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ABSTRACT
In the past two decades, machine learning (ML) has been extensively adopted in protein-targeted small 
molecule (SM) discovery. Once trained, ML models could exert their predicting abilities on large volumes 
of molecules within a short time. However, applying ML approaches to discover RNA-targeted SMs is still 
in its early stages. This is primarily because of the intrinsic structural instability of RNA molecules that 
impede the structure-based screening or designing of RNA-targeted SMs. Recently, with more studies 
revealing RNA structures and a growing number of RNA-targeted ligands being identified, it resulted in 
an increased interest in the field of drugging RNA. Undeniably, intracellular RNA is much more abundant 
than protein and, if successfully targeted, will be a major alternative target for therapeutics. Therefore, in 
this context, as well as under the premise of having RNA-related research data, ML-based methods can 
get involved in improving the speed of traditional experimental processes.
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Introduction

RNA molecules play important roles in biological processes 
ranging from genetic information transferring to gene 

expression regulating [1]. According to the Encyclopedia of 
DNA Elements (ENCODE) project [2], approximately 70–90% 
of the human genome is transcribed to RNA. Nevertheless, only 
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2% of the genome encodes coding RNA (Figure 1), which means 
that the majority (~70%) of the genome yields non-coding RNA 
(Table 1) [3,4]. Screening or designing small molecules (SMs) 
targeting non-coding RNA is therapeutically promising, not 
only because the amount of non-coding RNAs in biological 
systems is considerable, but also because many of the disease- 
related proteins lack pocket-like motifs for SMs to bind to, 
leading to more than 85% of those proteins undruggable [5]. 
There would be a great potential to exponentially increase the 
number of therapeutical drug targets, even if a fraction of the 
tremendous RNAs were targetable [6]. For a long time in the 
past, RNA-targeted therapeutics were limited to oligonucleotide 

drugs that bind RNA by base-pairing [7–10]. For examples, the 
antisense oligonucleotides (ASOs)-based Nusinersen (marketed 
as Spinraza) was the first approved drug used in treating spinal 
muscular atrophy (SMA) [11]; Patisiran (marketed as Onpattro) 
[12] was the first small interfering RNA (siRNA)-based drug 
approved by U.S Food and Drug Administration (Table 2). 
However, the biggest obstacles to drugging RNAs with SMs 
were their structural flexibility and functional uncertainty [13], 
making it difficult to elucidate the structure of RNA molecules, 
let alone design SMs that can bind to them. In contrast, it is 
essentially always achievable to reach for a crystal structure of 
a protein, which enables structure-based drug design. Nowadays, 

non-coding RNA 
~70%protein-coding 

RNA ~2%

non-transcribed 

Figure 1. Only a small proportion (2%) of human genome is translated into proteins. More than 70% of human genome is transcribed into non-coding RNAs, which, 
if successfully targeted, would lead to an exponential increase in the number of drug discovery strategies.

Table 1. Therapeutic non-coding RNA targets.

Types ncRNAs Lengths

Housekeeping ncRNA Transfer RNA (tRAN) 76–90
Ribosomal RNA (rRNA) >1500

Small ncRNA MicroRNA (miRNA) 18–22
Small interfering RNA (siRNA) 20–25
Small nuclear RNA (snRNA) 100–300
Small activating RNA (saRNA) 21

Long non-coding RNA Long intergenic non-coding RNA (lincRNA) ~1000
Circular RNA (circRNA) 100–999

Table 2. FDA-approved oligonucleotide drugs.

Types Drug Names Market Names FDA Approval Dates Indications

ASO Fomivirsen Vitravene 1998 Cytomegalovirus retinitis in immunocompromised patients
Mipomersen Kynamro 2013 Homozygous familial hypercholesterolemia
Nusinersen Spinraza 2016 Spinal muscular atrophy
Eteplirsen Exondys 51 2016 Duchenne muscular dystrophy
Defibrotide Defitelio 2016 Veno-occlusive disease
Inotersen Tegsedi 2018 Hereditary transthyretin-mediated amyloidosis
Golodirsen Vyondys 53 2019 Duchenne muscular dystrophy
Viltolarsen Viltepso 2020 Duchenne muscular dystrophy
Casimersen Amondys 45 2021 Duchenne muscular dystrophy

Aptamer Pegaptanib Macugen 2004 Neovascular, Age-Related Macular Degeneration
siRNA Patisiran Onpattro 2018 Hereditary transthyretin-mediated amyloidosis

Givosiran Givlaari 2019 Acute hepatic porphyria
Lumasiran Oxlumo 2020 Primary hyperoxaluria type 1
Inclisiran Leqvio 2021 Primary hypercholesterolemia
Vutrisiran Amvuttra 2022 Hereditary transthyretin-mediated amyloidosis
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with accumulated research and technological progress in RNA 
structural studies, targeting RNAs to inhibit disease processes 
gradually becomes possible [14–19]. The accordingly emergence 
of large amounts of genomic, molecular, and structural data also 
provides development opportunities for computational meth-
ods, especially when facing the urgent need of reducing produc-
tion time and labour cost required for regular experimental 
methods.

Computer-aided drug design emerged in early 1970s 
[20], 3D quantitative structure-activity relationship 
(QSAR) was one of the most early applications in that era 
[21]. Late in 1990s, the virtual screening approaches (e.g. 
molecular docking, pharmacophore searching, similarity 
searching, and fingerprint searching) began to be intro-
duced for the identification of bioactive molecules from 
large chemical databases [22]. However, unlike these tradi-
tional computational algorithms used in the above techni-
ques, the nowadays machine learning (ML) algorithms 
(Table 3) don’t process data through fixed calculation 
logic, but dynamically learn the intrinsic relationships 
among sample data so that the generated logic can be 
used to make predictions on new data [23]. Deep learning 
[24] is a specialized subset of ML. It has the capability of 
handling larger amounts of data or higher dimensions of 
features more quickly and accurately. Therefore, when we 
mentioned machine learning methods in this article, it also 
included deep learning methods. The ML technique first 
introduced to RNA structure prediction was the system 

proposed by Takefuji et al. [25] in 1990, which composed 
of several interactional neurons. Since then, and with 
advances in ML over the past 30 years, methods like expec-
tation maximization [26], linear regression [27], support 
vector machine [28], convolutional neural network (CNN) 
[29], long short-term memory (LSTM) [30], etc. were gra-
dually applied to RNA-related research. Especially in the 
past five years, with the breakthrough and success of deep 
learning, new ML methods for RNA structure and targeting 
prediction have sprung up like mushrooms after rain [31]. 
Although still in its infancy, ML-based RNA drug discovery 
and development is off to a prosperous start.

In this review, we discussed several aspects of RNA-targeted 
SM drug discovery, in which ML was involved: from targetable 
RNA structure prediction to RNA-SM interactions identifica-
tion, and then to de novo RNA-targeted SM design. ML methods 
don’t always participate in the core part of the above tasks. They 
may be applied at some critical point but make substantial 
changes to the original methods. We also provided suggestions 
and expectations in the Future Perspectives section, where the 
potential use of other ML models was discussed.

Targetable RNA structural motifs and predicting RNA 
structures using ML

RNA molecules generally fold into secondary (2D) and ter-
tiary (3D) structures for molecular stability and biological 
functions. Some of the appropriate characteristic structures 

Table 3. Commonly used machine learning algorithms.

Methods Algorithms Learning Styles

Regression Decision Tree 
Elastic Net Regression 
Gaussian Process Regression 
LASSO Regression 
Linear Regression 
Logistic Regression 
Partial Least Squares Regression 
Principal Component Regression 
Random Forest 
Support Vector Regression

Supervised

Classification Bayesian Classifier 
Conditional Random Fields 
Discriminant Analysis 
Gradient Boosting 
K-Nearest Neighbor 
Markov Random Fields 
Naïve Bayes 
Support Vector Machine

Supervised

Clustering Gaussian Mixture 
Hierarchical Clustering 
Hidden Markov Model 
K-Means 
K-Medians

Unsupervised

Deep Learning Autoencoders 
Boltzmann Machine 
Convolutional Neural Network 
Deep Belief Networks 
Deep Neural Network 
Generative Adversarial Network 
Graph Convolutional Network 
Graph Neural Network 
Long Short-Term Memory 
Multilayer Hopfield Neural Network 
Multilayer Perceptron 
Recurrent Neural Network 
Self-Organizing Map 
Transformer

Supervised/Unsupervised
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provide binding pockets for SMs to bind to, which enables the 
discovery and design of RNA-targeted therapeutic drugs [32]. 
The experimental methods of determining the RNA structural 
information mainly include selective 2’-hydroxyl acylation 
analysed by primer extension (SHAPE) [33], dimethylsulfate 
(DMS) [34], and light-activated structural examination of 
RNA (LASER) [35] for secondary structures; and x-ray crys-
tallography [36] and cryogenic electron microscopy [37] for 
tertiary structures [38]. However, although accurate and reli-
able, these methods are generally time-consuming and expen-
sive, especially in the face of the contemporary massive 
amount of RNA sequences. Therefore, it is inevitable to intro-
duce computational techniques for resolving the structure 
prediction problem.

The single-stranded linear RNA molecule (primary struc-
ture) folds into itself to form double-stranded complementary 
regions through Watson-Crick base-pairings (A-U and G-C) 
and possible wobble base pairing (G-U), which constitute the 
skeleton of RNA secondary structure. These stacking regions 
of at least two consecutive base pairs are known as stems. 
While the mismatched single-stranded regions in the rest of 
the RNA secondary structure could form various structural 
motifs (certain kinds of loops) (Figure 2) depending on where 
these unpaired single strands are and whether they appear on 
one side or both sides of the stem. A hairpin loop is a single- 
stranded region that forms a half-ring structure at the end of 
a stem. A bulge loop occurs when a stem is interrupted by one 
or more unpaired nucleotides on one side. An internal loop 
occurs when a stem is interrupted by unpaired nucleotides on 
both sides, which form a ring structure. A multi-branch loop 
is formed when more than two stems are connected by 
a single strand. An exterior loop is formed when two ends 
of both sides of the stem cannot pair. A pseudoknot contains 
crossing-over links of the base pairs from at least two different 
stems, such that it folds into knot-shaped 3D conformation. 
Essentially, many of the motifs are potential pocket-like sites 
with molecular recognition properties.

RNA secondary structure can further fold into its tertiary 
structure (three-dimensional/spatial shape) (Figure 3), in 
which the helical regions (base-pairings) and the unpaired 
regions (various loops) are organized in space via van der 
Waals contacts and specific hydrogen bonds [39]. The RNA 
tertiary structural motifs are more complex but can be generally 
categorized into three types: 1) interactions between two helical 
regions (e.g. coaxial stacking) [40]; 2) interactions between 
a helical region and an unpaired region (e.g. A-minor motif) 
[41]; 3) interactions between two unpaired regions [42]. In the 
following sections, we reviewed several ML-based methods for 
predicting RNA secondary and tertiary structures (Table 4).

ML-Based methods for predicting RNA secondary 
structures

The process of secondary structure prediction is essentially 
finding the most likely pairing scheme in a single-stranded 
RNA molecule that yields the lowest energy or forms the most 
robust structure. Compared with traditional bioinformatics 
techniques, e.g. minimizing the free energy of thermodynamic 
modes [43,44], dynamic programming algorithms [45–47], 
simulated annealing [48], statistical sampling [49,50], or 
entropy model [51,52], ML-based methods applied in RNA 
structure prediction have their inherent superiority in learn-
ing structural features from a large amount of data. According 
to specific processes ML models participate in and whether 
the models directly generate RNA structures, these methods 
can be further classified into two categories: direct secondary 
structure prediction and indirect secondary structure 
prediction.Figure 2. Common secondary structural motifs in RNA.

Figure 3. RNA tertiary structure example (PDB ID: 1AKX).
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As the phrase ‘direct’ implies, this part of ML methods 
plays as core models in RNA secondary structure prediction 
and can directly generate corresponding structural data. They 
usually accept RNA primary sequences or sequence align-
ments as input and output RNA secondary structures. Some 
early works employed classic ML methods to compute the 
predictions. Proposed by Bindewald and Shapiro [53], an ML 
method that was composed of a hierarchical network of 
k-nearest neighbour classifiers (KNetFold) was presented to 
utilize RNA sequence alignment to predict whether any two 
nucleotides form a base pair or not. A consensus RNA sec-
ondary structure is then constructed after applying a set of 
rule-based filters to the output of the classifier. Around the 
same time, Liu et al. [54] computed a stable secondary struc-
ture of RNA by using a Hopfield neural network to find the 
maximum independent set in an adjacent graph mapped from 
all possible base pairs of an RNA sequence. Such methods 
have soon been overshadowed by the trend of deep learning 
in the recent decade, as one of the power models LSTM 
(Figure 4) is naturally better at dealing with sequential data 
and thus is extensively applied in this task. Wu et al. [55] 
proposed an LSTM model which consisted of Bidirectional 
LSTM (Bi-LSTM) (Figure 4) layers and fully connected layers. 
They transformed the problem of predicting RNA secondary 
structures into classifying base pairs in RNA primary 
sequences. Similarly, Lu et al. [56] constructed an adaptive 

LSTM with an energy-based filter that transforms RNA pri-
mary sequence to RNA secondary structure. Wang et al. [57] 
altered the output forms of the predictor so that they could 
use a sequence-to-sequence deep learning model for the pro-
blem, which uses Bi-LSTM as the encoder and fully connected 
layers as the decoder, to transform RNA sequences to dot- 
bracket sequences (The symbolic dot-bracket notation is 
a convenient way of representing RNA secondary structure). 
Singh et al. [30] proposed a pure ML approach SPOT-RNA to 
predict RNA secondary structure from a sequence in an end- 
to-end way. They ensembled five deep learning models for 
pre-training, each of which consists of ResNet blocks followed 
by a 2D Bi-LSTM layer and a fully connected block. And 
transfer learning, which handles the limited data problem, is 
then utilized for further training. The same group [58] later 
upgraded their model to SPOT-RNA2, which accepted evolu-
tionary sequence profile and direct mutational coupling infor-
mation in addition to RNA sequence as input and 
outcompeted SPOT-RNA significantly. The architecture of 
the deep learning model involved in SPOT-RNA2 was sim-
plified by replacing LSTM with a dilated convolutional net-
work, with a similar transfer learning approach applied after 
initial ensemble learning. Except for the successful application 
of LSTM, CNN (Figure 5) is also adopted for its advantages of 
processing spatial information. Zhang et al. [59] applied 
a CNN to predict the probabilities of RNA sequence base- 

Table 4. Summary of ML-based strategies for predicting RNA structures.

RNA Structures Categories ML Algorithms Dates References

2D Direct Prediction K-Nearest Neighbor 2006 [1]
Hopfield Neural Network 2006 [2]
Long Short-Term Memory (LSTM) 2018, 2019 [3–5]
Ensemble Methods 2019, 2021 [6,7]
Convolutional Neural Network (CNN) 2019 [8]
Transformer 2020 [9]

Indirect Prediction Nearest Neighbor 2009 
2013 
2020 

2020, 2021

[10]
Support Vector Machine [11]
Ensemble Methods [12]
LSTM [13–15]

3D Direct Prediction Bayesian Network 2009, 2011 [16,17]
Conditional Random Fields 2011, 2013 [18,19]
Markov Random Fields 2015 [20]

Indirect Prediction CNN 2018 [21]
Multilayer Perceptron 2019 [22]
Geometric Deep Learning 2021 [23]
Graph Convolutional Network 2022 [24]

Figure 4. Network-based LSTM (left) and Bi-LSTM (right) architecture schematics.
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pairing, the structural predictions of which are further opti-
mized through a dynamic programming-based correction 
algorithm. Chen et al. [60] proposed E2Efold, which combines 
a deep score network with a post-processing network to form 
an end-to-end deep learning model. The deep score network 
is built with transformer encoders and a 2D CNN, that encode 
RNA sequence information. The post-processing network is 
a multilayer network for optimizing output constraints.

For indirect RNA secondary structure prediction, ML 
methods are used in subprocesses like parameter estimation, 
scoring optimization, method selection, pre-processing, or 
post-processing that replace the original corresponding func-
tion schemes in the computational approaches [61]. For 
example, Calonaci et al. [62] trained an ensemble model of 
a convolutional layer and a double-layered network to predict 
penalties based on chemical probing data (DMS and SHAPE) 
and co-evolutionary data (DCA), which along with RNA 
sequences are further sent to RNAfold [63] to generate RNA 
secondary structures. Sato et al. [64] integrated convolution 
blocks, Bi-LSTM blocks, and multilayer perceptron blocks to 
calculate a folding score for each pair of nucleotides from an 
RNA sequence. Willmott et al. [65] improved the Nearest 
Neighbor Thermodynamic Model (NNTM) based RNA sec-
ondary structure prediction by incorporating synthetic 
SHAPE data [66] which is generated by state-predicting out-
puts from a Bi-LSTM. Hor et al. [28] proposed a tool based on 
support vector machines to preprocess RNA sequences before 
structure prediction. Quan et al. [67] applied Bi-LSTM to 
filter out the dubious base pairs derived from RNA secondary 
structural construction method (parallel ant colony optimiza-
tion), in which the Bi-LSTM learns the base-pairing con-
straints for post-processing.

ML-Based methods for predicting RNA tertiary structures

Broadly speaking, predicting the 3D structure of RNA is 
a grand challenge, much more difficult than predicting its 
2D structure. Because existing template 3D structures of 
RNAs are far from enough and the energy characteristics of 
stable 3D structures are not yet fully understood. These ML 
methods can also be divided into two categories: direct ter-
tiary structure prediction and indirect tertiary structure pre-
diction, depending on whether ML is involved in generating 
new 3D structures or assessing candidate 3D structures. Some 
successful cases from both categories are illustrated respec-
tively below.

For direct tertiary structure prediction, most 3D structural 
results are obtained based on RNA secondary structures, 
primary sequences, or sequence alignments [68]. For example, 
Frellsen et al. [69] described a Bayesian network model of 
RNA using circular distributions and maximum likelihood 
estimation (BARNACLE) to construct RNA conformers, 
which combines a dynamic Bayesian network with directional 
statistics to capture the dihedral angles and their local depen-
dencies in RNA fragments. It takes secondary structures to 
run and output local 3D RNA structures in continuous space. 
Wang et al. [70] introduced a method called TreeFolder, 
which firstly used a linear chain conditional random fields 
model to estimate the probability of an RNA conformation 
from both its primary sequence and secondary structure, then 
applied a tree-guided scheme for conformation sampling. An 
energy function is used to select acceptable conformation with 
lower energy. In addition to sampling techniques in RNA 
conformational space, some other approaches identified 3D 
RNA local modules in predefined patterns. A computational 
tool named RNA 3D modules detection (RMDetect) [71] 
proposed by Cruz et al. built a Bayesian network for model-
ling RNA modules in which the nodes represent individual 
bases and the edges represent the deficiencies between them. 
Four RNA modules including the G-bulge loop, kink-turn, 
C-loop, and tandem-GA loop can be detected from single 
sequences or multiple sequence alignments. The 
metaRNAmodules pipeline [72] further extended RMDetect 
with the ‘RNA families’ (Rfam) database alignments mapped 
from putative modules extracted from the ‘Find RNA 3D’ 
(FR3D) database in an automatic way. Zirbel [73] proposed 
hybrid Stochastic Context-Free Grammars (SCFG) and 
Markov Random Fields (MRF) models for the development 
of the software ‘Java-based Alignment of RNA using 3D 
structure information’ (JAR3D) to score RNA hairpin and 
internal loops against motif groups from RNA 3D Motif 
Atlas. Secondary sequences are aligned to the probabilistic 
SCFG/MRF models to check their ability to form the same 
pattern observed in 3D structural motifs, in which SCFG 
models nested pairs and insertions while MRF models crossed 
interactions and base triples.

For indirect tertiary structure prediction, ML techniques 
are generally used in structural scoring or quality evaluation 
that leads to the optimal 3D structure selection. Most existing 
works utilize the multi-layers of deep neural networks to 
handle the complexity of RNA 3D structural features. For 
example, Li et al. [74] presented a 3D CNN-based approach 

Figure 5. Data dimension-based CNN architecture schematic.
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(RNA3DCNN), which uses the 3D image of a nucleotide and 
its surrounding environment to generate a nucleotide unfit-
ness score indicating how poorly a nucleotide fits into the 
environment. Wang et al. [75] provided a scoring function to 
score RNA tertiary structure candidates using two multi-layer 
neural networks, which take the coarse-grained RNA struc-
tural and all-atom structural features as inputs respectively. 
And more recently, the Atomic Rotationally Equivariant 
Scorer (ARES) proposed by Townshend et al. [76] generated 
the best results in community-wide blind RNA structure pre-
diction challenges. ARES is a geometric deep learning model 
consisting of many processing layers, with the first layer 
taking the 3D coordinates and chemical elements type of 
each atom as input and outputting the predicted RMSD of 
the structural model to form the true structure of the RNA 
molecule. Deng et al. [77] developed a computational model 
(RNAGCN) based on graph convolutional network (GCN) to 
predict RNA 3D structures, which extract features from graph 
representations of RNA local nucleotide environments with 
nodes modelling atoms and edges modelling their spatial 
positions to output scalar scores indicating the quality of the 
inputs.

Predicting RNA-SM interactions using ML

The determination of RNA structure is only halfway to the 
accomplishment of RNA-targeted SM drug discovery. 
Another crucial part is to find high-affinity SMs that could 
interact with the RNA. The developing process is like protein- 
targeted SM discovery to a certain degree – namely, both 
procedures require the identification of applicable pocket- 
like structures for SM binding. For instance, if we have 
obtained the RNA and SM structures, the intuitive way of 
finding RNA-SM binding pairs is by conducting virtual 
screening based on molecular docking. However, as most 
existing methods or tools [78–82] are originally developed 
and parameterized for protein targets, it would be inappropri-
ate or invalid to directly apply them to RNA-SM systems. To 
overcome this shortage, some ML-based programs are pro-
posed to score RNA-SM complex structures generated from 
a few available but not finely designed computational RNA 
docking methods. These ML-based programs don’t create new 
RNA-SM pairs but bridge the gap between RNA structural 
generation and RNA-SM interaction identification. In addi-
tion to the physics-driven ways of screening RNA-SM inter-
actions, some other ML methods take a step further. They 
implement a data-driven way of predicting novel RNA-SM 

interactions by training the ML model with existing RNA-SM 
associations and using the model to predict potential relation-
ships between any pair of RNA and SM. These ML methods 
are usually standalone programs that directly generate binding 
SMs for an RNA target, which would be the mainstream 
development direction of ML for RNA-targeted SM discovery 
in the future (Table 5).

ML-Based scoring functions for evaluating RNA-SM 
complex structure

Some virtual screening tools like Ribodock and rDock 
[83,84] modified the rules of protein-SM interactions to be 
applied in nucleic acid-SM interactions. However, the uni-
versal problem for all related platforms is that the insuffi-
cient RNA-SM complex structures provide limited resources 
for judging the correct binding poses, thus the results they 
produce are more or less with inadequate accuracy. To 
address this problem, some studies used ML to apply addi-
tional criteria for evaluating the docking poses, as ML can 
pre-learn the complex relationships in limited structural data 
to distinguish between good and bad poses in future data. 
Chhabra et al. [85] built RNAPosers, which employed 
a random forest classifier to use pose fingerprint as input 
and output a classification score indicating the likelihood of 
a pose being native-like. The novel pose fingerprints were 
obtained by calculating distances between each SM’s heavy 
atoms and its surrounding RNA’s heavy atoms from the 
atomic coordinates of the poses. By taking structural- 
derived information into consideration, the ML-based pose 
classifiers outcompeted docking scores (physics-based free 
energy calculation) of discriminating high-confidence RNA- 
SM poses from decoy ones. Another successful ML method 
that achieved high accuracy in pose scoring is AnnapuRNA 
[86], a statistical scoring model designed to evaluate RNA- 
SM complex structures generated by any computational 
docking program. A coarse-grained representation of both 
RNA and SM was established for extracting descriptors 
describing their geometric relationships between the inter-
acting partners, which were inputs for two selected super-
vised ML models for predicting: K Nearest Neighbors and 
multi-layer feedforward artificial neural network. In general, 
since these methods are highly dependent on the quantity 
and quality of determined RNA-SM complexes, the need for 
new structural data would be the prerequisite for algorithm 
improvement.

Table 5. Summary of ML-based strategies for predicting RNA-SM interactions.

Categories ML Algorithms Dates References

Machine Learning Naïve Bayes 2012, 2020 [25–27]
Random Forest 2012, 2019 [25,28,29]
Support Vector Machine 2019 [30]
Regularized Least Squares 2020 [31]
Restricted Boltzmann Machine 2020 [32]
K-Nearest Neighbor 2021 [33]
Multiple Linear Regression 2022 [34]
LASSO Regression 2023 [35]

Deep Learning Graph Convolutional Network 2020 [36]
Convolutional Neural Network 2021, 2022 [37,38]
Multilayer Perceptron 2021 [33]
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ML-Based strategies for predicting RNA-SM interactions

In most cases, when designing an ML model for predicting 
RNA-targeted SMs directly, the target RNA is restricted to 
a specific type, i.e. microRNA (miRNA). The main reason is 
that among various ncRNAs, miRNA is the most widely 
studied and now well-validated therapeutic target for SM 
[1,87] while coding RNAs like messenger RNA (mRNA) has 
always been the therapeutic target for complementary oligo-
nucleotides rather than SM [88]. These ML models also 
require existing miRNA-SM association data for training, 
but the data do not have to be structured as that for scoring 
functions, because most miRNA-SM associations are estab-
lished through pathway analysis without crystal structures. 
Several databases like SM2miR [89], Psmir [90], miRNet 
[91] can provide thousands of miRNA-SM association data 
for downloading. Based on the data, Shen et al. [92] proposed 
a multi-view joint learning-based computational framework 
(SMAJL) to predict novel miRNA-SM interactions, which 
exhibited superior accuracy in validation. SMAJL incorporates 
SM chemical and structural features, miRNA secondary struc-
tural features, and network features into the joint learning 
model built on a Restricted Boltzmann Machine to make 
predictions on association scores. Zhuo et al. [93] used 
a classic random forest classifier to screen potential high- 
affinity SMs targeting the miRNA-mRNA secondary struc-
tural motifs (loops), the results (Figure 6) of which were 
later experimentally validated both in vitro and in vivo. The 
two studies applied similar feature engineering methods to 
transform the chemical and biological properties of SM and 
miRNA by calculating the features (e.g. fingerprint, base 
occurrence frequency, etc.) from their structures. This is 
a dominant way of feature generation, as similar SMs have 
similar structures and incline to bind to similar target 
miRNAs. However, some other works adopted quite different 
feature generation approaches by calculating the similarity 
among SMs and miRNAs as their features respectively. 
Wang et al. [94] proposed a calculation model of random 
forest-based small molecule–miRNA association prediction 
(RFSMMA), which utilized known miRNA-SM associations 
from the SM2miR database to predict potential miRNA-SM 
pairs. In their study, they integrated four types of similarity 
for SM and two types of similarity for miRNA and then 
combined similarities of SM and miRNA as feature vectors 
to define training samples. These similarities do not necessa-
rily relate to structures but involve factors such as phenotype 
and gene functional consistency. Similarly, Zhao et al. [95] 
applied identical calculations to convert SMs and miRNAs 

into their numerical features. They presented a model called 
Symmetric Nonnegative Matrix Factorization for Small 
Molecule-MiRNA Association prediction (SNMFSMMA), in 
which they firstly used symmetric nonnegative matrix factor-
ization (SymNMF) to perform matrix decomposition and 
recalculation on the integrated similarity matrix of SMs and 
miRNAs, and secondly implemented Kronecker regularized 
least squares (KronRLS) to get the scores. Despite the conve-
nience of relying on existing databases for computing, a few 
works tend to extract the miRNA-SM relationships directly 
from literature, with the aim of acquiring uncollected data 
and detailed information. For example, Xie et al. [96] pro-
posed a text mining method named EmDL (Extracting 
miRNA-Drug interactions from Literature), which is the pio-
neer to establish miRNA-SM drug interactions from sentences 
in the literature. Firstly, features are extracted by calculating 
the distances between miRNA and associated SM in describ-
ing sentences retrieved from MEDLINE and PubMed Central 
papers. Secondly, a support vector machine was utilized to 
decide whether a given pair of miRNA-SM is interactive. 
Above all studies finally had to transform their collected 
data into numerical sequential representations to feed the 
ML models. However, there is one particular work, 
RNAmigos [97], that gets rid of numerical features and trea-
ted SM binding pockets in RNA 3D structures as graphs, 
where the nucleotides are represented by vertices and the 
base-pairings are represented by multi-relational edges of 
a graph. Oliver et al. gathered the crystal structure data of 
RNA-SM complexes from the Protein Data Bank (PDB) [98], 
and modelled the RNA binding site structure in a graphical 
representation that they defined as Augmented Base Pairing 
Network (ABPN). A Relational Graph Convolutional 
Network (RGCN) which operates directly on graphs, is used 
as the core model to accept ABPN inputs and compute node 
embeddings. A pooling process is followed by aggregating 
node embeddings into graph-level presentations, which were 
then fed through a multi-layer perceptron to output SM 
fingerprints. RNAmigos was the first one to apply a 3D 
RNA landscape to inferring binding SMs and showed strong 
performance in compound screenings. Kozlovskii and Popov 
[99] demonstrated a structure-based 3D CNN BiteNetN, 
which trained with ~ 2000 nucleic acid-SM complexes to 
detect SM binding sites in nucleic acid structures. Similarly, 
Wang et al. [100] also developed a deep CNN for RNA-SM 
binding sites prediction: RLBind. The prediction tool used 
full-length RNA sequential and structural features as global 
information, as well as neighbouring nucleotide sequential 
and structural features as local information, for the capture 
of both long-range and short-range interactions. Meanwhile, 
Yazdani et al. [101] demonstrated that machine learning algo-
rithms applied to experimentally derived sets of RNA binders 
are a more powerful method to inform RNA-binding chemi-
cal space.

Instead of considering as many as possible available 
miRNA-SM associations for training ML models to be able 
to handle arbitrary miRNA-SM pairs, some research works 
were target oriented and focused on a particular miRNA 
target to screen SM with practical significance. Jamal et al. 
[102] employed classic ML models (Naïve Bayes and Random Figure 6. Chemical structures of OB − 4 (left) and OC − 3 (right).
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Forest) to mine miR−21 inhibitors from large SM datasets 
with high accuracy and low false positivity. Cell-based screen-
ing for miR−21 inhibitors has already accumulated a great 
amount of active and inactive SMs suitable for ML, the model 
of which was later employed to screen approved drugs from 
the DrugBank database. Cai et al. [103] developed quantitative 
structure-activity relationship (QSAR) models to predict ther-
modynamic-based and kinetic-based parameters of SMs bind-
ing to a specific miRNA: HIV−1 transactivation response 
(TAR) element (Figure 7), in which multiple linear regression 
(MLR) was used to obtain linear combinations of the para-
meters that best fit the binding activities of SM against 
miRNA. The generalization ability of the model was further 
confirmed by comparison to ensemble tree methods.

Except for pure computational methods in identifying 
RNA-SM interactions, certain studies combined experimental 
and computational techniques, and incorporated ML methods 
in jobs like property determination that lead SM bias towards 
binding to RNA. The work of Rizvi et al. [104] is such 
a typical example. They used an Automated Ligand 
Identification System (ALIS), an affinity mass spectrometry 
to experimentally screen 42 RNA targets against a total of ~  
60,000 SMs. Next, naïve Bayes models were constructed for 
SMs selected in the preliminary screening using several 
descriptors such as physicochemical, topological, and biologi-
cal properties. The most appropriate properties were then 
used to build a focused library of SM (~3700) that is enriched 
for binding RNA.

ML-Based strategies for De novo RNA-Targeted SM design

De novo SM design is one way of creating novel drugs with 
new structural and chemical properties that enhance the 
binding propensity to the targeted RNAs. Such design usually 
incorporates preferential modification into the basic molecu-
lar scaffold. Data-driven algorithms such as ML emerged as 

powerful tools that can reduce the search in chemical space 
for finding the chemical features that promote the RNA-SM 
interaction. Based on ~ 800 3D molecular structures with the 
2-phenylthiazole moiety, as well as their corresponding bind-
ing values to the target hairpin 91 (Figure 8), Grimberg et al. 
[105] used three different ML approaches, i.e. Lasso regres-
sion, decision tree classifier, and CNN models, for discover-
ing biosynthetic replacements facilitating the synthesis of 
phenylthiazole-containing molecules (Figure 9) that bind to 
RNA hairpin within the ribosomal peptidyl transferase centre 
(PTC) of Mycobacterium tuberculosis. Both chemical and 
geometrical/visual features of molecules were considered for 
three complementary models, and each of them revealed key 

Aminoglycoside (AG) Diphenyl furan (DPF) 

Diminazene (DMZ) Nucleic acid dye 

Dimethyl amiloride (DMA) 

Figure 7. Crystal structure of HIV − 1 TAR RNA (PDB: 6×H0) and representative chemical structures of the scaffolds used in the work, i.e. Aminoglycoside (AG), 
Diphenyl furan (DPF), Dimethyl amiloride (DMA), Diminazene (DMZ), Nucleic acid dye.

Hairpin 91 

Figure 8. The complete structure of the Mycobacterium smegmatis 70S ribo-
some (PDB: 5O61). Hairpin 91 (pink) was used as a target for the design of small 
molecule inhibitors.
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features that influenced the binding affinity mostly from 
different perspectives, for example, higher N/NH and O/ 
OH counts whereas lower TPSA (topological polar surface 
area) values, the number of N and C atoms must exceed 
a certain threshold, etc. After summarizing all the motifs as 
design principles for the synthesis of new heterocycles with 
improved binding abilities, they synthesized 10 SMs, of 
which 4 were validated to be potent inhibitors target hairpin 
91.

Future perspectives

RNA-targeted SM drug discovery is a promising industry. The 
current ML technology has just entered this field and has 
shown its potential in solving this problem. We will discuss 
the other applicable ML models and some possible non- 
coding RNA targets.

Other ML models that can be used in RNA structure 
prediction

In addition to the most used models (LSTM and CNN) 
introduced in Section 2, which are applied to RNA secondary 
structure prediction, there are some other sequence models 
motivated by analysing sequential data that can be implemen-
ted for this task. Gated Recurrent Units (GRU) [106] is an 
alternative version of LSTM but has fewer parameters and can 
be faster to compute. Based on the similar architecture and 
comparable performance, GRU can be a good substitute for 
LSTM. Auto-encoders [107] and its variants [108] and 
improvements [109] can also be good models to encode 
sequential inputs to latent representations for further calcula-
tions. The most lately proposed Transformer [110] offers 
grand encoder-decoder architecture that uses attention 
mechanisms for information flow and is designed to process 
sequential input data. Employing alternative models with tai-
lored alterations may promote prediction accuracy.

Other non-coding RNAs that can be targeted for ML drug 
discovery

Non-coding RNAs have a broad range, among which 
miRNAs, long non-coding RNAs, ASOs, siRNAs, transfer 
RNAs (tRNAs), and Ribosomal RNAs (rRNAs) have been 
experimentally identified as therapeutically target RNAs 
(Table 1) [87,111]. However, only miRNAs and rRNAs have 
been investigated for screening SMs by incorporating ML 

techniques. The reason why these ML methods cannot be 
universally applicable to different kinds of non-coding RNAs 
is that the properties (sequence length, structural character-
istics, motif types, etc.) can vary a lot among different RNAs, 
thus it is difficult to encode very different RNA with 
a universal feature extracting method. So generally, one ML 
model deals with only one type of RNA. Another important 
factor is that the RNA-SM associations library has not been 
established for all kinds of non-coding RNAs. Those without 
enough existing published entries must first collect experi-
mentally validated RNA-SM pairs for ML processing. 
However, if the local RNA motifs generated for SMs binding 
are similar, the existing RNA motifs database [112,113] can be 
easily applied to other non-coding RNAs like long non-coding 
RNAs. So ideally, all non-coding RNAs can be potential 
targets for ML drug discovery.

Conclusion

ML-based methods have already been widely applied in pro-
tein-targeted drug discovery, such as virtual screening [114], 
structure prediction [115], and de novo molecule design [116], 
etc. Due to the relative paucity of RNA structural data, there 
are fewer end-to-end SMs prediction algorithms for RNAs 
than for proteins. Rather, a larger part of current ML methods 
aims at constructing RNA secondary or tertiary structures 
[117]. The developmental trend is evident, after all, structural 
data is important in the subsequent process of drug discovery, 
no matter whether the method is in silico or not.

For the past few decades, RNA therapeutics development has 
mainly involved oligonucleotide drugs (e.g. antisense oligonucleo-
tide (ASO), small interfering RNA (siRNA), mRNA, and 
Aptamer), which regulate target RNAs by base pairing or through 
RNA interference pathway [118–122]. However, oligonucleotide 
is not the only solution to this problem. Some medicinal chemists 
have already started to search for SMs drugging RNAs [123]. In 
2020, FDA approved the SM drug Risdiplam (sold as Evrysdi), 
which was developed by Roche and PTC Therapeutics to treat 
spinal muscular atrophy (SMA) [124]. In the meantime, various 
traditional computation approaches also came to the fore [125– 
132]. With the advent and flourishing of artificial intelligence, the 
idea of developing ML-based methods for RNA-targeted small- 
molecule drug discovery becomes a modern topic. ML approaches 
benefit from their learning abilities to conclude embedded corre-
lations from sample data and make predictions on large unknown 
data pools [133]. This merit makes ML methods promising as 
chemical space can be very large (~1060 molecules), and it is 
undesirable to derive the most possible results through manual 
experiments at a limited time and economic cost.

Traditional experimental way of drug discovery sticks in 
the dilemma of ambiguous RNA structures, and that chal-
lenge partially remains the same for ML techniques. Hence 
current ML is mainly involved in two parts of RNA drug 
discovery: RNA structure prediction and RNA-targeted SM 
prediction. The former produces intermediate results that 
can be utilized in subsequent experimental or computational 
research on finding binding SMs, while the latter produces 
final results that can be directly verified through experi-
ments. The ML-involved studies of RNA structure 

Figure 9. Chemical structure of the molecules synthesized and bio-evaluated as 
inhibitors for Mycobacterium smegmatis ribosomes.
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prediction are more abundant than that of RNA-targeted 
SM prediction at present. The reason is that ML techniques 
were introduced earlier in structural research, and the 
amount of existing suitable RNA-SM interactions limited 
the training of ML models. There are already credible pro-
grams for generating 2D RNA structures whose outputs can 
be further used for ML in predicting 3D RNA structures or 
RNA-targeted SMs. The end-to-end ML approaches of find-
ing binding SMs that ignore the RNA 3D spatial coordinates 
structures are very common, they generally use chemical, 
biological, and 1-2D structural features extracted from 
RNA-SM associations to make predictions and can also 
achieve relatively good accuracy in the validation dataset. 
The produced results are valuable references for further 
experiments, as they largely narrow down the search space 
to find appropriate SMs. In this review, we summarized 
existing studies of RNA-targeted SM drug discovery where 
ML does its part. We believe that as more and more RNA 
data are being revealed, many new ML strategies will be 
proposed to address this issue.
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