy (ECT) is a new therapeutic modality for local tumor control in various cancer
entities. The current study assesses the radiosensitizing effect of concomitant ECT with bleomycin
and irradiation on 3D tumor spheroids with primary and radioresistant uveal melanoma cell lines.
The evaluation of the radiosensitizing effect of ECT as a drug delivery system was based on the
changes in the spheroid growth, the cell viability as well as the cytotoxic long-term effect of the
combined treatment. The primary cell lines showed a higher radiosensitivity and required lower
irradiation and bleomycin doses in comparison to cell lines originating from previously irratiated
tumors. ECT should be further assessed for its applicability in clinical settings as a therapeutic
radiosensitizing option for radioresistant tumors.

Abstract: Electrochemotherapy (ECT) is emerging as a complementary treatment modality for local
tumor control in various cancer entities. Irradiation is an established therapeutic option for oncologic
patients, which is commonly combined with chemotherapy due to its insufficient targeting ability.
The efficiency of radiotherapy for tumors can be enhanced with different radiosensitizers. ECT can
potentiate the radiosensitizing effect of chemotherapeutic agents such as bleomycin. The present
study aims to evaluate the radiosensitizing effect of concomitant ECT with bleomycin on 3D tumor
spheroids with primary and radioresistant uveal melanoma cell lines (UPMD2, UPMM3, UM92.1,
Mel270) and irradiation. The changes in the spheroid growth and the cell viability as well the
cytotoxic long-term effect of the combination treatment were evaluated with various combinations
of electroporation settings and bleomycin concentrations as well as radiotherapy doses. A broad
range of radiosensitivity was documented among the spheroids from different uveal melanoma cell
lines. The primary cell lines showed a higher radiosensitivity and required lower irradiation and
bleomycin doses. The maximal tumor control with a reduction of cell survival <10% was achieved
with a 5 Gy irradiation only in the primary uveal melanoma cell lines and in combination with all
tested ECT settings, whereas the same result could be obtained in UM92.1 spheroids only after ECT
with 20 Gy irradiation. Based on the spheroid growth and the measurement of the cross-sectional
area, the Mel270 spheroids, originating from a previously irradiated recurrent uveal melanoma,
required higher doses of bleomycin and ECT settings after irradiation with 5 Gy in order to achieve a
significant growth reduction. No significant difference could be demonstrated for the reduction of cell
viability in the combination therapy with 20 Gy and 1000 V/cm between 1 and 2.5 µg/mL bleomycin
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even in Mel270 spheroids, underlying the importance of a drug delivery system to potentiate the
radiosensitizing effect of agents in lower doses. ECT should be further assessed for its applicability
in clinical settings as a therapeutic radiosensitizing option for radioresistant tumors and a sufficient
local tumor control with lower chemotherapy and irradiation doses.

Keywords: radiation therapy; electrochemotherapy; bleomycin; uveal melanoma; 3D tumor spheroids;
cytotoxic effects; long-time survival

1. Introduction

Uveal melanoma (UM) is the most common primary intraocular tumor in adults and
has an incidence of approximately 5.1 per million per year in the USA and of 1.3–8.6 per
million per year in Europe, following a north-to-south decreasing gradient from a maxi-
mum of 8 per million per year in Denmark and Norway to a minimum of 2 per million
per year in the Mediterranean region [1,2]. Other predisposing factors are a preexisting
nevus, melanocytic lesions, a fair complexion, a light iris and BRCA1-associated protein
(BAP1) tumor predisposition syndrome [3]. A UM arises from neoplastic melanocytes
along the uveal tract. The most common site is the choroid (85%) with the remainder
arising in the ciliary body or the iris [1–5]. The majority of UMs are located in the globe
at first presentation; however, large lesions may show an extraocular extension along the
optic nerve or the vortex veins [3].

A UM has distinct molecular features compared with other melanoma subtypes. The
cutaneous melanoma-associated mutations such as v-raf murine sarcoma viral oncogene
homolog B1 (BRAF), neuroblastoma RAS viral oncogene homolog (NRAS) and neurofi-
bromatosis type 1 (NF1) are not common in a UM, which are characterized by different
oncogenic genes or mutations with a loss of function [6]. By next-generation sequenc-
ing efforts on UM tumors, several driver genes have been detected. The most frequent
among these are mutations of guanine nucleotide-binding protein Q polypeptide/guanine
nucleotide-binding protein alpha-11 (GNAQ/GNA11), which appear in a mutually exclu-
sive manner and occur in approximately 90% of posterior UMs [7]. Other mutations such
as BAP1, splicing factor 3B subunit 1 (SF3B1), eukaryotic translation initiation factor 1A,
X-linked (EIF1AX) and telomerase reverse transcriptase promoter (TERTp) have also been
associated with UMs. A direct lineage between cytogenetic alterations and prognosis
has been described and M3, 8q+ 6p+ and 1p- can consequently be used as biomarkers of
prognostic importance [6,7].

The primary treatment options for a UM include radiotherapy (brachytherapy or
teletherapy), transpupillary thermotherapy and tumor resection (transscleral resection,
endoresection, enucleation) [1,2]. The ocular treatment is selected according to the size and
location of the tumor individually for each patient. The aim of therapy is to conserve the
eye with useful vision as well as to minimize the risk of metastasis [3,5]. A disseminated
UM can be treated with adjuvant immunotherapy, chemotherapy and molecular targeted
therapy [8].

Electrochemotherapy (ECT) is a nonthermal treatment modality that combines the
application of electric pulses to the tumor tissue with chemotherapeutic agents [9,10]. ECT
enhances the permeability of the cell membrane and therefore the cytotoxicity of otherwise
impermeant or poorly permeant anticancer drugs such as bleomycin and cisplatin through
reversible poration [11]. In addition to increasing the drug uptake in the tumor cells, ECT
can generate reactive oxygen species [12]. According to the ESOPE protocol, ECT involves
the application of eight 100 µs pulses at a 1 or 5000 Hz frequency and specified electric field
(V/cm) [13]. The application of short and intense electrical pulses increases the efficacy of
chemotherapeutic drugs [9,10,13–15]. There is little knowledge about the effect of ECT in
UMs [16,17].
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Moreover, ECT has been reported as a radiosensitizing agent for radiation therapy,
postulating that a single session before irradiation can significantly enhance the tumor
response. The combination of electrochemotherapy preceding irradiation leads to an
increased radioresponse with an enhancement factor of up to 4.6 using a radiomimetic
(bleomycin) or a radiosensitizing (cisplatin) drug [12,18–20]. The improved antitumor
effectiveness is attributed to the increased drug accumulation in the tumors due to electro-
poration phenomenon, secondly to the generation of reactive oxygen species by electric
pulses and lastly to the vascular alteration, particularly the antivascular effects [12]. The ra-
diosensitizing effect of ECT and other drug delivery systems has already been documented
for intestinal colon cancer, sarcomas, radioresistant adenocarcinomas, fibrosarcomas and
mammary carcinomas in vitro und in vivo [18,19,21,22]. Concurrent ECT and brachyther-
apy showed a radiosensitizing effect with an increased local tumor control in patients with
inoperable endometrial cancer as well as cutaneous spinocellular carcinomas [23].

Our study examines the radiosensitizing effect of ECT with various drug concen-
trations as well as alternating pulse and radiation settings in 3D spheroids using two
established UM cell lines (UM92.1, Mel 270) and two primary UM cell lines (UPMD2,
UPMM3). Not only the spheroid growth but also the cell viability, cell survival and the
long-term cytotoxic effect of the tumor spheroids were assessed in order to determine the
efficacy of concurrent irradiation and ECT in a primary UM.

2. Results
2.1. Characterization of 3D Tumor Spheroids of UM Cell Lines and UPM Cells

Spheroids were generated from two UM cell lines, UM92.1 or Mel270, and from two
uveal primary melanoma (UPM) cells lines, UPMD2 or UPMM3. The characteristics of
the cell lines are summarized in Table 1. During a 4- to 12-day time of culturing, all cell
lines produced uniform-sized spheroids with a specific size and appearance of cell line
(Figure 1). UM92.1 cells produced spheroids with an increasing size and compactness
while Mel270 cells aggregated into large flat spheroids with an increasing size but low
density/compactness when compared with UM92.1 (Figure 1A,C,D). Spheroid live/dead
cell numbers increased until day 12 (Figure 1E). In contrast, the UPM cell lines produced
much smaller spheroids with a constant size and compactness (Figure 1B,F,G). The small
sizes of the UPM spheroids were reflected by constant low cell numbers. However, UPMD2
spheroids contained increasingly high numbers of dead cells when compared with other
spheroid types (Figure 1H).

Table 1. Characteristics of uveal melanoma cell lines.

Cell Line Genetics Morphology/Doubling Time References

UM92.1 GNAQ Q209L, Disomy-3, WT BAP1, EIF1AX Epithelioid/38–58 h [24–27]
Mel270 GNAQ Q209P, Disomy-3, WT BAP1 Spindle/43 h [25,26,28]
UPMD2 GNA11 Q209L, Isodisomy-3, WT BAP1 Epithelioid/150 h [16,29]
UPMM3 GNAQ Q209P, Monosomy-3, Mutant BAP1 Spindle and epithelioid/100 h [29]

2.2. Impact of Combination Treatment on 3D Tumor Spheroid Growth

The different tumor spheroids may reflect heterogeneous uveal melanomas and were
therefore subjected to radiation and/or ECT on day 7. The short-time cytotoxic effect on
the spheroid growth of different UM and UPM spheroids was observed five days after
treatment (at day 12). Overall, radiation had little effect on spheroid morphology whereas
the ECT dose dependently changed the spheroid size and appearance in a cell line-specific
manner (Figure 2). In terms of UM92.1 and Mel270, ECT led to a spheroid size reduction
when compared with untreated or radiation only (Figure 2A–C). Herein, ECT with a 1000 V
strength reduced the size of UM92.1 spheroids more efficiently than ECT with 750 V while
Mel270 spheroids disintegrated in enlarged loose cell aggregates (Figure 2A–C). However,
UPM spheroids were differently affected by the treatments (Figure 2A,D,E). ECT led small
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fragments to separate off the spheroids and caused irregular formed fragments with a
highly variable size of UPMD2 spheroids (Figure 2A,D). In contrast, either a 20 Gy radiation
or ECT at any strength significantly reduced the size of UPMM3 spheroids when compared
with untreated or 5 Gy radiation (Figure 2E).
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well. (A) Spheroids generated from UM cell lines UM92.1 and Mel270. Representative images are shown at day 4, 7 and 
12 (4 × magnification; scale bar of figure 1A represents 1000 µm). (B) Spheroids generated from UPM cell lines UPMD2 
and UPMM3. Representative images are shown at day 4, 7 and 12 (4 × magnification; scale bar of figure 1B represents 1000 
µm). (C,F) Spheroid cross-sectional area (µm2) and (D,G) optical density (mgv, mean grey value) were determined (n = 5 
each time point). (E) UM spheroids or (H) UPM spheroids were trypsinized, stained with trypan blue and live/dead cell 
numbers were counted at day 4, 7 and 12. Dead cells are indicated by black columns; % of dead cells is given. A statistical 
analysis was performed using a two-way ANOVA and Tukey’s multiple comparisons test; significance levels are indicated 
* p < 0.05, ** p < 0.01, **** p < 0.001. 
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Figure 1. Generation of 3D tumor spheroids from UM and UPM cell lines. UM or UPM cells were seeded at 5000 cells per
well. (A) Spheroids generated from UM cell lines UM92.1 and Mel270. Representative images are shown at day 4, 7 and 12
(4 × magnification; scale bar of (A) represents 1000 µm). (B) Spheroids generated from UPM cell lines UPMD2 and UPMM3.
Representative images are shown at day 4, 7 and 12 (4× magnification; scale bar of (B) represents 1000 µm). (C,F) Spheroid
cross-sectional area (µm2) and (D,G) optical density (mgv, mean grey value) were determined (n = 5 each time point).
(E) UM spheroids or (H) UPM spheroids were trypsinized, stained with trypan blue and live/dead cell numbers were
counted at day 4, 7 and 12. Dead cells are indicated by black columns; % of dead cells is given. A statistical analysis was
performed using a two-way ANOVA and Tukey’s multiple comparisons test; significance levels are indicated * p < 0.05,
** p < 0.01, **** p < 0.001.

Overall, ECT with both bleomycin dosages of 1 or 2.5 µg/mL were effective in the
size reduction of spheroids and radiation prior to ECT had little additional effects on the
spheroid size. Strikingly, the treatments led to a reduction in the spheroid size not only
compared with untreated spheroids at day 12 but also compared with untreated spheroids
at day 7 indicating the shrinking of the spheroids below the initial size (Figure 2B,C,E;
dotted line). Several mechanisms such as the destruction of morphology, growth inhibition
and/or apoptotic/necrotic processes may have contributed to spheroid shrinking.



Cancers 2021, 13, 3086 5 of 15
Cancers 2021, 13, x FOR PEER REVIEW 5 of 15 
 

 

 
Figure 2. 3D tumor spheroid growth after combination treatment. At day 4, spheroids were either irradiated (dose 5 or 20 
Gy) or treated with ECT (electroporated 1000 V or 750 V in the presence of 1 µg/mL or 2.5 µg/mL bleomycin) or spheroids 
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Representative spheroids are shown (4 × magnification; scale bar of figure 2A represents 1000 µm). (B–E) Corresponding 
cross-sectional area of spheroids (n = 5 each condition). Additionally, the mean cross-sectional area of spheroids before 
treatment at day 7 is shown (dotted line; UM92.1: 9.7 × 105 µm2; Mel270: 2.8 × 106 µm2; UPMD2: 1.6 × 105 µm2; UPMM3: 1.2 
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Figure 2. 3D tumor spheroid growth after combination treatment. At day 4, spheroids were either irradiated (dose 5 or
20 Gy) or treated with ECT (electroporated 1000 V or 750 V in the presence of 1 µg/mL or 2.5 µg/mL bleomycin) or spheroids
were irradiated followed by ECT. Five days after treatment (at day 12) the effect on spheroid growth was determined.
(A) Representative spheroids are shown (4 × magnification; scale bar of (A) represents 1000 µm). (B–E) Corresponding
cross-sectional area of spheroids (n = 5 each condition). Additionally, the mean cross-sectional area of spheroids before
treatment at day 7 is shown (dotted line; UM92.1: 9.7 × 105 µm2; Mel270: 2.8 × 106 µm2; UPMD2: 1.6 × 105 µm2; UPMM3:
1.2 × 105 µm2). A statistical analysis was performed using a two-way ANOVA and Tukey’s multiple comparisons test;
* p < 0.05, ** p < 0.01, *** p < 0.005, **** p < 0.001.

2.3. Proliferation and Necrosis of 3D Tumor Spheroids in Response to Combination Treatment

The detection of Ki67 in sections of UM92.1 spheroids revealed that the cell prolif-
eration was strongly reduced with ECT 1000 V compared with 750 V either with 5 or
20 Gy (Figure 3A–F). Additionally, hematoxylin staining of UM92.1 spheroids revealed
that bleomycin dose-dependently increased the regressive processes with pathological
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changes indicating apoptosis and/or necrosis (Figure 3G–J). The UPMD2 spheroid cells
were massively pigmented and only a few cells stained Ki67 positive indicating a low
proliferation rate (Figure 3K). Furthermore, regressive cellular changes were enhanced
in the UPMD2 spheroid cells already in response to a low dose combination treatment
(Figure 3L–O).
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Figure 3. Immunohistochemistry of 3D tumor spheroids treated with combination therapy. Tumor spheroids were irradiated
(dose 5 or 20 Gy) and treated with ECT (electroporated 1000 V or 750 V in the presence of 1µg/mL or 2.5 µg/mL bleomycin)
or were left untreated (0 Gy 0 V). (A–F,K) UM92.1 or UPMD2 spheroids (n = 3–6 each condition) were stained for proliferation
marker Ki67; (G–J,L–O) and/or stained with hematoxylin. Representative images are shown (200 × magnification; scale
bar of Figure 3 represents 100 µm).

2.4. Viability of 3D Tumor Spheroids in Response to Combination Treatment

In order to evaluate the cytotoxic mid-term effects of the treatments, the spheroid cell
viability was analyzed after another week in the culture (12 days after treatment). The cell
viability of UM spheroids or UPM spheroids were differently affected by the treatments
(Figure 4). UM spheroid viability was only marginally affected by irradiation whereas ECT
significantly reduced the spheroid viability at 1000 V strength with 2.5 µg/mL bleomycin
(Figure 4A,B; left graphs). However, the combination treatment was more efficient in
the reduction of viability than either treatment alone. The most efficient combination to
reduce the viability of the UM spheroids was ECT 1000 V strength with 1 or 2.5 µg/mL
bleomycin together with 5 or 20 Gy radiation (Figure 4A,B; left graphs). Neither bleomycin
alone nor electroporation only had any effect on the spheroid cell viability (Figure 4A,B;
right graphs).
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Figure 4. Cytotoxic effects of radiation and ECT on 3D spheroid viability. (A) UM92.1 spheroids, (B) Mel270 spheroids,
(C) UPMD2 spheroids and (D) UPMM3 spheroids were irradiated (dose 5 or 20 Gy) or treated with ECT (electroporated
1000 V or 750 V in the presence of 1 µg/mL or 2.5 µg/mL bleomycin) or spheroids were irradiated followed by ECT (left side
of the graphs). In addition, tumor spheroids were treated with bleomycin (1 µg/mL or 2.5 µg/mL) or electroporation (1000 V
or 750 V) alone (right side of the graphs). Cytotoxic effects on spheroid viability (n = 5–8) were assessed by measuring the
ATP content of lysed spheroid cells using a 3D cell viability assay (ATP Luminescence, RLU Relative Light Units). Data
are means ± SD. A statistical analysis was performed using a two-way ANOVA and Tukey’s multiple comparisons test;
* p < 0.05, ** p < 0.01, *** p < 0.005, **** p < 0.001.
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In contrast, the UPM spheroid cell viability was reduced already by radiation.
Strikingly, ECT on its own as well as in combination with radiation dramatically re-
duced the spheroid cell viability (Figure 4C,D; left graphs). Bleomycin alone had
no effect on the UPM spheroid cell variability. However, electroporation alone or
additionally to radiation was able to reduce the viability significantly (Figure 4C,D;
right graphs). The different spheroids displayed a broad range of radiosensitivity
and/or electro/chemosensitivity, with UPM spheroids much more sensitive to radia-
tion and/or ECT than UM spheroids.

2.5. Cytotoxic Long-Term Effects on Tumor Spheroid Cells after Combination Treatment

In order to determine the tumor control potential of the treatments, we analyzed the
cytotoxic long-term effects of the treatments in a spheroid cell survival assay after another
eight weeks in the cell culture (61 days after treatment). Basically, UM or UPM spheroids
displayed a different ability of cell out-growth and proliferation in a long-time culture.
The untreated UM spheroid cells formed a confluent and homogeneous cell monolayer
(UM92.1, Mel270: 100% cell density) while UPM spheroid cells remained as a subconfluent
and inhomogeneous monolayer (UPMD2: 60–70%; UPMM3: 80–90% cell density). The
respective cell density was reflected by Crystal Violet (CV) staining of the cell nuclei/DNA
(Figure 5A; representative images of the cell cultures received from untreated spheroids
(0 Gy, 0 V)).

The different spheroid types exhibited different long-term outcomes in response to
the treatments. A 5 Gy radiation of UM or UPM spheroids had only marginal cytotoxic
effects on cells resulting in a nearly confluent monolayer while 20 Gy radiation reduced
the cell survival close to <10% of the untreated, which we defined as the maximum
tumor control potential (Figure 5B–E; dotted line). ECT alone did not inhibit the cell
survival of UM spheroids (Figure 5B,C). In contrast, ECT dose-dependently reduced
the cell survival of UPM spheroids (Figure 5D,E). In the case of UPMD2 spheroids,
ECT of either dose reduced the cell survival below 50% compared with the untreated.
Moreover, ECT 1000 V with 2.5 µg/mL bleomycin greatly reduced the UPMD2 cell
survival to <10% of the untreated spheroids reaching the maximal tumor control poten-
tial (Figure 5D; dotted line). Concerning UPMM3 spheroids, ECT 1000 V, 2.5 mg/mL
bleomycin reduced the cell survival of UPMM3 spheroids below 50% of the untreated
(Figure 5E).

Furthermore, radiation with 5 Gy in combination with ECT significantly reduced
the cell survival of UM spheroids below 50% and conferred the maximum tumor control
potential of all UPM spheroids (Figure 5B–E). Likewise, a maximum tumor control potential
was obtained with 20 Gy radiation alone or additional to ECT (Figure 5B–E, dotted line).

Taken together, the long-term survival assay of treated spheroids revealed that ECT
combined with radiation could increase the cytotoxic effects of either treatment alone
and conveyed the maximal tumor control potential on all spheroid types investigated.
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Figure 5. Long-term cytotoxicity of the treatments on tumor spheroid cells. At day 7, tumor spheroids were either irradiated
(single dose 5 or 20 Gy) or treated with ECT (electroporation at 1000 V or 750 V in the presence of 1 µg/mL or 2.5 µg/mL
bleomycin) or spheroids were first irradiated followed by ECT. The long-term cytotoxic effects on spheroids were determined
in a spheroid cell survival assay. Each individual treated spheroid was allowed to attach to a flat bottom well at day 12.
Spheroids were maintained in a culture to enable the out-growth of living cells. After eight weeks in the culture, the
surviving cells were stained with Crystal Violet (CV). (A) Representative images of CV staining each condition are shown.
(B–E) Measurements of CV staining (OD 540 nm, au: absorbance units, n = 12 each condition). Additionally, the 10% level
of the mean value of untreated spheroids (0 Gy 0 V 0 µg/mL bleomycin) is shown in order to indicate the maximal tumor
control potential (dotted line). Data are means ± SD. A statistical analysis was performed using a two-way ANOVA and
Tukey’s multiple comparisons test; * p < 0.05, ** p < 0.01, *** p < 0.005, **** p < 0.001.
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3. Discussion

This study demonstrated the increased effect and delivery of radiosensitizing agents
after concomitant radiotherapy and ECT in uveal melanoma 3D cell cultures. ECT enhanced
the tumor response by reducing the cell viability and increasing the long-term cytotoxic
effect in primary uveal cell lines. The variable response to the treatment among the tested
cell lines could be attributed to differences in the intrinsic tumor cell responsiveness and
sensitivity to the drug used in conjunction with electric pulses or/and radiation [20]. The
radiosensitizing effect of chemotherapeutic agents such as bleomycin has already been
shown in many in vitro and in vivo studies and clinical trials [30–33].

When bleomycin was administered in combination concurrently with fractionated radia-
tion, the locoregional control and survival in patients was improved by up to 30% [33–35].

The discussed underlying mechanism was not only the increased delivery of the
drug to the tumors by electroporation but also the ability of bleomycin to directly bind to
DNA, resulting in the reduced synthesis of DNA, RNA and proteins, therefore inducing
single- and double-strand DNA breaks and cell death. The effect was dose-dependent.
The cytotoxic effect of bleomycin was also potentiated by chemicals that produce super-
oxides as did X-rays [36,37]. It has been speculated that the DNA damage caused by the
increased drug concentration sensitizes the cells to subsequent irradiation. In a study,
the potentiation factor for the tumor radiation response for single-dose irradiation was
measured at 1.9 for ECT with bleomycin and 1.6 with cisplatin [19,38]. Various studies
have reported the beneficial practice of concomitant ECT and irradiation where others have
discussed the conduction of ECT prior to irradiation [19–22]. Another study demonstrated
that the increased radiation response of tumors that were exposed to electric pulses was
ascribed to radiobiologically-relevant tumor hypoxia and to the induction of reactive oxy-
gen species, effects that counteract each other. Prolonging the time between bleomycin
administration and irradiation could restitute the tumor oxygenation before the tumor
irradiation [19]. Subsequently, the effect of the interval between bleomycin-ECT and irradi-
ation on reactive oxygen species as well as their role in tumors after ECT has not yet been
adequately addressed.

A good potentiation of the radiation response without drug delivery systems such
as electroporation was only postulated in an in vitro study with colon tumor cells and
with high doses of the applied chemotherapeutic agents [39]. In vivo studies on mice
demonstrated the potentiation of radiation with high doses of bleomycin either after
a single irradiation dose or in a fractionated regime up to 1.23-fold [22,31,32]. Drug
delivery systems such as the incorporation of the drug into liposomes or other vehicles
and local drug administration can be used to increase the drug delivery to tumors [40].
Electroporation as a drug delivery system can effectively increase the potentiation of
bleomycin and cisplatin cytotoxicity and radiosensitivity [14]. In vivo ECT of tumors in
experimental as well as clinical settings is feasible and effective for local tumor control
and requires low drug doses that otherwise have minimal or no antitumor effectiveness
without the subsequent application of electric pulses to the tumors. The drug accumulation
increases 2-fold for cisplatin and 4-fold for bleomycin [13,14].

The combination of ECT with cisplatin and irradiation has already been examined in
cell lines and tumors in mice and a patient. The study showed a potentiation of the radiation
response by 1.4 after ECT with cisplatin and concurrent irradiation compared with tumors
that were treated with a combined cisplatin and irradiation treatment and 1.6 compared
with tumors that were irradiated only. The suggested mechanism was the increased
cisplatin accumulation in the cells of tumors [18]. Another study examined and proved that
the potentiation of the radiation response after ECT with bleomycin was 1.9-fold compared
with tumors that were irradiated only and those that were concomitantly treated with
bleomycin. The effect of bleomycin and irradiation alone without a drug delivery system
did not lead to an increased potentiation as the low dose that used bleomycin alone had no
radiosensitizing effect [19].
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In our study, the maximal tumor control with a reduction of cell survival to <10%
was achieved with a 5 Gy irradiation only in the primary uveal melanoma cell lines and
in combination with all tested ECT settings. In the UM92.1 cell line, the same effect was
obtained only after irradiation with 20 Gy for all ECT parameters. In the Mel270 cells, the
maximal tumor control could not be achieved either with ECT alone, irradiation alone or
with any tested combination treatment. This could be attributed to the origin of the Mel270
cells, which arose from a large recurrent tumor after prior irradiation [25]. The UM92.1
cells were obtained from a massive tumor mass that had destroyed the eye and orbit and
led to metastases although this tumor had a disomy of chromosome 3 and expressed BAP1.
An EIF1AX mutation was detected, which has been associated with the development of
metastases in disomy 3 uveal melanomas [27]. These characteristics could explain the
radioresistance to the tested settings for the Mel270 cell line as well as the higher dose
irradiation and ECT settings needed for the treatment of the UM92.1 cell line. Interestingly,
the spheroid growth based on the cross-sectional area showed a significant response in
Mel270 after a combined treatment with 5 Gy and 750 V and 1 or 2.5 µg/mL bleomycin in
comparison with the combination with 1000 V. This effect could be explained through the
wide dispersity of the cells after the electric pulse distribution, leading to optically larger
spheroids and a greater diameter despite the significant reduction of the cell viability and
the central necrosis. No significant difference could be demonstrated for the reduction of the
cell viability in the combination therapy with 20 Gy and 1000 V between 1 and 2.5 µg/mL
bleomycin even in the radioresistant Mel270 spheroids, underlying the importance of a
drug delivery system to potentiate the radiosensitizing effect of agents in lower doses.

4. Materials and Methods
4.1. Culture of Uveal Melanoma Cells Lines

The uveal melanoma cell line UM92.1 and uveal primary melanoma cell lines UMPD2
and UPMM3 were provided by Dr. M. Zeschnigk (Institute of Human Genetics, University
Hospital Essen, Essen, Germany) [24–29]. The UM cell line Mel270 was provided by Dr.
K. Griewank (Department of Dermatology, University Hospital Essen, Germany) [25,26].
All cell lines were authenticated by short tandem repeat profiling according to published
data. The cell lines were maintained in an RPMI 1640 medium (UM cell lines) or in a
Ham/F12 medium (UPM cell lines) supplemented with 10% fetal calf serum and 1%
penicillin-streptomycin (5000 U/mL), respectively. The medium was refreshed two times
per week. The cell cultures were incubated in a humified incubator (37 ◦C, 5% CO2).

4.2. Cell Viability Assay

The cell cultures were trypsinized and the resultant cell suspension was mixed with
an equal amount of 4% trypan blue stain (Merck, Darmstadt, Germany). The number of
living and dead cells was determined by trypan exclusion using a TC20 automated cell
counter (Bio-Rad, Feldkirchen, Germany).

4.3. Tumor Spheroids

The spheroids were generated by seeding 5 × 103 living cells in round bottom 96-well
ultra-low attachment plates (Corning, Corning, NY, USA) in 100 µL of the respective cell
culture medium. The medium was refreshed two times per week. The spheroid cultures
were incubated in a humified incubator (37 ◦C, 5% CO2) for the indicated time of period.
Compact spheroids could be generated on day 4 of the culture.

4.4. Determination of Spheroid Growth

The spheroids (n = 5 each condition) were imaged at day 4, 7 and 12 using a Zeiss
Primovert bright-field microscope at 4 × magnification. The images were recorded with a
Zeiss Axiocam 105 and ZENcore software and analyzed by using image processing software
Fiji ImageJ 1.53c (MPI-CBG, Dresden, Germany). The spheroid size was determined by
calculating the cross-sectional area of the spheroids (µm2). The spheroid compactness



Cancers 2021, 13, 3086 12 of 15

was determined by calculating the optical density of the spheroid area (mgv, mean grey
value). In order to determine the living/dead cells, the spheroids (n = 8–16 in triplicate)
were trypsinized and the resulting cell suspension was subjected to a cell viability assay as
described above.

4.5. Treatment of Spheroids

The spheroid cultures were irradiated and/or treated with electrochemotherapy
(ECT). In terms of combination therapy, the spheroid cultures were first irradiated and
additionally treated with ECT within one hour after radiation. As controls, the spheroid
cultures remained untreated.

Radiation: spheroid cultures were irradiated in a 100 µL medium in multi-wells with
a dose of 5 or 20 Gy by using a 60Co source X-ray irradiator (RS320, Xstrahl Ltd., Surrey,
UK) at 300 kV, 10 mA and a dose rate of 0.9 Gy/min.

ECT: the spheroids were treated with a 100 µL medium containing 1.0 µg/mL or
2.5 µg/mL bleomycin and electroporated by using two parallel aluminum electrodes 4 mm
apart. Eight pulses (100 µs pulse duration, 5 Hz repetition frequency) of a 1000 V/cm or
750 V/cm pulse strength were applied by a voltage pulse generator (Genedrive, IGEA
S.p.A., Carpi, Italy). As controls, further samples were treated with bleomycin or electro-
poration only. After 24 h of treatment, the spheroids were washed with the medium and
incubated in a fresh medium for the indicated period of time.

4.6. Immunohistochemistry of Tumor Spheroids

The spheroids (n = 3–8 each condition) were fixed in buffered formalin (Histofix).
Formalin-fixed paraffin embedded sections were cut at a thickness of 3 µm. The Ki67
immunohistochemistry was performed on a Ventana BenchMark Ultra system (Ventana
Medical Systems, Tucson, AZ, USA) using clone 30-9, a monoclonal mouse IgG antibody
(Cell Signaling Technology, Cambridge, UK). An immunohistochemistry analysis was
performed with the following protocol: pretreatment cell conditioning 1, 95 ◦C, 32 min.;
incubation 36 ◦C, 16 min. The visualization was conducted using an OptiView DAB
System (Ventana Medical System). Thereafter, the slides were scanned using a Leica
DM4000B microscope, Leica DFC290 camera and analyzed using the Leica Suite version
2.8.1 (Leica Microsystems, Wetzlar, Germany). The slides were reviewed by a board-
certified pathologist (ST).

4.7. Spheroid Viability Assay

The spheroid cell viability was assessed using the CellTiter-Glo 3D cell viability assay
(Promega) according to the manufacturer’s instructions. Equal amounts of CellTiter-Glo
and spheroid cultures were mixed by pipetting up and down for 30 s to enable a complete
lysis of the spheroid cells and the release of ATP. The mixture was transferred to white
opaque-walled multi-well plates (Nunc Micro well). After five minutes of incubation on a
shaker (750 rpm) and a further 30 min of incubation, the luminescence was recorded using
a reader FluostarOmega (Bmg Labtech, Ortenberg, Germany). The ATP luminescence was
given in RLU (relative light units).

4.8. Spheroid Cell Survival Assay

Five days after treatment (at day 12), the spheroid cultures (n = 12 each condition)
were individually transferred to 24-well plate dishes. The spheroids were allowed to attach
to the uncoated flat plastic bottom to enable the out-growth of spheroid cells. After eight
weeks in the culture, the cell confluence was determined by bright-field microscopy. The
adherent cells were fixed with formalin for 5 min and the cell nuclei/DNA were stained
with 0.05% Crystal Violet for 30 min. The absorbance of Crystal Violet (CV) was measured
at OD 540 nm (au, absorbance units) using a FluostarOmega (Bmg Labtech, Ortenberg,
Germany) reader.



Cancers 2021, 13, 3086 13 of 15

4.9. Statistical Analysis

A statistical analysis of the data was performed using a two-way ANOVA and Tukey’s
multiple comparisons test (GraphPad Prism 8.4.3 software, GraphPad Software Inc., San
Diego, CA, USA). A value of p < 0.05 was considered statistically significant and significance
levels were indicated * p < 0.05, ** p < 0.01, *** p < 0.005, **** p < 0.001.

5. Conclusions

This study presented the positive radiosensitizing effect and the long-term results
of concomitant irradiation and ECT with bleomycin in primary UM 3D spheroids with
or without monosomy 3. The results indicated that uveal melanoma cell lines could be
radiosensitized after one ECT treatment, making a clinical application practicable. The
different levels of radiosensitivity between the various UM cell lines could be attributed to
the tumor origin and prior treatments as well as to the intrinsic tumor characteristics and
genetics. As shown for the Mel270 and UM92.1 cell lines, the combined treatment with
electrochemotherapy and tumor irradiation could be used to treat radioresistant tumors
and larger tumor nodules, which would not achieve a satisfactory tumor control with other
single-modality treatments. Further studies are necessary for the examination of the time
setting and the interval between ECT and irradiation as well as of the effect of repeated
ECT sessions and a fractionated irradiation regimen in uveal melanoma tumors.
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