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ABSTRACT
Static properties of leaves with parallel venation, with particular emphasis on the genus
Epipactis Zinn, 1757 (Orchidaceae, Neottieae) have been modelled with coupled quasi-
parallel elastic ‘‘beams.’’ The non-linear theory of strongly bended beams have been
employed. The resulting boundary-value problem has been solved numerically with
the help of the finite-difference method. Possible dislocations resulting in additional
Dirac-delta like forces have been take into account. Morphological similarity of the
model and real leaves has been obtained. In particular, the concentrated forces have
been shown to cause undulation in the leaves.

Subjects Agricultural Science, Biophysics, Mathematical Biology, Plant Science
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INTRODUCTION
The modelling of plant organs remains an open problem due to the complexity of plant
architecture, regardless of the particular organ or any particular taxonomical group of
plants being considered. In this study, we are concerned with the leaves of Orchidaceae
and specifically, the leaves of plants belonging to the genus Epipactis.

Orchidaceae are a varied group that includes both terrestrial plants and epiphytes with
monopodial and sympodial growth, which differ from each other by leaf construction in
both shape and size. Most orchid leaves are typical of themonocots withmany parallel veins
and the cross connections between the longitudinal veins being inconspicuous (Dressler,
1981; Jakubska-Busse & Gola, 2014). An orchid leaf usually consists of only a blade, though
some species produce also the petiole which may be narrow or which may widen and
embrace a stem, forming a leaf sheath. The shape of the blade tends to be modified
alongside its size as a result of growth processes (Jakubska-Busse & Gola, 2014). Orchid
taxa may produce leaves of different shapes, e.g., plicate and cordate, plicate with a
sheathing base, convolute, non-articulate, conduplicate and deeply lobed or, rarely, twisted
(Dressler, 1981).
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An interesting and relatively well-studied issue is leaf undulation, which is often
observed in monocots including orchids. It has been found that the waves in the leaf blades
in monocots usually appear perpendicular to the leaf length, which demonstrates that as
the leaf surface grows, it changes correspondingly lengthwise to the leaf blade. It is worth
noting that although undulation normally occurs perpendicularly to the leaf length, at the
beginning stage it occurs alongside its length. Displacements in the wrinkled leaf also occur
across the leaf blade. Whichever way they appear, they demonstrate that the pace of their
growth is irregular since wrinkles in a leaf can be of different length. Hejnowicz (1991)
found that spatial and temporal fluctuations in the pH of the epidermal cell walls aided the
undulation.

Epipactis as the main object of our study is a mainly Eurasian genus with a south-
central distribution (Rasmussen, 1995; Delforge, 2006). These are all rhizomatous (clonal),
summer-green plants with habitats ranging from bogs to dry forest (Delforge, 2006).
There are some controversies around the taxonomy as one of the Epipactis muelleri Godf.
species is identified based on the undulation of its leaf blade, alongside gynostemium
features. This property is quoted in nearly every artificial key for determining this group
of orchids, e.g., Sundermann (1975), Procházka & Velísek (1983), Potůček & Čačko (1996)
and Delforge (2006). However, it has been shown by Jakubska-Busse & Gola (2014) that the
leaf undulation in Helleborines does not have any diagnostic value as a non-programmed
intrinsic feature and should not be applied to taxa identification. In this paper, we attempt
to show which characteristics in the mathematical model of leaf are responsible for the
undulation.

MATERIAL AND METHODS
In order to build the model, we have preliminarily checked the fulfillment of Hooke’s law
on a sample of 72 fresh Epipactis sp. (E. helleborine, E. muelleri, E. albensis and E. palustris)
leaves. Those measurements have been used here to justify the approach based on theory
of elasticity as modeling tool. (We plan to perform much more extensive measurements
in some future.) A code written in the Python language was used to solve the model
described below and this employed the finite-difference method to solve boundary-value
problem for a system of ordinary differential equations. We have also used published
data on the morphology and anatomy of the Epipactis sp. leaves (Jakubska-Busse & Gola,
2010; Jakubska-Busse & Gola, 2014; Jakubska-Busse et al., 2012). The presented studies
were done with the consent of the Regional Director for Environmental Protection, No.
WPN.6400.27.2015.IW.1.

RESULTS
The model
The modelling of soft materials, in particular organic ones, is a notoriously difficult
problem. Indeed, any functional organic tissue usually contains millions of elements,
namely the cells and furthermore, such tissue is an arena of very complex chemical
reactions combined with diffusion. Needless to say, the above statements also hold in
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the case of plant leaves. There are at least two possible theoretical approaches to the
modelling of leaves. Firstly, one can think about simply simulating the shapes of the leaves
and secondly, one can attempt to start (almost) from the first principles and include the
cellular structure of the leaf tissue. With regard to plant morphology in general, including
that of leaves, tremendous progress has been recently achieved within the framework of
L-systems. Furthermore, the almost realistic pictures in two dimensions can be obtained
by application iterated functions in a similar way to the construction of the Mandelbrot
set (Bird & Hoyle, 1994). Bird andHoyle’s simple approach has, however, nothing to dowith
any physical, chemical and biological properties of living organs. A more sophisticated
approach has been developed using iterative functions by Runions et al. (2005) for the
modelling of leaf venation. A powerful method to model biological pattern formation
is the numerical solution of various reaction–diffusion equations (Koch & Meinhardt,
1994). A method to study general biological systems which exhibit various line-like and
net-line structures using coupled reaction–diffusion equations was developed in the
seventies (Meinhardt, 1976).Markus, Böhm & Schmick (1999) made an interesting attempt
to model reaction–diffusion equations using cellular automata and then applying them
to vessel morphogenesis including leaf venation. More recently, the shapes of leaves have
beenmodelled by thismethod by Franks & Britton (2000). Another interesting contribution
based on hydrodynamics rather than reactions and diffusion has involved the numerical
solutions to theNavier–Stokes equations (Wang, Wan & Baranoski, 2004). Another starting
point in leaf simulation has been worked out in Liang & Mahadevan (1999). The shapes
of long leaves have been obtained using the standard theory of elasticity. Saddle-like
midsurface and rippled edges of leaves have been interpreted as being caused by elastic
relaxation through the bending that follows differential growth. The first-principles line
of dealing with the problem of leaf modelling is still in statu nascendi; there is, however,
promising work on the simulation of plant tissues (Ghysels et al., 2009; Van Liedekerke et
al., 2011) based on micromechanical models of single cells (Van Liedekerke et al., 2010).
Our approach lies in between a purely phenomenological approach and one based on the
cell micromechanics. We realise that in the case of long leaves with parallel venation the
anisotropy and inhomogeneity are essential, and models which assume isotropy and/or
homogeneity must fail. This contrasts our model with that of Liang & Mahadevan (1999).
However, we agree that elasticity theory is an appropriate framework for the description
of leaf morphology. Indeed, regardless of what happens in the cells and what interaction
between cells may be detected, the result must always involve changes in purely mechanical
quantities which characterize a solid material. A continuum-mechanical model makes it
possible to relate the elastic properties of the model with those of real leaves. We note
here that the experimental research on the mechanical properties of leaves appears to
have only just begun, and we are aware of only a single comprehensive study of such
properties (Van Liedekerke et al., 2010). We have performed a couple of experiments (to be
reported elsewhere), in which we have measured the dependence of the length of Epipactis
sp. leaves on the applied elongating force. We found that the assumption of the validity of
Hooke’s Law (i.e., the linear dependence) is satisfactorily fulfilled; its breakdown happens if
the applied forces are close to those which destroy the leaves. The results of our experiments
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encouraged us to consider the model of a leaf based on a simple version of the theory of
elasticity. Our main assumptions in the building of the model are the following: (i) the
shape of a leaf is determined by the distribution of its veins, (ii) each vein, together with
its surrounding tissue, can be represented by an elastic beam, the shape of which is given
by the non-linear theory of strongly deformed beams with circular cross-sections (Landau
& Lifshitz, 1993), (iii) the veins are elastically coupled with their nearest neighbours due to
the presence of the tissue between the veins, and (iv) only the main (‘‘first-order’’) veins are
taken into account explicitly whilst the presence of secondary veins may lead to additional
concentrated forces acting upon the principal veins. According to our hypothesis, the
characteristic undulation near the edges of a leaf is a result of dislocations both in the
regions between the veins and in both primary and secondary veins.

In our opinion, the above model has the following justification from the point of view
of the leaves micromorphology. In the paper (Jakubska-Busse & Gola, 2014) it has been
demonstrated that ‘‘due to changes in the number of cell rows (by cell division) and
cell sizes/volumes (by cell growth), repeated along the edge of the leaf, sectors with local
expansion of the surface affected the entire leaf blade structure’’ (Jakubska-Busse & Gola,
2014). The resulting ‘‘local expansion’’ can and actually should be physically interpreted as
‘‘a defect’’ in the structure of the beams in the corresponding model. This is because the
growth in the number of cells leads to the clear perturbation of the cell sequences—that is,
additional, quasi-parallel cell sequences appear rather abruptly. Similar effects appear on
the veins themselves, please see additional discussion in ‘Discussion.’

Let dlm be the infinitesimal element of the arc along themth beam, and let tm be the unit
vector tangent to that beam. The shape of the beam is given by the function r(lm) such that

dr
dlm
= tm.

Let Fm denote the force which characterizes the internal stress in the beam. IfKm denotes
the external forces (per unit length) which act upon the beam, F has to satisfy (Landau &
Lifshitz, 1993):

dFm
dlm
=−Km. (1)

On the other hand, the rate of change of the moment Mm associated with the force Fm
along the beam can be written as:

dMm

dlm
= Fm×tm. (2)

For the beam of circular cross section the momentMm can be written as:

Mm= EmIm

(
tm×

dtm
dlm

)
, (3)

where Em is the Young modulus of the mth beam, and Im(z) is its area moment of inertia.
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It follows that the tangent vector changes along the beam according to:

EmIm

(
tm×

d2tm
dl2m

)
= Fm×tm. (4)

Let us obtain the equations for the components of the vector tm in the spherical
coordinates, that is, let

tm= (cos(θm)cos(φm),cos(θm)sin(φm),sin(θm)).

Computation of the cross products leads to (please see the Maxima file contained in
Supplemental Information 1 for derivation):

EmIm

(
cos(θm)

d2φm
dl2m
−2sin(θm)

dθm
dlm

dφm
dlm

)
= Fx,msin(φm)−Fy,mcos(φm) (5)

and

EmIm

(
d2θm
dl2m
+

1
2
sin(2θm)

(
dφm
dlm

)2
)
= Fx,msin(θm)cos(φm)+Fy,msin(θm)sin(φm)

−Fz,mcos(θm). (6)

The above equations have to be supplemented with the the relation:

dr
dlm
= tm, (7)

and the expression for the components of the force Fm:

dFi,m
dlm
=−Ki,m, (8)

where i= x,y,z . We can now define a new dimensionless parameter s such that dlm= Lms
with Lm being the length of the mth beam. In the following we also use rescaled
(dimensionless) forces Gi,m such that:

Fi,m=
EmIm
L2m

Gi,m.

It is also convenient to work with dimensionless components of the coordinate vector:

ξm= xm/Lm, ηm= ym/Lm, ζm= zm/Lm. (9)

Then the shape of the mth beam together with internal forces are completely specified
if we solve the system:

cos(θm)
d2φm
ds2
−2sin(θm)

dθm
ds

dφm
ds
=Gx,msin(φm)−Gy,mcos(φm), (10)

d2θm
ds2
+

1
2
sin(2θm)

(
dφm
ds

)2

=Gx,msin(θm)cos(φm)+Gy,msin(θm)sin(φm)

− Gz,mcos(θm). (11)
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From the definition of the tangent vector tm we also have:

dξm
ds
= cos(θm)cos(φm), (12)

dηm
ds
= cos(θm)sin(φm), (13)

dζm
ds
= sin(θm). (14)

We have assumed the following simple form of the force K̄m= L3m/(EmIm)Km:

K̄i,m=−κi,m(2ρi,m−ρi,m+1−ρi,m−1)−qi,mδi,z , (15)

where i= x,y,z and qi,m= qmδiz is the scaled, dimensionless weight of the mth beam per
unit length. Therefore, the equations for the dimensionless forces Gi,m take the form:

dGi,m

ds
= κi,m(2ρi,m−ρi,m+1−ρm−1)−qmδi,z . (16)

In the following we have assumed that there is no external force with non-vanishing x
coordinate acting on any beam except, perhaps, of that acting at the tip of the leaf. Thus,
the above system of differential equations simplifies a bit since Gx,m is independent of s.
The resulting system of differential equations has the order 9M and its solution is available
only numerically. The boundary conditions has been chosen as follows. We have used
ηm(0)= ζm(0)= 0, ξm(1)= 1, ηm(1)= ζm(1)= 0, Gy,m(1)=Gz,m(1)= 0. We have also
prescribed φm(0)= φm0, θm(0)= θm0 and experimented with various φm0 and θm0. The
above boundary conditions correspond to the left (s= 0) end of each beam lies on the
ξ -axis. About its right end (s= 1) one can say that the sum of all forces acting on the beams
there vanishes. As the tip can be considered point-like, the beamsmeet at one point.We can
assume (performing rotation of the coordinate system if necessary) that the tip is located
at (1,0,0), hence the boundary conditions for ξm(1),ηm(1),ζm(1). The above boundary
condition effectively imply that we have to do with the buckling of beams in our model due
to the concentrated forces very close to the tip of the leaf. That buckling clearly influences,
to some extent, the shape of the blade as well as the wrinkling. Ideally, we should have
prescribed a (possibly much more complicated) correct model of the inter-beam forces.
The convergence of the beams near the tip would then be a consequence of such a good
model. Unfortunately, we have encountered serious difficulties in finding such a convincing
description. So far, we have decided to introduce the tip simply by the above boundary
conditions. It seems to us, however, that the presence of strong concentrated forces near
the end of the blade is not unlikely, and that the resulting buckling does influence the shape
of the leaf. Let us notice that the ξ coordinates of the left ends of the beams are unspecified
and they actually result from the simulation. They are always close to, but never exactly
equal to 0. This results in appearance of a small ‘‘petiole.’’

In addition to forces specified above, we have assumed the presence of concentrated,
Dirac-delta like forces in order to model dislocations (this is consistent with the elementary
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Figure 1 Examples of the shapes of leaves for vanishing g0, i.e., without the presence of point-like in-
ternal forces. The following values of parameters have been used: q0 = −1.0, θm(0) = 0,m = 1,2,...,M ,
κy = 10.0, κz = 10.0, g0 = 0.0. (A) Shapes of the beams which form the leaf structure. (B) Projection of the
leaf of (A) on the ξ−η plane.

theory of dislocations as described in Landau & Lifshitz (1993)). That is, we have added the
forces of the form

fz,m(s)=
∑
k

gm,kδ(s− sk)

to the right-hand sides of Eq. (16). Only the z-component of (16) has been modified this
way.

Apart from gravity, the total external force which acts on the beams must naturally be
equal to zero.

NUMERICAL RESULTS
The above boundary-value problem has been solved using its representation in terms of
four second-order equations and finite differences. The discretization has been performed
with N = 101 points and si− si−1 =: h= 1/(N − 1). It has been assumed as a kind of
‘‘zeroth-order approximation’’ that all qm are the same, qm= q=−1.0.

The coefficients g (m,k) have been assumed on m as follows:

g (m,k)= g0(k)(1−cos((π/M )(m− (M+1)/2)))

so that the (scaled) internal concentrated forces are larger near the edges and smaller in
the central part of the leaf. Since these forces are scaled, that difference can be attributed
either to forces themselves, or to smaller Young modulus and/or area inertial moments of
the lateral beams.

We have worked with M = 32 beams and used the finite differences to discretize
the differential operators. Since the resulting matrices in our boundary-value problem
have been quite large, we have not used any solver, but employed the method of false
transients instead. The results of these simulations are illustrated in Figs. 1–4 for four sets
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Figure 2 The same as in Fig. 1 but for different coupling between the beams: κy = 10.0,κz = 5000.0.
There are no point-like internal forces, i.e., g0= 0.0.

Figure 3 Examples of the shapes of leaves in the presence of Dirac-delta like forces caused by defects in
the leaf structure (i.e., non-vanishing g0). The following values of parameters have been used: q0 =−1.0,
θm(0) = 0,m = 1,2,...,M , κy = 10.0, κz = 10.0, s1 = 0.1,s2 = 0.3,s3 = 0.5,s4 = 0.6,s5 = 0.7,s6 = 0.9,
g0(1)=−g0(2)= 50,g0(3)=−g0(4)=−250,g0(5)=−g0(6)= 150.

of parameters. Figures 1A, 2A, 3A and 4A display the shapes of all beams. Figures 1B, 2B,
3B and 4B show the projections of the blades of leaves onto the ξ−η plane.

Figure 1 displays the results for a leaf under the absence of any defects (hence, no
point-like forces appear) and small coupling between the beams which form the leaf blade.

In Fig. 2 we have shown a shape which has resulted from much stronger coupling
between the beams, but still under the absence of any point-like forces. The difference
between the shapes in Figs. 1 and 2 is evident, but there is no undulation.

We have performed preliminary measurements of the amplitudes of wrinkles for several
leaves. It has been found that the amplitudes of the leaf wrinkles have normally been of the
order of 1–2% (it’s depended of course on whether we measured in the apical, central or
basal part of the leaf) but not exceeded 10% of its length The parameters of the model are
chosen in such a way as to fit that maximum value of the relative (i.e., related to the length
of the leaf) amplitudes. In Fig. 3, however, the number of defects as well as the strengths of
point-like forces are too small to cause any considerable wrinkles. Only in Fig. 4 are they
strong enough to produce a clear picture of undulation. As we observed before, large values
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Figure 4 Examples of the shapes of leaves in the presence of Dirac-delta like forces caused by defects in
the leaf structure (i.e., non-vanishing g0). The following values of parameters have been used: q0 =−1.0,
θm(0) = 0,m = 1,2,...,M , κy = 10.0, κz = 10.0, s2i−1 = i/10,s2i = (i+ 1/2)/10,i = 1,2,...,6; g0(1) =
g0(3)=−g0(2)=−g0(4)= 500,g0(5)= g0(7)= g0(9)= g0(11)=−g0(6)=−g0(8)=−g0(10)=−g0(12)=
400. The parameters correspond to strong defects or a small Young’s modulus close to the edges, and it re-
sults in stronger undulations in those regions.

Figure 5 Natural forms of the Epipactis leaves. Photo by Anna Jakubska-Busse.

of the parameters g0(i) can be attributed to both strong defects and to small values of the
Young modulus of the beams. In particular, smaller values of the Young modulus close to
edges results in the stronger undulations in those regions. Please see Fig. 5 for comparison.

DISCUSSION
In this paper the model of a plant leaf with quasi-parallel venation (as exemplified by the
Epipactis sp. leaf) which consists of coupled elastic beams has been developed. Only the
nearest-neighbour interactions between the beams have been employed. It was found that

Jakubska-Busse et al. (2016), PeerJ, DOI 10.7717/peerj.2165 9/13

https://peerj.com
http://dx.doi.org/10.7717/peerj.2165


Figure 6 SEM (scanning electronmicroscope) photography of the upper (adaxial) leaf surface of Epi-
pactis sp. Sequences of cells along a vein. Change of the pattern from a single row of cells (indicated by
red arrow) to three rows (indicated by green arrow) is well visible.

the model reproduces quite well the overall shape of the leaf. In particular, it reflects to
some extent the presence of undulation at the leaf edges. The appearance of undulation is
attributed to the following factors: (a) a small Young’s modulus and/or moment of inertia
of veins which are close to the edges; (b) dislocations in the structure of the principal veins
themselves and/or connecting tissue and secondary veins which result in the large but
well-localized additional forces which act on the veins; those dislocation appear during the
growth of the leaf.

The presence of the defects in the sequences of cells in the space between veins has
been discussed in (Jakubska-Busse & Gola, 2014). As for the presence of clear change of
such sequences close to the veins themselves, let us just invoke Fig. 6 where it seems to be
transparent.

Some of the shortcomings of the analysis in this paper are the following.
Firstly, even though the theory of dislocations in elastic bodies predicts the presence

of Dirac-delta-like forces, it is entirely unclear whether they could act in precisely the
way we have described above. Detailed microscopic observations together with thorough
and complex micromechanical models could bring the answer. Quite obviously, we have
applied the Dirac-delta-like forces in an ad hoc manner to obtain numerically results close
to those known in real leaves.

Secondly, we have assumed a lot (and possibly toomuch) about our beams to simplify the
model. Needless to say, the cell sequences in the leaves do not have circular cross sections.
It may very well happen that this fact, together with strong forces acting near the apex of a
leaf, is a source of instability which is and additional factor in formation of the undulation.
Nonetheless, we believe that our arguments based on the findings of Jakubska-Busse & Gola
(2014) and Fig. 6 provide first necessary steps in the proper direction.

In some remarkable recent works (Marder, 2003; Audoly & Boudaoud, 2004; Sharon,
Roman & Swinney, 2007), the variety of shapes of leaves in general, and their wrinkling
in particular, has been interpreted in a very elegant way, namely, in terms of Riemannian
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geometry of surfaces. What is more, those authors have described the effect of applying
auxin at leaf edges to produce ripples and emphasize more explicitly growth in the leaf. It
is conjectured that in the developmental processes of naturally growing tissues, the process
of growth provides a mechanism for the spontaneous formation of non-Euclidean metrics
and consequently leads to complicated morphogenesis of thin films (including surfaces
of leaves) exhibiting waves, ruffles and non-zero residual stress (Lewicka, 2011). What
we have attempted here is to provide a more physical, granular model which is from the
very beginning adapted to the strong anisotropy of Epipactis leaves and concerned with
local forces and torques. We believe that, to some extent, our model is complementary
to that developed in the papers quoted above, being, perhaps, somewhat closer to the
microscopic reality of the Epipactis leaves. An interesting question which arises in this
connection is whether we could appropriately interpret within our model the results of the
experimentation with auxins. Let us first stress that the leaves used in the those experiments
(daffodils (Narcissus)) are quite different from those of Epipactis. Nevertheless, our model
seems to be sufficiently abstract to justify its application to other leaves with both similarly
shaped leaves and similar arrangements of main veins. The outcomes of experiments with
auxins could be explained within our model as resulting from the (local) change of physical
characteristics of the beams, especially their area moments of inertia. We also feel that the
departure from the assumption of the circularity of cross sections of the beams might be
necessary.

Further research is necessary in at least two directions. Firstly, the experimental data
regarding the mechanical properties of the leaves in general, and the leaves of Orchidaceae
in particular, is presently insufficient. Secondly, it is obviously necessary to combine a
purely mechanical model with hydrodynamics and the diffusive properties of the dynamics
of fluids inside the leaf. We plan to continue our studies in both of these directions.
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