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Abstract

Background

Anticoagulation decreases a patient’s risk of ischemic stroke and increases the risk of hem-

orrhage. Decision analyses regarding anticoagulation therefore require that different out-

comes be weighted in comparison to one another. Most decision analyses to date have

weighted intracranial hemorrhage (ICH) as 1.5 times worse than ischemic stroke, but

because death and disability have lifelong impact, the expected impact should vary by life

expectancy. Therefore, a fixed weighting ratio leads to age-related bias decision analyses of

anticoagulation. We aimed to quantify the relative impact of ICH and ischemic stroke and

derive a ratio that allows decision analysis without microsimulation.

Methods

We created a microsimulation model to predict QALYs lost due to ICH and ischemic stroke.

We then applied a meta-model to predict the ratio of QALYs lost from ICH relative to ische-

mic stroke.

Results

Previously-used weighting ratios (1.5) are close to our derived mean weighting ratio (1.60).

However, the weighting ratio of QALYs lost from ICH relative to ischemic stroke is sensitive

to age and discount rate. Patients at younger ages have higher mean weighting ratios, as do

patients with higher discount rates.

Conclusions

The ratio of QALYs lost to ICH relative to ischemic stroke varies with age and discount rate.

We present a set of such ratios here for use in decision analyses that do not incorporate full

microsimulation models. Use of weighting ratios that vary with age, rather than the current

fixed ratios, has the potential to reduce age-based bias in decision-making regarding events
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with lifelong implications. In this case, use of dynamic ratios may change anticoagulation

recommendations for patients with nonvalvular atrial fibrillation at relatively low stroke risk.

Introduction

Anticoagulation decreases a patient’s risk of ischemic stroke, while increasing the risk of hem-

orrhage. Decision analyses regarding anticoagulation therefore require comparing the harm

caused by ischemic stroke and hemorrhagic complications. In recognition of the generally

worse outcomes of intracranial hemorrhage (ICH) compared with ischemic stroke, many esti-

mates of net clinical benefit and cost-effectiveness analyses use a relative weight of 1.5, with

sensitivity analyses from 1.0 to 2.0.[1–14] Other authors have used similar methods, with dif-

ferent weighting schema.[15,16] Results of those analyses have influenced current guidelines.

[17–19]

This weighting of different outcomes, though, carries inherent limitations. First, the appro-

priate weight–how much more severe the outcomes of ICH are relative to the outcomes of

ischemic stroke–is unclear. More importantly, the use of a uniform weight across different

ages and risk factors may mask patient heterogeneity. The relative impact of ICH and ischemic

stroke are dependent on other patient-specific factors, most notably life expectancy. It may

therefore be appropriate to use different weights for different subpopulations, any of which

may differ meaningfully from the fixed weights that are currently applied.

To illustrate the expected relationship, imagine a patient with a remaining life expectancy

of one week. Any event that leads to a one-week hospitalization will have a similar impact on

remaining quality-adjusted life years (QALYs). The ratio of QALYs lost from an ICH to

QALYs lost from an ischemic stroke would approach one in such a patient. By contrast, a

patient with decades of life expectancy remaining will experience a loss of QALYs that may be

very different for different events. Depending on the mortality and long-term disability of

adverse events, the ratio between events compared may diverge considerably from one.

Despite these inherent limitations, a ratio weighting the expected outcomes of ICH and

ischemic stroke remains valuable. Many agents, from antiplatelet agents to anticoagulants to

thrombolytic agents, have similar trade-offs and are used for many different indications. A

decision analysis weighting principal outcomes requires less methodologic expertise than a full

microsimulation, and thus makes possible more carefully analyzed decision-making for a

wider range of medications and indications.

We therefore set out to derive the ratio of QALYs lost to ICH compared with ischemic

stroke among patients with nonvalvular atrial fibrillation, to be used in future decision-analytic

models.

Methods

We designed a Monte Carlo simulation predicting the QALYs lost to ICH compared to ische-

mic stroke.[20] We began with a synthetic population intended to mirror the atrial fibrillation

population of the United States. Each hypothetical patient was simulated in an ischemic stroke

condition and an ICH condition, drawing from a variety of datasets to predict downstream

morbidity and mortality. The QALYs lost in each condition, and the ratio of QALYs lost in

each of the two conditions, were calculated. We then created a regression model of the simula-

tion results (a “meta-model”) to demonstrate the influence of the input variables on this ratio,

and predicted the marginal QALY loss ratio at various ages. A schematic diagram of our
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model can be found in Fig 1, and a summary of our model inputs can be found in Table 1.

Additional description of our model can be found in the S1 Appendix. All analyses were per-

formed in version 13 of Stata (College Station, TX).

Synthetic population

Our population was modeled on the most recent year of the National Health and Nutrition

Examination Survey (NHANES) for which risk factors of stroke and in-hospital mortality fol-

lowing stroke are available (2011–2012).[31] Because atrial fibrillation is not included in

NHANES, this diagnosis was added separately, using age-specific prevalence of atrial fibrilla-

tion in the Anticoagulation and Risk Factors in Atrial Fibrillation (ATRIA) cohort.[22] Using

those data and the US Census estimates, we created a synthetic population intended to mirror

the size, age distribution, and risk factors of the US atrial fibrillation population.[21]

Stroke severity and mortality

Decision analyses in anticoagulation estimate the impact of ICH for patients on anticoagula-

tion relative to the impact of ischemic stroke without anticoagulation. Therefore, event severity

Fig 1. Schematic diagram of microsimulation model.

https://doi.org/10.1371/journal.pone.0199593.g001
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and outcomes used must reflect those two states (ICH with anticoagulation and ischemic

stroke without anticoagulation). In the ischemic stroke condition, we drew ischemic stroke

severity (as measured by the NIH Stroke Scale, NIHSS) from the subset of patients enrolled in

the NINDS t-PA trial who had atrial fibrillation, using a bootstrapping approach.[27] Because

warfarin use was an exclusion criterion of the trial, we can be confident that this sample

includes only patients with known atrial fibrillation who were not anticoagulated. We then cal-

culated the probability of in-hospital mortality using a previously-published logistic regression

model. [24,25]

We designated each ICH as intracerebral, subarachnoid, or subdural, randomly and in

keeping with the proportions observed among the combined warfarin groups of RE-LY and

ROCKET-AF.[23] We did not consider epidural hemorrhages. For patients who sustained

intracerebral hemorrhages, we assigned an NIHSS using a normal distribution based on the

median and interquartile range (IQR) observed in the Get With the Guidelines-Stroke

(GWTG) registry, a large dataset that collects abstracted data from over 1,000 participating

hospitals.[24] For patients who sustained subarachnoid hemorrhages, we assigned an NIHSS

using a gamma distribution fitted to the median and IQR observed in the same registry. For

each type of event, we calculated the probability of in-hospital mortality using a previously-

published logistic regression model from the same GWTG-Stroke registry, which appeared to

have excellent discrimination in split-sample validation (c-statistics of 0.82–0.89).[25] While

patient characteristics (such as age and sex) and comorbidities (such as diagnoses of diabetes,

coronary artery disease, and prior stroke) were included in our synthetic population, other

predictors, such as presentation via ambulance and time of arrival to the Emergency Depart-

ment, required other assumptions as detailed in the S1 Appendix.) For hypothetical patients

who sustained subdural hemorrhages, we used a previously-published multifactorial analysis.

Table 1. Sources of estimates used to build simulation model.

Modeled variable Mean

(Median)

sd

(IQR)

Distribution Reference(s)

Age and sex of US population N/A N/A N/A [21]

Age- and sex-specific prevalence of atrial fibrillation N/A N/A N/A [22]

Age- and sex-specific prevalence and covariation of stroke risk factors N/A N/A N/A [31]

Ischemic stroke severity, NIHSS 16.2 7.0 Normal [24,25]

Percentage of intracranial hemorrhages (ICH) that are intracerebral 65.2% - Fixed [23]

Percentage of ICH that are subarachnoid 5.8% - Fixed [23]

Percentage of ICH that are subdural 29.0% - Fixed [23]

Severity of intracerebral hemorrhages (NIHSS) (9) (3–19) Gamma [24]

Severity of subarachnoid hemorrhages (NIHSS) (3) (0–11) Gamma [24]

Inpatient mortality, ischemic stroke Predicted N/A N/A [25]

Inpatient mortality, intracerebral and subarachnoid hemorrhages Predicted N/A N/A [25]

Inpatient mortality, subdural hemorrhages Predicted N/A N/A [26]

Future modified Rankin Score (mRS) following ischemic stroke Predicted, see S1 Appendix N/A N/A [27]

Future mRS following ICH, assuming survival to discharge 13.8% each mRS 0–2, 19.5% each mRS 3–5 N/A N/A [28]

Length of stay, conditioned on diagnosis Sampled N/A N/A [35]

Hazard ratio for long-term mortality following event, mRS < = 2 1.7 - Fixed [29]

Hazard ratio for long-term mortality following event, mRS = 3 or 4 2.9 - Fixed [29]

Hazard ratio for long-term mortality following event, mRS 5 8.3 - Fixed [29]

Baseline probabilities of death by age Varies N/A N/A [30]

Discount rate 3% 1.7% Uniform, 0 to 6% Assumed

https://doi.org/10.1371/journal.pone.0199593.t001
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[26] Interestingly, neither warfarin use nor coagulopathy are included as predictors of mortal-

ity in the GWTG-Stroke publications addressing ischemic stroke, intracerebral hemorrhage,

and subarachnoid hemorrhage, though both (warfarin use and coagulopathy) are included in

the multifactorial analysis we used to estimate subdural hemorrhage mortality.

Future disability

For hypothetical patients who survive to hospital discharge, we then predicted modified Ran-

kin Scores (mRS) 3 months following the simulated event. In the ischemic stroke condition,

we used an ordered logistic regression derived from NINDS t-PA trial data.[27] In the ICH

condition, we followed the rates of disability published by the ATRIA cohort, assuming that

“minor disability” was evenly distributed between mRS of 1 and 2, that “major disability” was

evenly distributed among mRS of 3–5, and assuming no differences in rates of disability based

on type of ICH.[28]

Disutilities

To estimate the disutility of hospitalization, we drew length-of-stay from the National Inpa-

tient Sample (NIS), conditioned on principal diagnosis and use of thrombolytics (a randomly

assigned 10% of patients in the ischemic stroke condition). We estimated the disutility of the

hospitalization as a function of length of stay (see S1 Appendix for further detail). [32,33]

For patients who survive to discharge, we calculated life expectancy using published life

tables and applying mRS-specific hazard ratios observed in post-ischemic stroke patients.

[29,30] We then calculated remaining QALYs, conditioned on mRS, discounted to the present,

and calculated the QALYs lost relative to baseline.

Ratio and meta-model

We then divided each hypothetical patient’s QALYs lost in the ICH condition by the QALYs

lost in the ischemic stroke condition, to yield a ratio of the impact of ICH relative to ischemic

stroke. We then created a regression model of that ratio (“meta-model”), using patient-specific

input variables (age, congestive heart failure, hypertension, diabetes, prior stroke, coronary

artery disease, dyslipidemia, weight, and discount rate) as predictors. Because any predictor is

likely to be statistically significant in a large simulation sample (here over 3 million hypotheti-

cal patients), we removed predictors from the meta-model if varying the input variable from

the 5th to the 95th percentile did not change the predicted ratio by more than 10%. This left

only age and discount rate in our meta-model. We then tested for nonlinear relationships.

Sensitivity analyses

By using a meta-model, we tested the sensitivity of our primary outcome to age, congestive

heart failure, hypertension, diabetes, prior stroke, coronary artery disease, dyslipidemia,

weight, and discount rate.

Reclassification testing

To assess whether use of a variable weight would lead to changes in treatment recommenda-

tion, we recalculated net clinical benefit from a prior analysis, using variable weights rather

than previously-used fixed weights.[1] We noted, for each CHADS2 score, groups whose mean

predicted benefit changed from positive to negative net clinical benefit (harm) over the range

of predicted weights in our final meta-model.
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Results

The mean QALY impact of ICH relative to that of ischemic stroke was 1.60 (median 1.03, IQR

0.71–1.85). In our meta-model, age and discount rate are significant predictors of the weight-

ing ratio, and each had nonlinear effects on the predicted ratio. An interaction between age

and discount rate did not improve model fit. Younger patients have, on average, a higher ratio

of QALYs lost from ICH compared with ischemic stroke. Similarly, higher discount rates lead

to higher predicted ratios. The results of our final meta-model are shown in Table 2, the mar-

ginal predicted weighting ratio at each decade of life is shown at different ages in Table 3, and

a plot of the predicted marginal weighting ratio, as a function of age, is shown in Fig 2. Because

they drive our results, we have included selected intermediate results (inpatient mortality and

downstream disability) in Tables 4 and 5.

Use of weights that varied over our marginal predicted range led to reclassification from

benefit to harm in patients with a CHADS2 score of 1. While the magnitude of predicted net

clinical benefit (or harm) changed for other groups, the mean did not change from benefit to

harm over the range of our marginal predicted weights.

Discussion

Intracranial hemorrhages lead to generally worse outcomes relative to ischemic strokes. To

estimate how much worse, prior decision analyses and cost-effectiveness analyses in anticoa-

gulation have assumed ICH to be 1.5 times worse than ischemic stroke. In this modeling

study, we used a microsimulation model to derive a ratio of QALYs lost to each outcome, to

better inform future decision analyses. We found that the mean relative ratio of QALYs lost to

ICH relative to ischemic stroke is close to the usual base-case estimate (an overall population

mean of 1.60, in our analysis, compared to 1.5 in most prior work).

More importantly, we demonstrated that the appropriate weighting ratio varies by age, with

lower ratios for older patients and higher ones for younger patients. Using a fixed ratio across

the spectrum of age has led previous decision-analytic models to overvalue anticoagulation in

Table 2. Results of final meta-model.

β(age × age) 0.001087

βage -0.1876288

β(discount_rate × discount_rate) 117.5787

β(discount_rate) 2.046664

β0 9.086773

All coefficients are highly statistically significant (p<0.001). R2 for final modelffi 0.14; nffi 3.03 million.

https://doi.org/10.1371/journal.pone.0199593.t002

Table 3. Predicted marginal ratio of QALYs lost from ICH, relative to ischemic stroke, at selected ages and dis-

count rates.

Discount rate

2% 4% 6%

Age 40 3.41 3.59 3.87

50 2.51 2.69 2.97

60 1.83 2.01 2.29

70 1.37 1.55 1.83

80 1.12 1.30 1.58

90 1.09 1.27 1.55

https://doi.org/10.1371/journal.pone.0199593.t003
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the young and undervalue anticoagulation in the elderly. This is consistent with our hypothe-

sis; indeed, the relative impact of any two events that induce different rates of mortality and

long-term disability should vary by life expectancy, and age is a strongly related to life expec-

tancy. Because atrial fibrillation is in large part a disease of aging, age-related biases could lead

to important shortcomings in who is recommended for treatment.

Fig 2. Predicted marginal weighting ratio, as a function of age.

https://doi.org/10.1371/journal.pone.0199593.g002

Table 4. Intermediate results: In-hospital mortality, by event.

Intermediate outcome Mean

Mortality, ischemic stroke 13.6%

Mortality, intracranial hemorrhage 26.0%

– Mortality, intracerebral hemorrhage 22.9%

– Mortality, subarachnoid hemorrhage 22.1%

– Mortality, subdural hemorrhage 33.7%

n.b.: Variance is fixed, due to the dichotomous measure.

https://doi.org/10.1371/journal.pone.0199593.t004
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If adopted, this has the potential to change which patients would be recommended for

anticoagulation. For example, in a prior analysis stratifying net clinical benefit by CHADS2

score, patients with a CHADS2 score of 1 would benefit, on average, from anticoagulation

(though with a confidence interval overlapping zero).[1] Using an age-varying weight and a

discount rate of 3%, a 50-year-old patient (our derived weight: 2.59) whose CHADS2 score is 1

would move from predicted net clinical benefit using the standard weight to net harm. Con-

versely, using a variable weight would increase the predicted net clinical benefit for a 90-year-

old patient with a CHADS2 score of 1 from 0.19 to 0.27. Guidelines incorporating varying

weights would recommend against anticoagulation for patients with a CHADS2 of 1 at age 50

and in favor at age 90 (although, of course, competing risks and other disutilities could change

such a recommendation). While use of variable weights would be unlikely to change recom-

mendations for patients at high or intermediate stroke risk, large numbers of patients currently

recommended for anticoagulation are at low stroke risk.[34] Those low-risk patients may be

reclassified using these estimates.

Our analysis is subject to a number of important limitations. First, this method is only use-

ful insofar as decision analyses continue to predict net clinical benefit. It may be preferable for

future investigators to perform full microsimulation analyses, rather than relying on the ratios

we have here derived. Investigators performing microsimulations would have access to the

methods and cohort sizes we have used here, obviating the need for ratios like these. Second,

we have used literature-derived risks, and our derivation required some assumptions (such as

omitting epidural hemorrhages and assuming that survivors of ICH have similar long-term

mortality impact as survivors of ischemic stroke, conditioned on disability). Those assump-

tions may not hold true if interrogated by large future datasets. Third, our meta-model

explains a small degree of overall variance (R2 = 0.14), and age is an imperfect proxy for life

expectancy. Patients whose life expectancy differ considerably from what would be expected

from their age (e.g., young patients with many comorbidities or very spry older adults) may

not be accurately represented in our analysis. More generally, patients whose risk factor pro-

files are very different from our synthetic population may have systematic differences from

what we have considered. Further, our baseline life expectancy assumption is based on United

States life tables, while patients with atrial fibrillation likely have higher age-specific mortality.

Life tables specific to the US population with atrial fibrillation, if available, would refine our

predictions. And finally, the decision we have here sought to inform–anticoagulation with

warfarin–is only one of a number of treatment options available.

Nonetheless, we believe our analysis has important implications. First, decision analyses

that have used fixed weighting ratios should be reconsidered in light of the biases that this

method has introduced. If refinements to the weighting ratio lead to different recommenda-

tions, it may be necessary to revise guidelines based on those analyses. This is most likely to be

meaningful for patients at relatively low risk of ischemic stroke. Second, future decision analy-

ses should incorporate weighting ratios that vary with important predictors or downstream

morbidity and mortality. For anticoagulation among patients with atrial fibrillation, we have

presented such ratios. Third, decision analyses that do not incorporate full simulations should

Table 5. Intermediate results: Disability 3-months following discharge, conditional on survival to hospital discharge and stratified by event.

Modified Rankin Score (mRS) 0 1 2 3 4 5 6

Ischemic stroke 0.7% 13.9% 25.0% 29.0% 22.0% 8.7% 0.8%

Intracranial hemorrhage 13.8% 13.8% 13.8% 19.6% 19.6% 19.5% 0

n.b.: All subsets of intracranial hemorrhage are assumed to have equal post-discharge disability.

https://doi.org/10.1371/journal.pone.0199593.t005
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take care not to introduce bias based on life expectancy for events whose implications are life-

long. And finally, to allow decision analysis without microsimulation, efforts to more accu-

rately predict life expectancy should be pursued.

Conclusion

In sum, we have derived a ratio of QALYs lost to ICH compared with QALYs lost to ischemic

stroke among patients with nonvalvular atrial fibrillation, for use in decision-analytic models.

If adopted, we expect that this method will reduce age-based bias that has been introduced by

use of a fixed weighting ratio, while also improving decision analyses that do not incorporate

full microsimulation models.
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