
Single unit electrophysiology recordings and computational modeling can predict 
octopus arm movement  
 
Nitish Satya Sai Gedela1, Sachin Salim2, Ryan D. Radawiec1, Julianna Richie2, Cynthia 
Chestek2, Anne Draelos2,3+, Galit Pelled 1,4+ 
 
Affiliation: 
 
1Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United 
States 
2 Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States 
3 Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, 
MI, United States  
4 Department of Radiology, Michigan State University, East Lansing, MI, United States 
 
 
 
+ Corresponding authors: 
 
Galit Pelled, PhD. 
Anne Draelos, PhD.  
 
 
Key words: Motor control, neuroprosthetics, bionics, grasping, octopus 
 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 19, 2024. ; https://doi.org/10.1101/2024.09.13.612676doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.13.612676
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract 
 
The octopus simplified nervous system holds the potential to reveal principles of motor circuits 

and improve brain-machine interface devices through computational modeling with machine 

learning and statistical analysis. Here, an array of carbon electrodes providing single-unit 

electrophysiology recordings were implanted into the octopus anterior nerve cord. The number of 

spikes and arm movements in response to stimulation at different locations along the arm were 

recorded. We observed that the number of spikes occurring within the first 100ms after stimulation 

were predictive of the resultant movement response. Computational models showed that temporal 

electrophysiological features could be used to predict whether an arm movement occurred with 

88.64% confidence, and if it was a lateral arm movement or a grasping motion with 75.45% 

confidence. Both supervised and unsupervised methods were applied to gain streaming 

measurements of octopus arm movements and how their motor circuitry produces rich movement 

types in real time. Deep learning models and unsupervised dimension reduction identified a 

consistent set of features that could be used to distinguish different types of arm movements. 

These models generated predictions for how to evoke a particular, complex movement in an 

orchestrated sequence for an individual motor circuit. 
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Introduction 
 

The octopus has many features that makes it advantageous for pursuing a holistic 
understanding of movement, cognition and behavior: It has a highly developed nervous system 
containing 500 million neurons and a large brain 1-3; Each of the eight arms contains an axial 
nerve cord (ANC) which resembles and acts like the vertebrate’s spinal cord; Hundreds of suckers 
and sucker ganglia act as the peripheral nervous system and can demonstrate a large repertoire 
of behaviors 4,5; it has distributed control of its nervous system. One of the advantages of using 
this animal model, is that an electric or tactile stimulation to the octopus’s denervated arm, can 
still trigger movement that is similar in kinematics to movement of an intact arm as was previously 
demonstrated 6-9. This suggests that the octopus has a simplified neural program embedded 
within the arm itself and is adaptable to various degrees of input from visual, sensory and motor 
brain areas 6,10,11. The octopus’s simplified nervous system holds the potential to use machine 
learning and advanced statistical analysis techniques to develop computational models that could 
predict motor behavior.  

Recently, there has been growing interest in recording electrophysiology signals from 
octopus nervous system: single unit and intracellular recordings from slices obtained from octopus 
had revealed principles of learning and memory 12, and multi-unit and local-filed potentials were 
recorded from octopus arms 11 and the nerve ring responsible for arm coordination 13. Recent 
developments have also shown the capabilities of recording brain signals from awake octopuses 
14. These studies revealed fundamental concepts regarding the octopus nervous system, motor 
control and coordinated movement. However, thus far, the electrophysiology recordings have only 
consisted of continuous local field and electroencephalogram data. For this study, as described 
below, we instead used very small diameter carbon fiber electrodes for unit recording. Carbon 
fiber electrodes are strong enough to penetrate tough neural tissue when sharpened 15,16.They 
also do very little damage to the neurons of interest 17. They can be sharpened in a way that 
preserves a small electrode surface area, enabling high amplitude spikes 18. 

Understanding the trajectory and dynamics of arm movement is crucial to develop 
neuroprosthetic devices and robotic limbs that will allow reaching and grasping. Current Brain 
Machine Interface (BMI) systems are based on decoding algorithms that use the neural signals 
to control the external device 19,20. However, these devices do not provide enough independent 
degrees of freedom of the arm, and usually control even simple motions of the lower limbs. Recent 
studies using different computational techniques including machine learning (ML) algorithms and 
Artificial Intelligence (AI) have shown the ability to predict several aspects of arm reaching from 
electrophysiology data 21-23. To improve future BMI devices, it will be crucial to further reveal the 
neural mechanisms behind how diverse movements are represented in the measured 
electrophysiological signals and how these representations relate to distinct kinematic features of 
the behavioral response (position, velocity, muscle activity, direction, and more) [6-10]. Octopus 
movement research can inspire new development for flexible and independent neuroprosthetic 
limbs. 

While the octopus demonstrates useful complex and flexible movements, these 
kinematics must first be measured and quantified for correlation with electrophysiological signals. 
Analyzing movements in an automated manner can quickly provide crucial insights into animal 
behavior that would otherwise be too time-intensive or costly to manually characterize. Rather 
than hand-labeling the position of an animal in a tank, for instance, computer vision tools can be 
used to automatically report its x and y spatial locations in an image, which could subsequently 
be correlated with neural firing to identify location-sensitive cells. In many situations, however, a 
pre-defined quantity such as spatial location may not be the best metric for characterizing 
behavior. More complex and ethologically relevant behaviors, such as exploration, reaching, or 
grasping, are better defined by their motion with respect to the animal’s body or to the sequence 
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in which they are performed 24. Thus, methods are needed for automated position extraction, pose 
estimation, and behavioral feature identification.  

Both supervised and unsupervised machine learning methods can be used across a wide 
variety of animal models to classify and cluster behavioral features into these more relevant 
phenotypes 25-27. Supervised machine learning effectively quantifies behavioral data, while 
unsupervised clustering objectively uncovers inherent structures within datasets, aiding in 
identifying continuous movement spaces or distinct movement type clusters. While characterizing 
behavior itself is important for understanding animals and their nervous systems, it lacks the ability 
to test hypothesized brain-behavior links.  That analysis requires models that are able to correlate 
neural activity and behavioral responses to perturbations. By learning behavioral features 
associated with various experimental paradigms, we could then correlate what aspects of the 
environment or stimuli are significantly driving these behaviors. Identifying a set of movements 
and their orchestrated sequences empowers the construction of simplified yet accurate 
representations for a particular task, shedding light on underlying mechanisms of e.g., the motor 
circuits involved in reaching. Finally, with the development of tools that allow real-time analysis 
with minimal latency 28-30, we can also consider closed-loop experimental paradigms that adapt 
stimulation parameters based on instantaneous behavioral responses. With immediate analysis 
of how different behavioral features vary during neural stimulation, we could construct models 
that learn how best to evoke a particular, complex movement in an orchestrated sequence for a 
particular motor circuit.  

This type of data-driven approach could unveil individual behavioral motifs, control circuits, 
and ultimately contribute to advancements in more flexible and adaptable prosthetics; notably in 
goal-oriented grasping movements for individuals with limb loss or spinal cord injuries. Here, using 
state-of-the-art carbon fiber arrays that provided single-unit electrophysiology recording 
capabilities with ANC neurons 18, we obtained simultaneous video recordings, neural patterns and 
arm kinematics. To trigger movement, descending stimulation was delivered directly on the ANC, 
and ascending tactile stimulation was delivered to the base of the arm, close to the electrodes, 
and to more distal portion of the arm. Machine learning models were build to then predict resultant 
octopus arm movement and learn what specific behaviors could be decoded to the original 
stimulation. 
 

Methods 
 

Experiments & data acquisition: 
All procedures were approved by the Institutional Animal Care and Use Committee at 

Michigan State University. Adult Octopus bimaculoides (n=7) were anesthetized according to 
protocols published by Butler-Struben et al. 31. From each animal we recorded from two arms (L2 
and R3), and the recordings of each of the arms was spaced at least three weeks apart. Once 
the arm was removed, and the proximal end of the arm was restrained in a tray that was 
continuously perfused with filtered saltwater. The muscles at the base of the arm were dissected, 
revealing the ANC. High-density carbon fiber of 16 electrodes array was inserted transversely into 
the exposed ANC (Figure 1).  

To determine if there was a difference in stimulation response, mechanical (tactile) 
stimulation was performed using plastic forceps and an applied force of 2-3lbf. Electrical 
stimulation was performed using a single electrode that delivered 5 mA, 100Hz pulses for 50ms. 
The arm was stimulated in three different locations: directly on the exposed ANC to reflect efferent 
stimulation, and on regions proximal and distal to the electrode placement, reflecting afferent 
stimulation. Statistical analysis of the observed distribution of observed movement responses 
showed that no feature could be used to significantly differentiate between electrical and 
mechanical stimulation cases across all three stimulus locations.  Therefore, all stimulation trials 
in each of the locations were grouped.  
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Intan Recording System (Intan Technologies, Los Angeles, CA) and Spike2 (Cambridge 
Electronic Design, Cambridge, UK) were used to record signals. Spike2 was used for initial signal 
processing. The signals were filtered with a bandpass second order Butterworth 0.1 to 3kHz and 
the threshold for action potential (AP) detection was set at 4 standard deviations 32-34. APs had 
an average duration of 1.44ms. A total of 95 experiments resulted in 1520 traces of recordings. 
For modeling analysis, recordings from three electrodes in the array that showed the highest 
activity were selected (275 traces).  

For movement recording, a webcam was positioned over the recording chamber and 
videos were recorded simultaneously with electrophysiology recordings via the Spike2 interface. 
Movement was first manually classified into 3 distinct categories: no movement (NM, “0”), lateral 
movement (LM, “1”), and a curl (CM, “2”). 

Electrophysiology data of the entire 1520-unit recordings traces was processed using 
Plexon (Plexon Inc, Dalas, TX) offline sorting software with 250 Hz Butterworth filters applied to 
the raw data. Spikes that had passed the threshold were identified as “units” in the analysis. The 
processed data was analyzed using Python. The Python script extracted the number of spikes for 
each 50ms time bin of the 16 channels and summed them. Prism software (Graphpad software 
Inc, San Diego, CA) was used for statistics.  Outlier data was filtered using the 1% ROUT method. 
ANOVA (Brown-Forsythe) test was used to assess the statistical significance of the relationships 
between spikes and movement, spikes and stimulation location, and location of stimulation and 
type of movement. Statistically significant results were considered to be p<0.05. 

 
 

 

 
Figure 1: The experiment setup. The 16-electrode array was inserted into the exposed axial 
nerve cord (ANC). Tactile and electrical stimulation were delivered into three different locations: 
directly onto the ANC, proximal, and distal to the electrodes’ placements. The carbon electrode 
array recorded single unit potentials. Representative single units are shown on the right. 
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Modeling to predict movement from neural activity:  
We utilized the One Hot Encoding (OHE) technique 35,36 to convert the categorical feature 

into binary features. The OHE technique converts a categorical feature into multiple binary 
features, where the number of binary features is equivalent to the number of distinct categories 
in the original categorical feature. This technique assigns a value of 1 to the binary feature 
corresponding to the specific category for each instance/sample and a value of 0 to all other binary 
features. 

We utilized Cramer's V to understand the significance of each OHE feature with the 
categorical target. Cramer's V is a technique used to measure the degree of association between 
two categorical features. This technique is based on the chi-square statistic test, and Cramer's V 
value ranges from 0 to 1, where 0 indicates no association between the variables, and 1 indicates 
a perfect association between the variables. 

An additional machine learning based method, the Feature importance analysis 37,38 can 
reveal the degree of importance of all features, including categorical and discrete, binned, 
features to predict the target. The analysis was conducted on both Binary-class (movement/no 
movement) and Multi-class (no movement/movement/movement with a curl) datasets to identify 
which features were most influential in predicting the movement outcomes. This analysis was 
essential to understand the underlying factors contributing to the model's predictions, optimize 
the model's performance, and provide insights into the key drivers of movement patterns. 

Overall, an array of 16 different machine learning models was trained on our rich datasets, 
demonstrating a comprehensive application of diverse machine learning techniques across 
several categories. Tree-based models like the Decision Tree, ensemble techniques such as 
robust methods like Random Forest and Extra Trees Classifier, as well as powerful boosting 
approaches such as Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine 
(LightGBM), Gradient Boosting Classifier, Adaptive Boosting (Ada Boost), and the state-of-the-
art CatBoost were employed. Advanced classifiers like the Ridge Classifier, which is based on 
linear regression techniques but includes regularization, and SVM with a Linear Kernel, which 
excels in high-dimensional spaces, were also employed. Additionally, simpler yet essential 
models like the Dummy Classifier were used to establish baseline performances. Our model set 
further incorporated classical statistical methods, including Logistic Regression and Naive Bayes, 
alongside discriminant analysis techniques like Linear and Quadratic Discriminant Analysis. The 
array also included instance-based learning methods like K-Nearest Neighbors (KNN). This varied 
and methodologically rich collection of models ensured rigorous and nuanced analysis, providing 
robust and detailed insights. 

 
Modeling to identify stimulation from resultant behavior:  

To track the motion of the octopus arm, we first employed DeepLabCut (DLC) for 
markerless keypoint tracking and pose estimation 28,30. This widely-used software package utilizes 
deep neural networks and transfer learning to achieve accurate 2D and 3D markerless pose 
estimation for defining and tracking specific points of interest. Out of the total 234 videos, 16 
videos with different camera angles, applied stimuli, and observed motion types were selected to 
train our octopus-specific model. 16 images from each of these videos were then selected by DLC 
as representative and diverse samples of the octopus arm’s movement, as determined by k-
means clustering. Images that were blurred and where the octopus was heavily obscured were 
then manually dropped from the training set (typically 0-4 images per video). Finally, the images 
were hand-annotated to label 17 (approximately) equidistant keypoints along the arm using a GUI 
provided by the DLC package (Figure 1A). 

Next, we took the ResNet-50 model supplied by DLC, pre-trained on the large and well-
established ImageNet dataset, and further trained it using our annotated frames of the octopus 
arm. This training was done on a lab workstation with a single GPU (NVIDIA GeForce RTX 4070 
Ti) and took 3.5 hours to run 150,000 iterations. Once the training was complete, the final model 
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was employed for real-time keypoint tracking of all videos in the dataset. The model output 
reported x and y location predictions for each of the 17 keypoints in each frame, accompanied by 
an associated prediction likelihood value.  

 
 

Figure 2: Keypoint tracking and feature extraction. a, 17 roughly equidistant points were 
hand-labeled along the length of the arm. Using these keypoint positions, various metrics were 
computed for subsequent analysis including the overall angle made between the (stationary) 
base and the tip (θ) and the angular and keypoint velocities. The distal-most keypoint (x) and 
its velocity (v) were found to be significant in distinguishing motion types. b, To quantify motion 
across time, three intervals post-stimulation were considered: the first (t0) and second (t1) 
seconds, where most motion occurred, and 2 or more seconds (t2) until any observed motion 
ceased. c, The histogram of one example metric, the maximum angular velocity in t0, is plotted 
(using a kernel density estimator) for each of the human-labeled movement categories. As 
expected, the ‘No movement’ videos have very low or zero angular velocity, whereas 
‘Movement with arm curl’ videos tend to have higher maximum angular velocity. 

 
 

To comprehensively quantify the entire arm’s motion, a range of significant kinematic 
features were computed from the x and y predictions. Specifically, we defined θ as the angle 
formed by the proximal and distal segments (the angle between the stationary base and the tip 
of the arm), and its instantaneous angular speed as a  difference of θ across consecutive frames 
scaled by frame-per-second to convert to SI units. We also considered the absolute speed of 
each keypoint v, later focusing on just the distal point as significant. To provide an initial 
quantification across time, the mean and maximum values of the above features were calculated 
over three distinct non-overlapping time intervals after stimulation: 0-1 second, 1-2 seconds, and 
2 or more seconds (Figure 2b). These defined features can be well understood, linked as they 
are to specific locations along the arm. For example, the distribution of the maximum angular 
velocity of the arm in the 0-1 second time period post-stimulation is clearly different for the videos 
hand-labeled as having ‘No movement’, ‘Movement’, and ‘Movement with arm curl’ (Figure 2c), 
as might be intuitively expected.   
 We then employed a second method of analysis that did not rely on keypoints, as typical 
keypoint tools rely on obvious features such as joints or consistent markings that the octopus arm 
lacks. We used an unsupervised streaming dimension reduction algorithm known as Procrustean 
SVD (proSVD) 29 to identify features within the videos and how they varied across time, without 
any pre-training or knowledge of what the videos contained. Unlike conventional SVD methods, 
proSVD stands out by ensuring the selection of a stable feature set across time, offering 
dependable results even in the initial phases of data collection. We reduced the videos to 4 bases, 
or features, and quantified the discovered motion with the L2-norm of each basis vector. 
Additionally, to optimize processing efficiency, specialized code was developed to crop the videos 
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precisely around the identified DLC keypoints with a 20 pixel margin before handing the cropped 
videos to proSVD. This tailored step proved instrumental in eliminating superfluous background 
elements (anything not an octopus arm), which significantly sped up subsequent processing 
stages.  
 
 
Results 
 
Single and multiunit analysis 

Carbon fiber electrodes successfully recorded single and multiunit activity from the ANC, 
as shown in Figure 1. The total number of units in the first 50ms and 100ms after stimulation were 
calculated for each of the 16 channels, which resulted in 1520 traces. The movement was based 
on video analysis and was classified into 3 distinct responses: no movement (“NM”), lateral 
movement (“LM”), and a movement that consisted an arm curl (“CM”). Figure 3 shows the number 
of units in each movement. To test if the number of units occurring immediately after stimulation 
is different for each movement response, an ANOVA analysis was performed. Results showed 
that there was a significant difference between the groups means for each movement response 
type (F(2.00, 42.09)=4.10, p=0.023)). There was also a significant difference between the number 
of units occurring 50-100ms after stimulation (F(2.00, 46.37)=7.36, p=0.0017). In both time 
frames, the lateral movement showed the greatest number of units activity. This may suggest that 
an arm curl is a reflexive response which requires less neural activation. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. The number of units and movement. (A) The average number of unit responses 
within 50ms after stimulation evoked different movement response. (B) The average number of 
unit responses within 50-100ms after stimulation and the evoked movement response. In both 
time periods, the greatest number of units was found to be associated with lateral movement 
(LM). (No movement (MN), movement with an arm curl (CM); ANOVA, *<0.05; **<0.005; n=7 
octopuses, data obtained form 14 arms). 

 
 
We then tested if there was a difference between the number of units occurring as a 

response to the location of the stimulation. The results demonstrate in Figure 4 show that in the 
first 50ms and 100 ms after stimulation there is a significant difference between the groups means 
(F(2.00, 54.23)=6.062, p=0.0042) and (F(2.00, 68.75)=4.72, p=0.012), respectively. In both time 
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frames, the Cord stimulation showed the least variance in the number of units, compared to Distal 
and Proximal arm stimulation, suggesting that afferent stimulation results in a consistent 
response. Results also show that the number of units evoked by a Distal stimulation significantly 
increases over time which may suggest a mechanism to amplify distant signals (paired T-test 
analysis, p=0.0067). The number of units between the first 50ms and 100ms did not change in 
response to Proximal or Cord stimulation.  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. The stimulation type and number of spikes. (A) The average number of unit 
responses within 50ms after stimulation and the location of the stimulation. (B) The average 
number of unit responses within 50-100ms after stimulation and the location of the stimulation. 
Between the two time periods, the greatest increase in units was found to be associated with 
distal stimulations. (ANOVA, *<0.05; **<0.005; n=7 octopuses, data obtained form 14 arms). 
 
 

We then sought to determine the probability of the type of stimulation to evoke a specific 
movement response. Figure 5 shows the probability of movement response given the type of 
stimulation. Distal stimulation showed a clear preference to induce movement; In 94% of trials, it 
evoked a lateral movement (41%) or an arm curl (53%). On the other hand, Proximal and Cord 
stimulations did not induce a consistent response: Proximal stimulation induced lateral movement 
(25%), arm curl (29%), and in 46% of trial no movement was evoked; Cord stimulation induced 
lateral movement (31%), arm curl (31%), and in 38% of trial no movement was evoked.   
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Figure 5. The stimulation type and movement response. (A) The probability of evoking each 
movement to occur after a proximal stimulation. (B) The probability of evoking each movement to 
occur after a Distal stimulation. (C) The probability of evoking each movement to occur after a 
Cord stimulation. This reveals that distal stimulation was very likely to induce a movement, 
whereas cord and proximal had a more even distribution of responses. (No movement (MN), 
movement with an arm curl (CM), lateral movement (LM). 
 

The results showed that the number of units in the first 100ms post-stimulation can predict 
the movement response. The predictive probability of longer period of units to inform on 
movement response was examined. The total number of spikes in the first 500ms after stimulation 
was calculated for each of the 16 channels. The average number of units in the first 500ms for 

movement MN was 59133.2, LM resulted in 69140 units, and CM resulted in 70654.7 spikes 

(averageSEM). An ANOVA analysis showed that there wasn’t a significant difference between 
the number of units to the movement response (F(2.00, 18.56)=0.39, p=0.68). In addition, there 
wasn’t a significant difference between the stimulation type and the number of units (F(2.00, 
64.22)=0.45, p=0.64).   
 
 
Computational modelling of electrophysiology responses  
 
Feature extraction 

Temporal and stimulation features were extracted from the electrophysiology signals, 
using sample windows of 3s long, binned into 100ms, and summing the number of units in each 
window. This process resulted in a dataset with 30 bins that we treated as discrete features. To 
encode the stimulation information, categorical features were added using OHE technique to 

convert the categorical data into a numerical format. Two different datasets of 275 traces were 
created: a Multi-Class dataset where each sample was labelled 0 (no movement; 74 samples), 1 
(movement; 96 samples), and 2 (movement with arm curl; 105 samples); and a Binary dataset 
where samples labelled 1 and 2 were combined into a single movement class (1, consisting of 
201 samples), and the 0 class (74 samples). The distribution of the samples in the multi-class 
dataset was found to be balanced in the number of trials in each class. However, the distribution 
of the samples in the binary dataset showed a slight imbalance as it consisted of more samples 
in movement 1.  
 

Next, we created a dataset by extracting temporal and stimulation features from the 
electrophysiology signals which contained 34 features: 33 features were predictors, and one 
feature was the categorical movement response (Target). Among 33 predictors, 30 predictors 
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were discrete features, and the remaining three predictors were OHE features derived from the 
stimulation location: ANC stimulation, and stimulations located in the distal part and proximal part 
of the arm. 
 

 

 

Categorical Variables Binary Target 
(Cramér's V Value) 

Multi-Class Target 
(Cramér's V Value) 

Stimulation: ANC 0.175 0.177 

Stimulation: Tactile, distal part 0.435 0.500 

Stimulation: Tactile, proximal part 0.287 0.373 

Table 1. Association strengths between binary features and target outcomes using 
Cramer’s V. The Cramer’s V analysis demonstrates the varying strengths of association, 
between the stimulation location features and the movement outcome. Results demonstrate 
that the tactile, distal location of stimulation feature, had higher association for both binary-class 
and multi-class outcomes, compared to ANC and tactile, proximal part features. 

 
A Cramer's V analysis was computed to understand the impact of binary features as 

shown in Table 1. The stimulation type feature was encoded using OHE technique. Then, 
Cramer's V was computed between each binary feature and the target feature, reflecting the 
degree of association. Significantly, for both binary and multi-class targets, the Tactile, distal part 
binary feature is highly associated with the target (give me a number), indicating that the tactile, 
distal part binary feature is more useful for predicting the target features. The relatively low values 
for the ANC binary feature suggest it might be less useful for predicting the target features. 

Mutual information is a statistical method measuring the amount of dependence between 
two random variables 39, and Figure 6 depicts the scores for both binary-class and multi-class. 
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Figure 6: Mutual information analysis for understanding feature importance in binary 
and multi-class classification. (A) Mutual Information Scores between 30 binned discrete 
features, and Binary-Class scenario and (B) Mutual Information Scores between 30 binned 
discrete features, and Multi-Class scenario. Color bar indicates the mutual information score 
for a feature. This analysis demonstrates that the initial several hundred milliseconds after 
stimulation carry significant information about the target. 

 

To identify any possible trends between the Mutual Information Scores of 30 binned, 

discrete input features and the output target, we performed a line fitting to these scores. This was 

done to further understand any existing linear trends. The R2 score for both Binary-Class and 

Multi-Class fitted lines were 0.85 and 0.87, respectively, and the slopes being -0.0047 and -

0.0095, respectively. These negative slopes that are also evident in Figure 7 indicates that the 

significant dependence of the target decreases with time post-stimulation.  
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Figure 7: Mutual Information 

analysis for understanding 

feature significance in binary 

and multi-class classification. 

(A) Linear Trend analysis on 

Mutual Information Scores of 30 

binned discrete features with the 

Binary-Class target, and (B) Linear 

Trend Analysis on Mutual 

Information Scores of 30 binned 

discrete features with the Multi-

Class target. Each point indicates 

the mutual information score for a 

binned discrete input feature with 

target, and a fitted trend line 

showing the overall trend. The 

downward trends in both plots 

highlight that the significant 

dependence of the target on these 

features decreases over time, with 

the dependency diminishing as 

time approaches the end of the stimulation period (3000ms). This analysis aids in understanding 

which features are most influential in predicting the target in both binary and multi-class scenarios. 

 
The feature importance 

analysis shown in Figure 8 
suggests that several input 
features are uniquely positioned to 
infer octopus arm movement, 
particularly within the first 100ms 
period of the electrophysiology 
response. 
 

 
 

 
Figure 8: Decoding the top 10 
Non-Linear dynamics via 
feature importance analysis. 
This analysis demonstrates the 
influence of different input features 
in model decision. It shows that for 
both (A) binary-class and (B) multi-
class the type of stimulation and 
the timing of the feature is crucial.  
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Table 2: Comparative analysis of Machine Learning classifier performance: Cross-
validation metrics for binary-class and multi-class tasks. Eighty percent of the 
electrophysiology dataset was used for cross-validation. The most accurate models for prediction 
of movement for both multi-class and binary-class are represented with bold text. 
 

 
Computational models that predict movement 
 

The dataset was segregated by utilizing the 80/20 Split method, where 80% (220 samples) 
of the data was used for cross-validating of the model, and 20% (55 samples) of the data was 
used for testing the finalized model. The Stratified k-Fold Cross-validation technique was applied 
with K of 10 folds.  

The accuracies of 16 different classifying techniques are reported in Table 2. These 
average performance scores returned from our cross-validation tests. Additionally, despite the 
class imbalance in the 100 ms binary dataset, with class 1 consisting of 201 samples and class 0 
consisting of 74 samples, the model still appears to be performant and able to handle the 
imbalance effectively based on the evaluation of F1 score results from cross-validation (Table 2), 
and test dataset (Table 3). The best model binary-class dataset was the Gradient Boosting 
Classifier, which achieved 88.64% accuracy. The best model for the multi-class dataset was the 
Extra Trees Classifier, which achieved an accuracy of 75.45%. These models also showed the 

 Binary-Class Multi-Class 

Model Accuracy  Recall Precision  F1  Accuracy  Recall  Precision  F1  

1. Ada Boost 
Classifier 81.36 88.12 87.36 87.24 60.45 60.18 64.6 60.32 

2. CatBoost 
Classifier 85.91 94.38 87.81 90.73 75 75.7 77.49 74.53 

3. Decision Tree 
Classifier 78.64 82.65 88.1 84.86 58.64 59.1 61.34 58.6 

4. Dummy Classifier 73.18 100 73.18 84.51 38.18 33.33 12.73 18.41 

5. Extra Trees 
Classifier 83.18 92.54 86.12 88.98 75.45 75.58 77.32 74.47 

6. Extreme Gradient 
Boosting 82.27 89.38 87.74 88.08 69.09 69.58 70.97 67.83 

7. Gradient 
Boosting 
Classifier 88.64 93.12 92.12 92.34 72.73 72.87 74.45 72.23 

8. K Neighbors 
Classifier 78.18 88.86 83 85.62 56.82 57.8 60.22 56.12 

9. Light Gradient 
Boosting Machine 86.36 91.91 90.33 90.78 70 70.05 71.01 69.11 

10. Linear 
Discriminant 
Analysis 80.45 86.36 87.32 86.53 66.82 67.83 69.17 66.1 

11. Logistic 
Regression 80.91 87.65 86.58 86.91 61.36 61.87 62.74 60.76 

12. Naive Bayes 78.18 78.2 91.25 83.69 43.64 42.51 47.83 40.94 

13. Quadratic 
Discriminant 
Analysis 80.45 97.54 80.23 87.98 67.73 65.53 74.27 65.51 

14. Random Forest 
Classifier 83.64 93.75 85.82 89.29 72.73 72.38 74.3 71.72 

15. Ridge Classifier 80.45 86.99 86.74 86.59 63.64 64.15 66.32 62.58 

16. SVM - Linear 
Kernel 71.36 79.78 84.03 78.74 50.45 51.16 51.03 47.34 
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highest F1 scores, describing the harmonic mean of precision and recall, which reflects the 
model's accuracy and consistency in identifying the correct category.  
 

Table 3. Evaluation of Machine Learning Classifiers on Test Data: Performance metrics 
across Binary and Multiclass classification. The two models outperformed during the cross-
validation and were tested on 20% of the test data. These results demonstrate that the models 
can predict the movement with high accuracy even when it was tested on new electrophysiology 
data. 

 
The performance metrics for the test data are presented in Table 3. The Gradient Boosting 

Classifier, identified as the best model through cross-validation on the Binary-Class dataset, was 
tested on 20% of previously unseen data and achieved an accuracy of 83.64%. This compares 
to the 88.64% accuracy obtained with the stratified k-Fold evaluation on the remaining 80% of the 
data. Similarly, the Extra Trees Classifier, which was the best model from cross-validation on a 
Multi-class dataset, was tested on 20% of unseen data and reached an accuracy of 72.73%, 
versus the 75.45% accuracy achieved with the stratified k-Fold evaluation on the remaining 80% 
of the data 
 
 

Best Model Testing 
Accuracy 

Accuracy (Cross-
validation) 

Dataset Target 

Extra Trees 
Classifier 

85.45 86.82 Spatial-temporal 
features dataset 

with 50 ms bin size 

Binary Class 

Extra Trees 
Classifier 

74.55 74.55 
  

Spatial-temporal 
features dataset 

with 50 ms bin size 

Multi-Class 

Gradient 
Boosting 
Classifier 

83.64 88.64 Spatial-temporal 
features dataset 
with 100 ms bin 

size 

Binary Class 

Extra Trees 
Classifier 

72.73 75.45 Spatial-temporal 
features dataset 
with 100 ms bin 

size 

Multi-Class 

 

Table 4. Comparison of models across time frames. The outperforming models were tested 
on electrophysiology signals binned into 100ms and 50ms features. Comparing the accuracy of 
the results from the cross-validation shows that 100ms features have led to 1.82% higher 
accuracy in Binary-class and 0.9% higher accuracy in the Multi-class compared to the 50ms 
features. 

Model Accuracy 
(Binary-
Class) 

Recall 
(Binary-
Class) 

Precision 
(Binary-
Class) 

F1 
(Binary-
Class) 

Accuracy 
(Multi-
Class) 

Recall 
(Multi-
Class) 

Precision 
(Multi-
Class) 

F1 (Multi-
Class) 

1. Extra 
Trees 
Classifier 

-- -- -- -- 72.73 72.65 74.11 73.22 

2. Gradient 
Boosting 
Classifier 

83.64 97.50 82.98 89.66 -- -- -- -- 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 19, 2024. ; https://doi.org/10.1101/2024.09.13.612676doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.13.612676
http://creativecommons.org/licenses/by-nc-nd/4.0/


This analysis indicated that the Gradient Boosting Classifier could predict with 88.64% 
accuracy the movement in datasets composed of 30 bins of 100ms each. The accuracy of 
movement prediction using 50ms bins was also tested and compared to the 100ms dataset. This 
dataset consisted of 60 continuous binned features, the categorical features, and the Target 
features. The results demonstrated that higher accuracy in movement prediction could be 
achieved with 100ms compared to the 50ms dataset, as shown in Table 4.  
 
The confusion matrix (Figure 9) is a method that allows computing a machine learning model 
accuracy, precision, recall, and overall ability to correctly classify instances, providing a detailed 
view of the types and frequencies of classification errors. These results suggest that the Gradient 
Boosting Classifier and the Extra Trees Classifier could predict type of movement with high 
accuracy. 
 
 

 

Figure 9: Confusion Matrix analysis for binary and multi-class movement predictions. (A) 
Binary-class and (B) Multi-class confusion matrix analysis showing the correct and incorrect 
predictions of the type of movement based on the test dataset which is 20% of the entire data. 
The green and blue indicate the correct predictions. This analysis suggests the high accuracy of 
the models in predicting the type of movement. 
 
 
Computational models of movement to decode stimulation. 
 
 We next considered a finer-grained analysis of the movements evoked from stimulation of 
the arm to determine relevant kinematic features beyond the 0, 1, and 2 movement class labels 
manually applied. Different stimulation locations elicited distinct behavioral responses in octopus 
arm movement. We examined the distribution of each kinematic metric previously defined, using 
both keypoint-derived features and proSVD identified bases. Figure 10 shows one example of 
how movement evoked from stimulation at the cord, versus at the distal or proximal regions (PD), 
has a significantly different distribution of the maximum angular velocity across each time period 
post-stimulation (see Appendix for complete table). Initial analyses considered the distal and 
proximal regions separately, but found no significant differences, and so all future analyses 
considered them as a single combined group.  
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Figure 10: Different motion features evoked by stimulus location. (A) Histograms and 
overlaid kernel density estimation plots for the extracted maximum angular velocity in t0 for 
each video during (top) cord or (bottom) proximal or distal (PD) stimulation. (B) A principal 
component analysis was performed for all extracted behavior features. Selected features are 
shown here with higher loadings across the first three principal components (PC). The mean 
and maximum angular velocities and proSVD features across the first two time periods 
comprise much of the first two PCs, with the distal velocity in the last time period having the 
highest loading onto the third PC. (C) The distributions of this metric, maximum angular velocity, 
are significantly different across all post-stimulation time windows (for t0, t1, t2; p=0.014, 
p=0.001, p=0.004, respectively, determined by a two-sample KS test). 

 
Principal component analysis was conducted on all features across all time periods to 

identify which features might be playing the largest role (selected features shown in Figure 10b). 
Immediately following stimulation, the angular speed of the distal part and the proSVD bases 
were the most significant kinematic features, with translation speed contributing more significantly 
in the later time periods. We found that the features with the highest loadings in PCA space also 
tended to produce significantly different feature distributions between stimulation types.   

The above analyses all collapsed movement into three time periods, potentially missing 
relevant signals at finer time resolution. To characterize more complex behavior, and to establish 
real-time methods for future closed-loop work, we looked at what metrics and analyses we could 
do in the streaming setting, as fast as data could be collected. DLC live was able to generate 
keypoint inferences at rates of ~10-20 ms per image, or around 100 frames per second on 
average (Figure 11a). proSVD could be run at extremely high frame rates, and may capture finer 
motion features than those that could be identified using keypoint tracking. We found that proSVD 
features showed some differences between mechanical and electrical stimulation types as a 
function of time post-stimulation (Figure 11b), unlike earlier keypoint metrics. While less 
interpretable, we anticipate that including these types of unsupervised features alongside user-
defined keypoints will produce the quantification needed to fully characterize the rich and complex 
behavior in the octopus repertoire.   
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Figure 11: Real-time inference and time-varying features. a, Inference speeds as a function 
of video resolution for both DeepLabCut live and proSVD during streaming analyses for 
different downsampled video resolutions. Error bars denote standard deviation (N=10). b, The 
L2-norm of the derivative of the first feature identified by proSVD plotted as a function of time 
post-stimulation, averaged across all trials. The low-dimensional representation of the evoked 
motion shows some different temporal features for each stimulus conditions. 

 
Discussion 

 
The octopus’s extraordinary anatomy and physiology makes it especially attractive to 

uncover sensorimotor circuits that orchestrate behavior. The octopus’s nervous system is highly 
distributed, and much of the neural circuitry coordinating these behaviors is organized within the 
arms where it can monitor immediate, complex environmental feedback and adapt the arms’ 
movement accordingly 7,8,40,41. Identifying and understanding the neural signals that drive 
complicated motor output, such as those found in the octopus, are essential for the future 
development of rapidly-adapting and ultimately more human-like prosthetic arms 42,43.  

Here we describe high-temporal and spatial resolution results of single and multi-unit data, 
obtained from a detached, behaving octopus’s arm. The results show that the number of spikes 
occurring within the first 100ms after stimulation can predict the movement response, whereas 
the greatest number of spikes were associated with lateral movement. Stimulation location was 
also a significant variable: The greatest number of spikes in the first 100ms occurred in response 
to proximal stimulation, but distal stimulation evoked the greatest change in spike response over 
time. These results indicate that spike analysis can reveal fundamental principles of motor 
behavior.  

While the single and multiunit analysis by itself consisted of important information of 
behavior, we tested if using ML could further identify important features of octopus motor 
behavior. The models that were built on the ML results indicate that it was possible to predict 
whether an arm movement occurred with 88.64% confidence, and it was possible to predict with 
75.45% confidence if this was a lateral arm movement or an arm movement with a curl. These 
levels of prediction values are in agreement with the range of reported accuracies in arm reaching 
predictions based on large-scale neural activity in monkey’s motor cortex 44,45 and in humans 46. 
The accuracy of machine learning algorithms in predicting arm movements can vary depending 
on several factors, including the specific algorithm used, the quality and quantity of input data, the 
level of noise, and the complexity of the movement being predicted. 

Consistent with the unit analysis results, the feature importance analysis showed that the 
first 100 ms period of the electrophysiology response is the strongest feature that predicts the 
type of movement. On top of the electrophysiology signals, it was important to include the 
stimulation location in the model, specifically the peripheral stimulation to the distal part of the 
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arm. The importance of the distal location is consistent with other evidence showing that that 
distal stimulus evokes a response with the shortest latency and the highest amplitude compared 
to proximal stimuli or stimulus of the ANC 13. The motion analysis results showed that the same 
stimulation in the octopus does not always produce the same behavior, supporting that the 
movement of the detached arm is a complex movement triggered by central and peripheral neural 
circuits 10,11,47.  
 We have recently used a set of five reflective markers that were adhered to the octopus 
skin, in order to describe and quantify the overall posture of an awake, swimming octopus 48. 
Three postures that were defined as straight, simple bending, and complex bending, and were 
analyzed in 3D using curvature and plane orientation methods. The results showed that this novel 
kinematics approach was successful in understanding octopus posture.  However, this approach 
is limited by the number of markers that could be attached to the octopus’s arm and the physical 
constrains they might induce.  

Nevertheless, state-of-the-art computer vision and machine learning tools could provide 
quantification of kinematic features based on video recordings alone 49-51. Deep learning and other 
machine learning methods could also learn features that human eyes do not see, but may be 
significantly correlated with neural firing or stimulation patterns 52-54. Employing transfer learning, 
deep neural networks, and dimension reduction as described here, we aimed to gain real-time 
insights into octopus arm movements and how their motor circuitry produces rich movement 
types.  

There are limitations in current methods for accurately locating points of interest. In the 
octopus arm videos considered here, several display minimal to no movement except for 
mechanical adjustments made by the experimenter. The predominance of single-instance 
movement in most videos, with shorter clips, effectively limits our dataset for training the DLC 
model on complicated movements. Additionally, the non-planar motion of the arm at times poses 
a challenge for accurate tracking, requiring new tracking strategies to capture the full complexity 
of octopus arm movements.  

Our selection of kinematic parameters was inspired by a study on locomotion using 
zebrafish larvae 26, but their effectiveness for the octopus arm is not straightforward due to distinct 
ethology and experimental conditions. Unlike zebrafish, the octopus arm lacks a zero-angle "tail" 
at rest. Zebrafish data were made positionally consistent through affine transformations and 
background removal, a step not directly applicable to octopus arm data due to sample size 
limitations, hindering common clustering techniques. Assessing the effectiveness of unsupervised 
clustering to identify key features also proves challenging in the absence of ground truth labels to 
gauge cluster accuracy and precision. Overall, improvements could be achieved through higher 
resolution videos, camera stability without flickering, incorporation of multiple stable camera 
angles, precise manual annotation, and a larger volume of data. 

The experiment aimed to uncover insights into octopus arm movements through 
meticulous video analysis. The electrical and mechanical stimuli induced diverse responses in 
the octopus arms, ranging from no movement to complex arm curls. The kinematic analysis and 
feature extraction provided valuable quantitative data, shedding light on key aspects of the arm’s 
motion, such as angles, angular speed, and absolute speed. These outcomes can collectively 
contribute to a deeper understanding of octopus arm behavior and provide a foundation for further 
investigations into motor control and neural circuitry. Beyond enhancing our understanding of 
neural circuits, this work has potential implications in brain-machine interfaces and prosthetics, 
enabling the development of sophisticated systems that replicate natural movement with 
precision and fine temporal resolution. 
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Appendix 
 

K-S Significance Test on PD (Proximal-Distal v/s Cord) 
 

Time period Statistic Feature p-value distribution 
 

t_0 

Mean 

Angular Speed 

0.010 different 
 

Max 0.014 different 
 

Mean 

Distal Speed 

0.257 same 
 

Max 0.016 different 
 

Max ProSVD feature 0.753 same 
 

t_1 

Mean 

Angular Speed 

0.001 different 
 

Max 0.001 different 
 

Mean 

Distal Speed 

0.029 different 
 

Max 0.012 different 
 

Max ProSVD feature 0.107 same 
 

t_2 

Mean 

Angular Speed 

0.003 different 
 

Max 0.004 different 
 

Mean 

Distal Speed 

0.085 same 
 

Max 0.051 same 
 

Max ProSVD feature 0.012 different 
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