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Abstract 

Background:  Dysautonomia plays an ancillary role in the pathogenesis of Chronic 
Chagas Cardiomyopathy (CCC), but is the key factor causing digestive organic involve‑
ment. We investigated the ability of heart rate variability (HRV) for death risk stratifica‑
tion in CCC and compared alterations of HRV in patients with isolated CCC and in those 
with the mixed form (CCC + digestive involvement). Thirty-one patients with CCC were 
classified into three risk groups (low, intermediate and high) according to their Rassi 
score. A single-lead ECG was recorded for a period of 10–20 min, RR series were gener‑
ated and 31 HRV indices were calculated. The HRV was compared among the three risk 
groups and regarding the associated digestive involvement. Four machine learning 
models were created to predict the risk class of patients.

Results:  Phase entropy is decreased and the percentage of inflection points is 
increased in patients from the high-, compared to the low-risk group. Fourteen patients 
had the mixed form, showing decreased triangular interpolation of the RR histogram 
and absolute power at the low-frequency band. The best predictive risk model was 
obtained by the support vector machine algorithm (overall F1-score of 0.61).

Conclusions:  The mixed form of Chagas’ disease showed a decrease in the slow HRV 
components. The worst prognosis in CCC is associated with increased heart rate frag‑
mentation. The combination of HRV indices enhanced the accuracy of risk stratification. 
In patients with the mixed form of Chagas disease, a higher degree of sympathetic 
autonomic denervation may be associated with parasympathetic impairment.

Keywords:  Autonomic nervous system, Chagas disease, Heart rate variability, Machine 
learning, Rassi score
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Introduction
More than a century after the publication of the first reports by the Brazilian phy-
sician Carlos Chagas, the pathogenesis of Chagas disease (CD) is still not fully 
understood by researchers and clinicians [1–3]. The infection with the protozoan 
Trypanosoma cruzi entails the acute phase of CD, which lasts about 4–8 weeks and 
is often asymptomatic. Then, the long-lasting—several decades—chronic phase of 
CD follows, and several individual outcomes occur in the development of the disease, 
which is considered the result of a complex host–parasite interaction involving sev-
eral immune mechanisms [4].

As long as individuals with chronic CD do not exhibit cardiac or digestive clinical 
manifestations, they are said to harbor the indeterminate form of the disease. This form 
of CD accounts for asymptomatic individuals infected by the T. cruzi but with normal 
findings on the conventional 12-lead electrocardiogram (ECG) and on the radiological 
examinations of heart, esophagus and colon [5]. In contrast, individuals who become 
symptomatic or show objective signs of organic involvement are said to harbor the deter-
minate form of the disease, usually with cardiac, digestive or mixed organic involvement 
[6, 7].

Individuals with Chronic Chagas Cardiomyopathy (CCC) have the most frequent 
and more ominous form of CD, representing the potential evolution of 40% of T. cruzi 
infected subjects. CCC entails the development of serious cardiac complications, for 
instance, ventricular aneurysms, systemic and pulmonary thromboembolism, heart fail-
ure and complex arrhythmias, the latter representing one of the most important risk fac-
tors for sudden death [8, 9]. Various mechanisms have been considered to be involved 
in the pathogenesis of CCC, including microvascular disturbances, parasite-dependent 
and immune-mediated myocardial damage, and cardiac dysautonomia [2, 6, 7]. Cardiac 
dysautonomia was demonstrated on the basis of anatomical studies showing decreased 
cardiac intramural neurons, and through functional approaches detecting impairment of 
autonomic responses to several tests, including changes in heart rate variability (HRV) 
[2, 10, 11]. Taking into account that HRV indices are broadly sensitive biomarkers of car-
diovascular pathological conditions [12–14], it is plausible to assume that HRV bears a 
significant potential for risk stratification of patients with CD. Although numerous stud-
ies have reported HRV alterations in patients with CD, most of them performed only 
classical linear analyses and did not fully evaluate the potential of combining different 
HRV indices for the prognostication of patients with CD.

Considering the evidence of cardiac dysautonomia in CD and the prognostic value 
of HRV from other cardiovascular and systemic diseases, we hypothesized that HRV is 
associated with the risk of death of patients with CCC. In a previous study, we showed 
significant association of HRV with several morpho-functional parameters obtained 
from the echocardiogram carried out in patients with CD [15]. Here, we extended this 
analysis to seek correlations of such findings with the Rassi score, the best prognostic 
predictor for overall mortality in patients with CCC. Briefly, we looked at: (1) the ability 
of thirty linear and nonlinear HRV indices to distinguish the three classes of Rassi’s risk 
score, as well as the concomitance of digestive involvement associated with CCC (mixed 
form of chronic CD); and (2) the power of combining those HRV indices, using machine 
learning techniques, to predict the Rassi’s risk class of each patient.
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Results
Table  1 shows the demographic and clinical variables of the whole sample population 
included in the study. Data are shown for all patients as well as grouped by the Rassi 
score risk group.

Table 2 shows the median HRV indices grouped by cardiomyopathy only and mixed 
(cardiodigestive) forms. TINN is significantly decreased in patients with the cardiodi-
gestive form compared to the patients with only cardiac involvement (cardiomyopathy 
form). There is also a strong tendency for decreased LF abs in patients with the cardi-
odigestive form (p = 0.06). No other HRV index was found to be significantly different 
between the two forms of CD.

Table 1  Demographic and clinical variables of the patients eligible for the study. Values are 
reported as median [1st, 3rd] quartiles or number of patients (percentage of patients)

N: sample size; SBP: systolic blood pressure; DBP: diastolic blood pressure; NYHA: New York Heart Association; ACE-I: 
angiotensin-converting enzyme inhibitor; VT: ventricular tachycardia. Two patients (6%) were not in use of any of those 
medications. On average, patients were in use of 3.2 of those medications

Group

All (N = 31) Low-risk (N = 13) Intermediate-risk 
(N = 10)

High-risk (N = 8)

Age (years) 57 [49, 68] 63 [48, 70] 54 [50, 62] 60 [49, 73]

Male gender 12 (39) 6 (46) 4 (40) 2 (25)

Body mass index (Kg/m2) 27.4 [23.6, 30.7] 27.7 [25.8, 30.8] 27.0 [23.3, 29.0] 26.7 [23.2, 31.2]

SBP (mmHg) 120 [108, 130] 120 [114, 129] 117 [98, 130] 120 [100, 127]

DBP (mmHg) 80 [66, 80] 80 [67, 85] 70 [66, 80] 80 [66, 80]

Digestive involvement

 Yes 14 (45) 5 (38) 2 (20) 7 (88)

 No 15 (48) 7 (54) 7 (70) 1 (12)

 Unknown 2 (7) 1 (8) 1 (10) 0 (0)

NYHA class

 Class I 13 (42) 10 (77) 2 (20) 1 (12)

 Class II 8 (26) 3 (23) 4 (40) 1 (12)

 Class III 9 (29) 0 (0) 4 (40) 5 (63)

 Class IV 1 (3) 0 (0) 0 (0) 1 (12)

Medications in use

 Betablockers 24 (77) 9 (69) 9 (90) 6 (75)

 Amiodarone 14 (45) 1 (8) 7 (70) 6 (75)

 Amlodipine 2 (6) 1 (8) 1 (10) 0 (0)

 Diuretics 25 (81) 8 (62) 10 (100) 7 (87)

 Hydralazine 3 (10) 0 (0) 2 (20) 1 (12)

 Nitrates 2 (6) 0 (0) 1 (10) 1 (12)

 ACE-I 19 (61) 6 (46) 7 (70) 6 (75)

 Angiotensin II antago‑
nists

10 (32) 5 (38) 3 (30) 2 (25)

Rassi score variables

 NYHA III or IV 10 (32) 0 (0) 4 (40) 6 (75)

 Cardiomegaly 12 (39) 0 4 (40) 8 (100)

 Wall-motion abnormali‑
ties

27 (87) 9 (69) 10 (100) 8 (100)

 Nonsustained VT 5 (16) 0 (0) 3 (30) 2 (25)

 Low QRS voltage 8 (26) 1 (8) 3 (30) 4 (50)

 Male gender 12 (39) 6 (46) 4 (40) 2 (25)
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Table 3 shows the median HRV indices grouped by the Rassi risk class. Phase entropy 
is decreased and PIP is increased in patients assigned to the high-risk group, when 
compared to patients in the low-risk group. Moreover, there is a strong tendency for 
increased W3 in the high-risk group (also compared to the low-risk group, p = 0.062). 
Increased PIP and W3 indicates that patients in the high-risk group have a more frag-
mented heart rate. No other HRV index was found to be significantly different among 
the three groups.

The combination of HRV indices to predict the Rassi risk group of each patient was 
assessed using machine learning algorithms. Figure  1 shows the results of the feature 
selection step for the four machine learning algorithms utilized in this work. No feature 
was selected by all four algorithms. W3, LF/HF and Mean RR were selected by three 
algorithms. Acc Capacity, Guzik, DFA a1, AttEn, FuzzyEn, W0 and LF abs were not 
selected by any algorithm.

Table 2  Median [1st, 3rd] quartiles of heart rate variability (HRV) indices in the groups of patients 
with the cardiomyopathy or the mixed (cardiodigestive) form of Chagas disease

For the description of HRV indices, please see the text

Cardiomyopathy
(N = 15)

Cardiodigestive
(N = 14)

p value

Acc Capacity (ms) − 4.63 [− 7.92, − 3.17] − 3.57 [− 5.07, − 2.89] 0.181

Dec Capacity (ms) 4.49 [3.02, 7.93] 3.81 [3.03, 5.34] 0.324

Porta (%) 49.9 [46.5, 51.3] 50.1 [48.6, 52.8] 0.109

Guzik (%) 49.9 [45.3, 51.5] 51.3 [48.2, 56.0] 0.117

Ehlers − 0.34 [− 0.86, 0.57] 0.67 [− 0.38, 2.54] 0.274

DFA a1 1.10 [0.92, 1.27] 0.91 [0.71, 1.07] 0.181

AttEn 1.49 [1.20, 1.79] 1.63 [1.42, 1.83] 0.718

DispEn 4.42 [4.14, 4.67] 4.44 [4.02, 4.66] 0.840

DistEn 0.72 [0.67, 0.76] 0.66 [0.62, 0.70] 0.331

FuzzyEn 1.54 [1.37, 1.76] 1.63 [1.32, 1.73] 0.968

PermEn 2.51 [2.47, 2.55] 2.55 [2.51, 2.56] 0.081

PhaseEn 0.90 [0.87, 0.91] 0.90 [0.87, 0.91] 0.857

SampEn 1.85 [1.52, 2.02] 1.82 [1.53, 2.05] 0.868

PIP (%) 62.8 [53.7, 65.8] 63.7 [57.9, 69.2] 0.411

W0 (%) 2.7 [0.5, 3.8] 1.2 [0.8, 2.6] 0.439

W1 (%) 19.1 [12.7, 34.2] 23.1 [13.4, 32.1] 0.788

W2 (%) 61.6 [44.4, 72.2] 55.5 [48.5, 60.8] 0.424

W3 (%) 12.0 [7.4, 15.1] 16.9 [11.6, 23.8] 0.227

0 V (%) 22.0 [7.5, 32.4] 19.0 [9.9, 31.8] 0.926

1 V (%) 45.1 [34.3, 49.4] 45.0 [31.8, 50.4] 0.993

2LV (%) 4.0 [2.2, 8.3] 5.8 [2.1, 7.1] 0.994

2UV (%) 21.6 [15.5, 34.3] 24.1 [18.1, 34.3] 0.855

LF abs (ms2) 86.9 [44.1, 171.7] 28.5 [17.1, 97.5] 0.060

HF abs (ms2) 87.7 [36.4, 243.7] 51.0 [33.2, 105.8] 0.181

LF/HF 1.24 [0.59, 1.95] 0.6 [0.3, 1.8] 0.215

Mean RR (ms) 1016 [842, 1084] 977 [798, 1062] 0.522

SDNN (ms) 27.1 [19.4, 35.3] 19.8 [14.4, 24.9] 0.298

RMSSD (ms) 18.3 [11.2, 31.3] 17.2 [12.1, 20.9] 0.326

Triang Index 8.16 [5.47, 9.97] 5.68 [4.31, 7.31] 0.146

TINN (ms) 121.1 [80.1, 146.5] 78.1 [62.5, 101.6] 0.046
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The set of features selected for each machine learning algorithm was used to train the 
respective classification model, where the Rassi score risk class was the output. Table 4 
shows the performance of the algorithms for the best set of parameters found. The best 
general performance was achieved by SVM, while the worst was obtained by RF.

Table 3  Median [1st, 3rd] quartiles of HRV indices in the three Rassi risk groups

For the description of HRV indices, please see the text. *p < 0.05 compared to the “Low” group using Tukey’s post-hoc test

Low Intermediate High ANOVA
p value

Acc Capacity (ms) − 5.09 [− 7.74, − 2.94] − 3.42 [− 4.30, − 2.79] − 3.64 [− 4.75, − 2.70] 0.547

Dec Capacity (ms) 4.69 [3.47, 8.38] 3.14 [2.78, 4.43] 3.65 [2.93, 5.39] 0.371

Porta (%) 51.5 [49.0, 53.1] 49.3 [47.6, 50.1] 50.0 [47.6, 51.4] 0.298

Guzik (%) 51.4 [48.5, 54.9] 49.6 [47.0, 50.8] 50.8 [48.7, 55.1] 0.249

Ehlers 0.42 [-0.75, 2.65] -0.41 [-0.85, 0.05] 0.46 [-0.13, 1.89] 0.141

DFA a1 0.98 [0.91, 1.17] 1.11 [0.85, 1.30] 0.94 [0.73, 1.12] 0.525

AttEn 1.66 [1.52, 1.94] 1.60 [1.25, 1.87] 1.38 [1.20, 1.75] 0.334

DispEn 4.46 [4.10, 4.67] 4.43 [4.20, 4.56] 4.20 [3.93, 4.68] 0.942

DistEn 0.67 [0.64, 0.76] 0.67 [0.60, 0.72] 0.69 [0.63, 0.77] 0.526

FuzzyEn 1.64 [1.33, 1.78] 1.59 [1.39, 1.71] 1.45 [1.29, 1.77] 0.992

PermEn 2.51 [2.48, 2.55] 2.51 [2.48, 2.56] 2.55 [2.53, 2.56] 0.268

PhaseEn 0.91 [0.90, 0.91] 0.88 [0.87, 0.91] 0.87 [0.86, 0.89]* 0.039

SampEn 1.87 [1.49, 2.04] 1.81 [1.51, 2.10] 1.69 [1.53, 1.92] 0.956

PIP (%) 58.2 [53.4, 63.3] 63.4 [55.8, 66.8] 66.4 [63.5, 71.2]* 0.032

W0 (%) 2.6 [1.3, 3.5] 1.1 [0.4, 3.7] 1.0 [0.6, 2.8] 0.410

W1 (%) 30.2 [18.4, 40.5] 21.5 [15.4, 31.8] 13.2 [9.7, 26.4] 0.066

W2 (%) 58.5 [44.0, 65.7] 58.3 [46.5, 63.7] 56.1 [47.7, 68.7] 0.727

W3 (%) 10.5 [8.3, 13.4] 16.5 [11.5, 22.9] 22.2 [13.3, 27.5] 0.062

0 V (%) 24.5 [10.7, 43.5] 20.7 [7.6, 31.8] 23.2 [6.2, 30.9] 0.806

1 V (%) 46.8 [39.4, 50.4] 44.9 [31.6, 48.9] 39.6 [30.3, 50.0] 0.324

2LV (%) 5.6 [2.3, 8.8] 4.5 [1.7, 8.0] 4.8 [1.3, 6.2] 0.795

2UV (%) 19.0 [12.6, 24.7] 22.3 [17.7, 34.4] 31.2 [21.3, 38.4] 0.417

LF abs (ms2) 57.5 [18.0, 119.7] 48.6 [19.6, 154.5] 60.5 [17.6, 104.1] 0.869

HF abs (ms2) 66.5 [27.2, 235.6] 47.3 [27.2, 107.1] 72.0 [38.5, 126.6] 0.789

LF/HF 1.42 [0.61, 1.82] 1.01 [0.57, 2.63] 0.53 [0.32, 1.79] 0.380

Mean RR (ms) 847 [779, 980] 1037 [843, 1111] 1059 [932, 1090] 0.132

SDNN (ms) 20.7 [16.6, 35.0] 20.1 [12.4, 27.2] 23.5 [16.1, 37.8] 0.534

RMSSD (ms) 16.7 [8.0, 26.9] 13.5 [9.2, 20.2] 20.7 [16.5, 25.1] 0.663

Triang Index 6.28 [4.73, 9.27] 5.92 [3.73, 7.97] 6.76 [4.85, 9.42] 0.776

TINN (ms) 85.9 [70.3, 132.8] 89.8 [54.7, 119.1] 89.8 [68.4, 117.2] 0.857

Fig. 1  Feature selection using the four machine learning algorithms. S: selected feature; KNN: k-nearest 
neighbors; SVM: support vector machine; MLP: multilayer perceptron; RF: random forest. For the description 
of HRV indices (columns), please see the text
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Figure  2 shows the confusion matrices of the models reported in Table  4. The fig-
ure shows that the class distribution is unequal, with 16, 20, and 26 examples in the 
“High”, “Intermediate”, and “Low” classes, respectively. Despite the data set being a little 
unbalanced, no model resulted in a biased solution of voting only in the majority class 
(“Low”). The worse performance was obtained by KNN and RF, which missed most of 
the patients in the “High” and “Intermediate” classes, incorrectly assigning them to the 
“Intermediate” and “Low” classes, respectively. Classification performance of patients 
in the “Low” risk group was good in all classifiers (F1-score between 0.62 and 0.79, as 
shown in Table 4).

Discussion
HRV and the risk of death in Chronic Chagas Cardiomyopathy (CCC)

In this study we evaluated the association of HRV indices, singly or combined, with a 
risk marker for overall mortality in individuals with CCC. Taking the HRV indices singly, 
we found that patients with CD at higher risk of death, as predicted by the Rassi score, 
present a more fragmented heart rate and a lower phase entropy. In other words, CCC 
patients with increased heart rate fragmentation and decreased phase entropy have a 
higher probability of death. Heart rate fragmentation is a recent approach that captures 
ultra-fast oscillatory profiles of heart rate, in a range of frequency which is not under 

Table 4  Performance of the classification models created to predict the Rassi risk group of each 
patient

KNN: k-nearest neighbors; SVM: support vector machine; MLP: multilayer perceptron; RF: random forest; Low: low-risk 
group; Inter: intermediate-risk group; High: high-risk group; Acc.: accuracy; avg: average over the three groups

Precision Recall F1-score Acc

Low Inter High Avg Low Inter High Avg Low Inter High Avg

KNN 0.62 0.29 0.43 0.44 0.81 0.30 0.19 0.43 0.70 0.29 0.26 0.42 0.48

SVM 0.73 0.55 0.58 0.62 0.85 0.55 0.44 0.61 0.79 0.55 0.50 0.61 0.65

MLP 0.66 0.58 0.43 0.55 0.73 0.55 0.38 0.55 0.69 0.56 0.40 0.55 0.58

RF 0.59 0.29 0.25 0.38 0.65 0.25 0.25 0.38 0.62 0.27 0.25 0.38 0.42

Fig. 2  Confusion matrices for the best classification models (same shown in Table 4). KNN: k-nearest 
neighbors; SVM: support vector machine; MLP: multilayer perceptron; RF: random forest. Low: low-risk group; 
Intermediate: intermediate-risk group; High: high-risk group
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the exclusive cardiac parasympathetic control. Increased heart rate fragmentation (e.g., 
PIP and W3) has been shown in individuals with coronary artery disease [16], as well 
as in other cardiovascular disturbances [17], but its mechanism is still under investi-
gation. In those conditions it is postulated that both intrinsic molecular alterations in 
the sinus node pacemaker cells and derangements of their autonomic control may play 
a role [18, 19]. The infection with T. cruzi causes damage to all structures of the heart 
through cell toxicity and inflammation, including the cardiac intrinsic autonomic inner-
vation, the exciting-conducting system and the contractile fibers [11]. Hence, the find-
ing of an increased heart rate fragmentation in patients with CCC is probably a direct 
consequence of both dysautonomia and cardiac tissue damage that entails a high risk 
of death as signaled by the Rassi score. On the other hand, entropy methods, in general, 
rely on the calculation of the information or information rate generated by time series. 
The differences among approaches are mostly related to how the probabilities of events 
of interest are estimated. In phase entropy the definition of such events and the estima-
tion of their probabilities are considerably more intricate compared to other approaches, 
making its practical interpretation even more complex [20]. Therefore, since in our study 
a decreased phase entropy was not accompanied by alterations in the other entropy 
approaches, it becomes impossible for us to provide a reasonable interpretation of such 
a finding.

Previous studies have reported HRV alterations in patients with CD, usually compar-
ing a population of healthy subjects with patients in the chronic phase of CD. Some 
studies focused on distinct findings in individuals with the indeterminate, cardiac and 
digestive forms of CD [21–27], while others grouped the patients according to their LV 
systolic function to stratify the different levels of cardiac involvement [28, 29]. Inter-
estingly, findings from all studies agree that classic linear time- and frequency-domain 
HRV indices, such as SDNN, RMSSD and the absolute powers at LF and HF bands, are 
decreased in CD. Those studies corroborated the results of earlier investigations that 
showed impaired chronotropic cardiovascular responsiveness to autonomic tests, such 
as the head-up tilt, handgrip, Valsalva maneuver and intravenous infusion of vasoactive 
drugs, which were shown to be decreased in individuals with various forms of CD [21, 
30, 31]. In addition, to the best of our knowledge, only one study evaluated HRV changes 
among the three Rassi score risk groups. Merejo-Peña et al. [32] described that absolute 
powers at LF and HF bands are similar among risk groups when individuals are assessed 
at rest (comparable to our study design), while LF/HF ratio decreased with increasing 
Rassi score risk. Our results agree with their initial findings. However, with our more 
thorough approach of HRV, we extended and amplified the scope when we showed that 
LF and HF absolute powers did not change among risk groups, but there was a tendency 
of lower LF/HF ratio when the Rassi score risk increases.

When HRV indices were combined, using machine learning algorithms to predict 
the patients’ risk group, richer results were found in comparison to the analyzes using 
HRV indices taken singly. The best risk prediction model (SVM) achieved an averaged 
F1-score of 0.61 and an accuracy of 0.65. This performance, as can be demonstrated in 
the confusion matrix, is not due to a biased learning, such as memorizing the major-
ity class. Of note, the worst performance was obtained by KNN and RF, which wrongly 
classified most of the individuals in the intermediate- and high-risk groups. In fact, from 
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their confusion matrices, one can notice that most individuals from the actual high-risk 
group were classified as intermediate-risk, while most individuals from the actual inter-
mediate-risk group were classified as low-risk. Those results show a tendency for these 
classifiers to underestimate the real risk of patients in general. Although it could be a 
consequence of the slightly higher number of samples belonging to the low-risk group, 
we hypothesize this is indeed due to the complexity of the problem, where a big variety 
of patterns may be present in the same risk-class. Thus, we believe that increasing the 
sample size has the potential to improve the classification performances.

The feature selection step, performed prior to the creation of the final predictive mod-
els, showed that no HRV index was selected by all the four machine learning schemes. 
However, excluding KNN and RF, which showed poor classification performances, we 
found that LF/HF ratio and mean RR were features selected by both SVM and MLP, 
while the indices that were abnormal among the risk groups (PhaseEn and PIP) were 
not selected by any of these two algorithms. Only W3, which showed borderline signifi-
cance among groups, was selected by MLP. Those results demonstrate the importance of 
combining markers for the prediction of complex variables. Unfortunately, virtually all 
studies that assessed HRV in individuals with CD evaluated HRV indices taken singly. 
An important exception was the study by Alberto and co-workers [33], which evaluated 
the combination of eight HRV indices (time-domain, acceleration/deceleration capacity 
and heart rate turbulence) to create predictive models of sudden death in patients with 
CD. Their best models showed accuracy near 90%, demonstrating the high potential of 
combining different HRV methods for the risk assessment in CD.

One of the leading causes of death in CD is sudden cardiac death, where the most 
common underlying mechanism is the occurrence of sustained ventricular tachycar-
dia or fibrillation [6, 8, 9, 32, 34, 35]. Although ventricular fibrillation is causally asso-
ciated with widespread cardiac fibrosis induced by the persistent infection by T. cruzi, 
cardiac dysautonomia is also likely to play an important role to trigger sudden death in 
patients with CCC. Although the intrinsic mechanism, whereby autonomic impairment 
increases susceptibility to life threatening arrhythmias is still unclear in CD, it is plausi-
ble to consider that it may lead to abnormal excitability and conductibility properties of 
cardiomyocytes [9, 11, 32, 36–39]. Moreover, although impairment of parasympathetic 
control of the sinus node is well described in CD [40, 41], the effects of cardiac dener-
vation associated with the T. cruzi infection are more complex at the ventricular level. 
This aspect is not directly evaluated in our study despite the plethora of indices assess-
ing HRV, because they mostly reflect the autonomic control of the sinus node. Hence, 
although catecholamine-induced cardiomyopathy has not been technically proven to 
exist in the context of Chagas disease, a sympatho-vagal imbalance of the heart may con-
figure an important factor for triggering sudden cardiac death [39]. In addition, stud-
ies of our group using MIBG-based techniques to assess the myocardial sympathetic 
system have shown striking abnormalities of catecholamine uptake that correlate with 
the intensity of malignant ventricular arrhythmia in patients with CCC [42–44]. In addi-
tion, Souza et al. suggested that QT interval dispersion is a good risk predictor of sud-
den death in patients with CCC, differently from the Rassi score which refers to overall 
mortality [35]. The QT interval dispersion is defined by the difference between the maxi-
mum and minimum QT intervals calculated within leads in a conventional 12‐lead ECG 
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[45]. This concept is different from QT interval variability, where beat-by-beat series of 
QT intervals are generated and some properties are estimated over this series, such as 
the standard deviation and LF and HF components [46]. Augmented QT variability has 
been suggested to be linked to sympathetic activation in normal subjects [46] and its 
role in the prognostication of CD warrants further investigation in the future.

Digestive involvement and HRV

Depopulation of the intramural autonomic innervation causing dysfunctional motility 
is considered the main mechanism leading to megaesophagus and megacolon of CD 
etiology [47]. Although the essential pathogenetic mechanism causing the appearance 
of CCC involves myocardium necrosis and its replacement with fibrotic components, 
impairment of the autonomic control of the heart is also a hallmark of cardiac involve-
ment in CD [2]. In the past a few investigations reported on abnormal autonomic control 
of the sinus node in patients with the isolated digestive form of CD, i.e., without clinical 
signs of cardiac involvement [30, 48]. While this outcome highlights the fact that severe 
dysautonomia at the sinus node level does not per se lead to the full-blown syndrome of 
CCC, the possibility that patients with the mixed form of CD could have a more severe 
degree of autonomic impairment than those with isolated CCC (without megaesopha-
gus or megacolon) had not been explored previously. In our study this hypothesis was 
directly tested, being confirmed by the comparison of HRV indices between patients 
with the isolated cardiomyopathy and mixed forms of CD, i.e., there was a decreased 
TINN and a strong tendency for decreased power of HRV spectra at LF band in patients 
with the cardiodigestive form. Decreased absolute power at the low-frequency band (LF 
abs) without alterations in HF power (also in absolute units) and RMSSD is strongly sug-
gestive of decreased cardiac sympathetic modulation. On the other hand, TINN is a geo-
metrical approximation of the cardiac interval histogram base, representing the overall 
HRV, although more influenced by the lower than higher frequencies [49]. Altogether, 
those results suggest that there is decreased sympathetic modulation of the sinus node 
in patients with the mixed form of CD as compared to CCC.

It is noteworthy that cardiac parasympathetic denervation is the most frequently 
reported autonomic derangement in patients with CD, being directly ascribed to the 
neuronal depopulation of the cardiac intramural ganglia and by other mechanisms inter-
fering with visceral afferents from the thorax and abdomen. The autonomic impairment 
can also elicit changes in HRV, either directly modulating the cardiac vagal activity or 
indirectly affecting neural networks related to the HR regulation, such as the baroreflex 
central pathway [50]. This is corroborated by our findings, since although HRV indices 
classically attributable to the influence of parasympathetic control were not altered (HF 
abs and RMSSD), we cannot ignore the influence of the parasympathetic nervous sys-
tem on LF abs. It is recognized that both sympathetic and parasympathetic neural dis-
charges have oscillatory components at low and high frequency bands [51]. However, 
due to the considerably slow beta-adrenergic signaling, which fully depends on the for-
mation of second messengers, compared to the muscarinic (cholinergic) signaling, the 
high-frequency sympathetic modulation is not effectively transduced to heart rate [52]. 
This is the reason why the high-frequency oscillations of heart rate are considered exclu-
sively an effect of parasympathetic modulation (coupled to the respiration), whereas the 
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low-frequency variations of heart rate can be the result of both sympathetic and para-
sympathetic influences.

Sympathetic denervation was also clearly demonstrated in anatomical and functional 
studies of animal models of T. cruzi infection [53] and in humans with CD [2, 40, 41]. 
While these studies indicate the impairment of sinus node adrenergic regulation, it is 
even more relevant to mention that the abnormal sympathetic regulation in individuals 
with CCC also exists at the ventricular level, and possibly play an important role in trig-
gering ventricular arrhythmias in those individuals [44]. Thus, the findings of our study 
for the first time suggest that patients with the cardiodigestive form of CD have a higher 
degree of both sympathetic and parasympathetic cardiac denervation compared with 
patients with CCC alone.

Limitations
Our study has various limitations. First, the high percentage of patients in use of beta-
blockers, amiodarone, diuretics and ACE inhibitors may configure a bias, since those 
medications have a high potential to affect HRV [54–56]. However, except for amiodar-
one in the low-risk group, all groups showed a comparable prevalence of using those 
medications. Moreover, this sample represents the real scenario in a population with 
CD, where risk scores and prognostic evaluations are often studied. Second, the sam-
ple size used is admittedly low, so are the power values of the statistical tests (between 
0.05 and 0.52). It means that the groups evaluated here might have more real differences 
than the ones presented. However, the enrollment of patients with all the necessary cri-
teria is a challenging task. From the initial 134 patients, we ended up with only 31. To 
diminish the effect of this low sample size for the machine learning algorithms, we split 
the HRV series into two segments. Since the series size allowed that and this procedure 
represents an increase in the sample size with real data, it is preferable to methods of 
synthetic data augmentation. Third, the timeframe from the ECG recordings to the other 
exams (echocardiography and Holter) may introduce some bias to the Rassi score. The 
ideal scenario is the one where all patients have their exams obtained on the same day 
or in a very short timeframe from the ECG, avoiding influences of the disease evolu-
tion on the findings. Nevertheless, the median timeframe was 5.8 (echocardiogram) and 
5.1 (Holter) months, which we believe is quite acceptable considering the slow evolution 
of the symptoms of the general population with CCC. Fourth, this study evaluated the 
HRV during baseline rest conditions only. However, it is recognized that the responsive-
ness of the HRV to cardiovascular challenges, such as postural maneuvers, can provide 
more information about the autonomic control, usually not observed during rest condi-
tions [57]. Finally, the set of HRV indices explored here, although comprehensive, is not 
extensive. The prognostic value of several other entropy [58–60], fractal [61] and general 
[62–64] methods in CCC should be investigated in future studies.

Conclusions
Our findings show that increased heart rate fragmentation indices are associated with 
worsening prognosis as assessed with the Rassi score risk for overall mortality in patients 
with the cardiomyopathy form of CD. Moreover, the combination of HRV indices to 
predict the Rassi score risk class of individuals with CCC achieved good performances 
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(F1-score of 0.61 and accuracy of 0.65). Due to the apparent complexity of this classifica-
tion problem, it is plausible to assume that this performance can be further improved 
with a higher sample size, where the variety of patterns could be more adequately 
expanded for each risk group. Finally, individuals with the cardiodigestive form of CD 
showed a decrease in the slow oscillatory components of heart rate when compared with 
individuals with isolated CCC, a finding possibly explained by a higher degree of sym-
pathetic and parasympathetic cardiac denervation in individuals with the mixed form of 
CD.

Methods
Population

The patients included in the study had to fulfill three basic criteria: (a) age >  = 18 years; 
(b) to have an established diagnosis of CCC; c) to sign an informed consent. A total of 
one hundred and thirty-four (134) patients with CD were initially recruited between 
May 2019 and March 2020 from the University Hospital of Ribeirão Preto Medical 
School, University of São Paulo, as described in a previous study [15]. All patients agreed 
spontaneously to participate in the study and signed a written term of informed consent. 
The study was approved by the Research Ethics Committee of the University Hospital 
under Protocol #3308377.

From the total enrolled patients, 50 were excluded due to the presence of non-sinus 
rhythm or an unacceptable number of arrhythmic events (> 5% of the total number of 
beats in the study; see section 6.5). Another 40 patients were excluded due to the lack 
of all necessary exams to assess the Rassi score in a timeframe of 17 months around the 
date of inclusion in the study (see section 6.3); finally, 13 additional patients were ineli-
gible for lacking the criterium of a diagnosis of CCC (see section 6.2). Patients with an 
implanted cardioverter–defibrillator were allowed when confirmed in sinus rhythm dur-
ing the ECG recordings (2 cases). Therefore, thirty-one (31) patients were eligible for the 
study. Table 1 shows the demographic and clinical variables of the included patients.

Definition of chronic cardiomyopathy form of Chagas disease

According to the Second Brazilian Consensus on Chagas Disease [5], the CCC form of 
CD can be defined by the presence of ECG alterations suggestive of typical CD cardiac 
involvement. According to the consensus and other supportive studies, typical ECG 
alterations in CD are [5, 65, 66]: bradycardia (heart rate < 40  bpm); low QRS voltage; 
intraventricular conduction disorders (right bundle branch block, left anterior–superior 
fascicular block, posterior–inferior fascicular block, left bundle-branch block); atrioven-
tricular block (first degree, second degree or complete); diffuse alteration of ventricu-
lar repolarization; QT interval prolongation (QTc > 440 ms for men or QTc > 460 ms for 
women); ventricular extrasystoles (isolated, polymorphic or paired); ventricular bigemi-
nism or trigeminism; sustained or nonsustained ventricular tachycardia; variable or lack 
of P wave (wandering atrial pacemaker, atrial flutter, atrial tachycardia, atrial fibrillation 
or junctional rhythm).

Thus, the 31 patients of the study had at least one of these ECG abnormalities 
being considered to have the CCC form of CD. The 31 patients with CCC included 
were also evaluated for the presence of typical symptoms and/or objective signs of 
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digestive organic involvement usually detected in patients with CD. These typical 
symptoms included dysphagia, esophageal pain, intestinal constipation and abnor-
malities detected in the esophagus or colon during radiological, endoscopy, colonos-
copy, or motility studies.

Rassi score calculation

The Rassi score was developed and validated to quantify the overall risk of death for 
patients with the CCC form of CD [34]. It is based on ascribing points to 6 demo-
graphical, clinical, echocardiographic, electrocardiographic and radiologic char-
acteristics bearing significant prognostic information, namely, New York Heart 
Association (NYHA) functional class III or IV (5 points), cardiomegaly on chest radi-
ography (5 points), segmental or global wall-motion abnormality on echocardiogra-
phy (3 points), nonsustained ventricular tachycardia on 24-h Holter monitoring (3 
points), low QRS voltage on conventional 12-lead ECG (2 points), and male gender 
(2 points). The highest risk occurs when the Rassi score is 20 (all risk factors are pre-
sent), while the lowest risk occurs when the Rassi score is 0 (no risk factor present) 
[34].

Although cardiomegaly is classically defined by a cardiothoracic ratio higher than 
0.5 in the plain chest X-ray image, it has been recently shown that left ventricular 
end-diastolic diameter (LVEDD) higher than 60  mm can be considered a good sur-
rogate for cardiomegaly in patients with CD [67]. Thus, in our study, the presence 
of cardiomegaly in the assessment of the Rassi score was defined when LVEDD 
was > 60 mm. The echocardiogram was obtained within 5.8 [3.2, 7.7] months from the 
ECG recordings, while the 24 h Holter monitoring was recorded within 5.1 [3.3, 8.5] 
months (median [1st, 3rd] quartiles).

The 31 patients in the study were grouped according to their prognoses as defined by 
the following ranges of Rassi score [34]: low-risk group (0 to 6 points), intermediate-risk 
group (7 to 11 points), and high-risk group (12 to 20 points). Table 1 shows the demo-
graphic and clinical variables of eligible patients grouped by the Rassi score risk classes.

Electrocardiographic recordings

The analysis of the ECG recordings was performed as previously described [15]. In 
summary, all patients were subjected to two ECG recordings: the conventional 12-lead 
ECG and a single-lead (DI, DII or DIII) ECG. The two recordings were obtained on 
the same day, in a dedicated recording room at the Cardiology Division of the Univer-
sity Hospital, Ribeirão Preto Medical School, University of São Paulo.

The conventional 12-lead ECG was recorded using the conventional routine equip-
ment from the hospital clinical facilities allowing the identification of abnormali-
ties typical of the CCC (see section  6.2). The single-lead ECG was recorded during 
10–20 min using a portable device (PowerLab, ADInstruments, Australia) at 1 kHz for 
subsequent HRV analysis. Patients were allowed 2 min of rest (stabilization period) 
before the recording started and were instructed not to talk and to breathe calmly and 
spontaneously during the whole recording.
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Data processing

The single-lead ECG recordings were processed using computer software (LabChart 
Pro, ADInstruments, Australia) to detect the ECG R-peaks and create RR series, which 
correspond to the time intervals between successive R-peaks. Artifacts were removed 
from RR series using a moving median procedure implemented in PyBioS software 
[68]. Briefly, the RR series’ baseline was estimated using a moving median of size win. 
Next, an upper and lower threshold was defined as the baseline shifted up and down by 
a tolerance factor (tol). This tolerance factor represents the percentage of the baseline’s 
mean value. Finally, RR intervals lying below the lower or above the upper thresholds are 
removed (no replacement) from the series. The optimal values of win and tol were man-
ually chosen for each RR series, varying in the range win = [6, 30] and tol = [0.02, 0.15]. 
When the correction required more than 5% of removals, i.e., the number of beats to be 
removed was higher than 5% of the estimated number of beats, the patient was excluded 
from the study (exclusion criterion as outlined above). The median [1st, 3rd] quartiles of 
removals percentage was 0.8 [0.2, 2.3] and the size of the corrected RR series was 971 
[827, 1121] samples.

Since machine learning analysis requires a reasonable number of samples to create 
good prediction models, all RR series were split into two equally sized segments, cor-
responding to a period of 5–10  min of the ECG recording. Then, HRV indices were 
estimated separately from the two segments (N = 62). This procedure is preferable to 
creating spurious data with augmentation techniques. In addition, to avoid the bias of 
using different data sets, the same duplicated data was used for comparisons among the 
three Rassi score risk groups. Both analyses (machine learning and group risk compari-
sons) considered the duplication of data from each subject, as described in sections 6.7 
and 6.8.

Heart rate variability

Thirty HRV indices were calculated from the RR series. They were derived from different 
families of methods, inspired by classical linear approaches, such as the statistical and 
spectral indices, as well as methods derived from nonlinear dynamics.

The acceleration (Acc) and the deceleration (Dec) capacity of heart rate were calcu-
lated as described by Bauer et  al. [69]. Essentially, Acc and Dec capacity estimate the 
average magnitude of increases and decreases in heart rate. However, as the HRV series 
are represented by RR interval series, accelerations and decelerations refer to decreases 
and increases of RR intervals, respectively, both in milliseconds. From the family of 
asymmetry indices, three approaches were selected, namely, Porta’s, Guzik’s and Ehlers’ 
indices [70]. Asymmetry indices evaluate whether the positive changes in RR intervals 
are similar to the negative changes. Porta’s and Guzik’s indices are given as a percent-
age value, where 50% characterizes series which are time-reversible. In contrast, Ehlers’s 
index is dimensionless and values equal to zero characterize time-reversible series. The 
fractal scaling of RR series was estimated by detrended fluctuation analysis (DFA) [71]. 
Since RR series are short, only the short-term scaling exponent (a1) was calculated, in 
the range of window sizes from 5 to 15 [15].

From the wide family of entropy methods, seven were utilized, namely, attention 
entropy (AttEn) [72], dispersion entropy (DispEn), with m = 3 and c = 6 [73], distribution 
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entropy (DistEn), with m = 3 and M = 512 [74], fuzzy entropy (FuzzyEn), with m = 2, 
r = 0.15 and n = 2 [75], permutation entropy (PermEn), with m = 3 [76], phase entropy 
(PhaseEn), with k = 16 [20] and sample entropy (SampEn), with m = 2 and r = 0.15 [77]. 
Entropy methods, in general, quantify the irregularity or unpredictability of RR inter-
vals so that the higher the entropy, the more irregular or unpredictable is the RR series. 
The heart rate fragmentation was estimated by the total percentage of inflection points 
(PIP) and by the percentage of patterns with zero (W0), one (W1), two (W2) and three 
(W3) inflection points [16, 78]. Each pattern represents a sequence of four consecutive 
RR interval differences so that one pattern can contain, at most, three inflection points. 
The symbolic dynamics method proposed by Porta et al. [79] was also calculated. In this 
case, RR intervals are quantized into six levels (symbolization) and patterns are created 
as sequences of three consecutive symbols; then, all patterns are classified into one of 
the following families: 0  V (zero variations), 1  V (one variation), 2LV (two-like varia-
tions) or 2UV (two-unlike variations). Previous studies reported that the percentage of 
0 V patterns is related to the cardiac sympathetic modulation, whereas the percentage of 
2UV patterns is linked to the cardiac parasympathetic modulation [79, 80].

Classical linear time- and frequency-domain HRV indices were also estimated. Fre-
quency-domain components were estimated from the power spectral density of RR 
series, calculated using the modified periodogram [81]. In short, RR series were inter-
polated (by cubic spline) and resampled at 3 Hz. Next, series were segmented into win-
dows of 512 samples, with 50% overlap, and a Hanning windowing was applied to each 
segment to attenuate the spectral leakage. The power spectrum was estimated from each 
segment and the powers at low- (LF: 0.04 to 0.15 Hz) and high-frequency (HF: 0.15 to 
0.40 Hz) bands were integrated. The median absolute (abs) power at LF and HF bands 
(in ms2), as well as the LF/HF ratio (dimensionless), over all segments, were eventually 
used. The absolute power at HF band is considered an important marker of cardiac vagal 
modulation, driven by respiration. In contrast, the absolute power at LF band represents 
both sympathetic and parasympathetic cardiac modulation [49, 82]. From time-domain, 
five HRV indices were calculated, namely, the mean RR interval, standard deviation of 
RR intervals (SDNN), root mean square of the successive differences in the RR series 
(RMSSD), triangular index (Triang Index) and triangular interpolation of RR interval 
histogram (TINN) [49].

Classical statistical analysis

The Gaussian distribution of HRV indices was checked using the Shapiro–Wilk test. 
Since most indices did not pass the normality test, data were transformed prior to the 
statistical comparisons using the Yeo-Johnson power transformation [83]. The lambda 
of the transformation that maximizes the log-likelihood function was chosen for each 
HRV index. Original raw values (not transformed) are reported as median [1st, 3rd] 
quartiles.

Differences of HRV indices among the risk groups (“Low”, “Intermediate” and “High”) 
or between the disease forms (“Cardiomyopathy” and “Cardiodigestive”) were evaluated 
using a mixed-effects ANOVA, where the two HRV measurements from each subject 
represent the within-subjects factor and the risk (or disease form) groups represent the 
between-subjects factor. It must be emphasized that we were not focused on the possible 
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differences within-subjects, nor in its interaction with each group. Only the between-
subjects factor, i.e., the risk class or disease form, was evaluated. When statistical signifi-
cance was found in the ANOVA, pairwise comparisons were performed using Tukey’s 
post-hoc test. Significance was considered when p < 0.05.

For the sake of comparison, we performed the same tests using the whole RR series 
to estimate the HRV indices (data not shown). In this case, only one HRV index was 
estimated for each subject and the one-way ANOVA was applied to compare the three 
groups. Results (p values) are fairly the same as the presented here.

Machine learning modeling

Classification models were created to predict the Rassi risk class (output) of each patient, 
with their HRV indices taken as inputs. Four machine learning classifiers were used, rep-
resenting some of the main paradigms used in machine learning: k-nearest neighbors 
(KNN), support vector machine (SVM), multilayer perceptron (MLP) and random forest 
(RF). All analyzes were performed using the scikit-learn library for Python [84]. HRV 
indices were normalized to mean = 0.0 and SD = 1.0 prior to the analysis.

Cross‑validation scheme

A k-fold cross-validation scheme was adopted in feature selection (fivefold) and train-
ing (tenfold) steps. Folds were carefully created to ensure that: (1) the two HRV indices 
obtained from the same subject always be in a single fold, so that data from the same 
subject is never used for both train and test; and (2) approximately the same proportion 
of classes in all folds (stratified folds).

Feature selection

Since there are too many HRV indices (features) in comparison to the sample size, and 
that some of the HRV indices may not be relevant in the classification problems, a search 
for the best set of features was performed for each machine learning algorithm using a 
Sequential Feature Selection scheme. Essentially, an iterative process that greedily adds 
(forward selection) or removes (backward selection) features to create a good subset of 
features is generated. At each step, the best feature to add or remove is found based on 
the cross-validation (fivefold) score obtained by the investigated classifier. The process 
is repeated until the number of desired features for the classifier is selected. The param-
eters of each classifier during feature selection were initially set as default. When the 
best set of parameters found by Grid Search (see next section) was different from the 
default of the scikit learn library, feature selection was performed again using the new 
set of parameters to check whether the newly selected set of features provide a better 
classification.

Forward search starts with an empty set of features and, at each step, greedily adds the 
feature that provides the highest increase in the performance of the classifier. In con-
trast, backward search starts with all HRV features and iteratively removes the feature 
that provides the highest increase in the performance of the classifier. In this study, both 
forward and backward selection were applied, setting the desired number of features to 
15 (half of the total). Only features selected at both forward and backward searches were 
taken as the final selected features.
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Training

The subset of optimal features found for each classifier was used to train the respective clas-
sifier for the prediction of the Rassi score risk group of each patient. The best set of param-
eters for each classifier was found using a Grid Search Cross-Validation (tenfold) scheme, 
varying the following parameters: number of neighbors (1 to 20) and weights (uniform, dis-
tance) for KNN; kernel (linear, rbf), C and gamma (0.001, 0.01, 0.1, 1, 10, 100) for SVM; 
hidden layers (15, 30, 50, 70, 100, 150), activation function (tanh, relu), solver (lbgfs, adam), 
maximum iterations (200, 500, 1000, 2000, 5000) and alpha (0.001, 0.01, 0.1, 1.0) for MLP; 
number of estimators (15, 30, 50, 70, 100, 150, 200, 250, 300) for RF. Details about those 
parameters are found in the scikit-learn documentation [85].

The ability of each classification model to predict the correct class of risk (“Low”, “Inter-
mediate” or “High”) was evaluated by precision, recall, F1-score and accuracy. While pre-
cision is defined as TP/(TP + FP) , recall is defined as TP/(TP+ FN) , where TP , FP and 
FN represent the true positive, false positive and false negative of classifications, respec-
tively. The F1-score combines these two previous scores in a single metric, defined as 
[2 ∗ precision ∗ recall/(precision+ recall)] . Those scores are shown for each class (one 
against all) and as the average over the three classes. The accuracy quantifies the ratio 
between the number of corrected classified samples (no matter the class) to the total num-
ber of samples. The confusion matrices of each classifier are also shown.
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