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Abstract 

Background:  Clinical phenotype information greatly facilitates genetic diagnostic interpretations pipelines in 
disease. While post-hoc extraction using natural language processing on unstructured clinical notes continues to 
improve, there is a need to improve point-of-care collection of patient phenotypes. Therefore, we developed “Phe-
Nominal”, a point-of-care web application, embedded within Epic electronic health record (EHR) workflows, to permit 
capture of standardized phenotype data.

Methods:  Using bi-directional web services available within commercial EHRs, we developed a lightweight web 
application that allows users to rapidly browse and identify relevant terms from the Human Phenotype Ontology 
(HPO). Selected terms are saved discretely within the patient’s EHR, permitting reuse both in clinical notes as well as in 
downstream diagnostic and research pipelines.

Results:  In the 16 months since implementation, PheNominal was used to capture discrete phenotype data for over 
1500 individuals and 11,000 HPO terms during clinic and inpatient encounters for a genetic diagnostic consultation 
service within a quaternary-care pediatric academic medical center. An average of 7 HPO terms were captured per 
patient. Compared to a manual workflow, the average time to enter terms for a patient was reduced from 15 to 5 min 
per patient, and there were fewer annotation errors.

Conclusions:  Modern EHRs support integration of external applications using application programming interfaces. 
We describe a practical application of these interfaces to facilitate deep phenotype capture in a discrete, structured 
format within a busy clinical workflow. Future versions will include a vendor-agnostic implementation using FHIR. 
We describe pilot efforts to integrate structured phenotyping through controlled dictionaries into diagnostic and 
research pipelines, reducing manual effort for phenotype documentation and reducing errors in data entry.
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Background
Phenotypic data, especially in the electronic health 
records (EHR), is heterogeneous and sparse [1–3]. 
The data comes in numerous different formats that do 
not facilitate interoperability or direct comparison of 
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information [4–7]. Having a standardized, controlled 
phenotype vocabulary and data format is preferable to 
distinguish phenotypic groups and obtain a diagnosis 
[8]. Distinct phenotype ontology terms have already been 
used in several studies [9–16] to facilitate diagnosis of 
rare diseases and identification of causal genes. There is 
an acute need in clinical settings for well-structured phe-
notype data so that it can be combined with downstream 
gene panel, SNP array, or sequencing data for rapid, accu-
rate comprehension of both common and rare diseases 
[17, 18]. Some tools can even use this data to rank genes 
without any sequencing information [18, 19], which can 
direct sequencing, gene panels, or downstream analyses.

To obtain distinct phenotype terms, we use data from 
standardized phenotype vocabularies, but the most com-
mon and widely utilized vocabulary is the Human Phe-
notype Ontology (HPO) [20]. The Human Phenotype 
Ontology was created to enable “deep phenotyping” 
through the capture of symptoms and phenotypic find-
ings using a logically constructed hierarchy of phenotypic 
terms and enables a deep phenotyping approach wherein 
computable phenotypic profiles of human diseases and 
individual patients allow the linking of terms that are 
close to one another in the hierarchy and provides for a 
computational bridge between genome biology and clini-
cal medicine. HPO has become the de facto standard 
for representing clinical phenotype data in a multitude 
of programs including the NIH Undiagnosed Diseases 
Program (UDP) [21], several NCBI databases including 
MedGen [22], ClinVar [23], and the Genetic Testing Reg-
istry [24], the Sanger Institute databases DDD [25] and 
DECIPHER [26], the rare diseases section of the UK’s 
100,000 genome project [27], the Genomic Matchmak-
ing API of the Global Alliance for Genomics and Health 
[28], and many others. The UDP demonstrated that the 
use of HPO in comparison to clinical data alone in ES/GS 
variant analysis improves molecular diagnosis by 10–20% 
[29], as has several other studies [26, 30–32]. HPO pro-
vides a substantially more detailed representation of 
clinical phenotypes than other clinical terminologies and 
ontologies and is designed for computational analysis by 
linking to computational disease definitions and to ontol-
ogies of gene function, anatomy, biochemistry, and other 
biologic attributes.

Despite the improvements provided by HPO, it can 
be difficult to train people in the use of standardized 
ontologies, and natural language processing (NLP) tools 
can be difficult to integrate and vary greatly in con-
sistency [18, 33, 34]. Several extracted terms are also 
near-synonymous and not merged depending on the 
ontology used [35]. Recently, point-of-care strategies 
have emerged to address these facts, such as improved 

testing quality [36], deeper phenotyping strategies in 
EHR data [37, 38], and improved clinical documenta-
tion [39], but these improvements are not yet enough.

Even with these improvements at the point-of-care, 
these automated tools are unlikely to achieve the same 
result as manual annotation by expert users (such as the 
patients’ physicians, specialists, or genetic counselors), 
and while there are resources containing integrated 
HPO terms for use in manual annotation such as the 
Human Disease Gene website [40], they are not kept 
up-to-date individually and either miss new or contain 
outdated terms. For example, the epilepsy phenotypes 
within the HPO were recently updated in December 
2020 [41] in alignment with the most current guidelines 
formulated by the International League Against Epi-
lepsy in 2017. However, if a provider uses a framework 
based on a static version of the HPO from 2019 it may 
lack such recent information, or use terms that are no 
longer in use in the epilepsy community. This inability 
to implement the most recent release rapidly can cre-
ate inconsistent patient phenotyping depending on the 
expert user’s resource of choice.

Previously, genetic counselors and physicians at 
the Roberts Individualized Medical Genetics Center 
(RIMGC) at the Children’s Hospital of Philadelphia 
(CHOP) used a manual process of annotating clinic 
encounter notes with tags from the HPO website. Pro-
viders copied and pasted HPO codes into encounter 
progress notes, often with errors, and while they were 
easy to find they were not discretely captured. We have 
created PheNominal to remedy this deficiency. Phe-
Nominal is a tool to assist expert users in annotation 
of patient notes with preexisting phenotype terms from 
HPO. In addition to raw patient notes, users can now 
extract a full set of HPO terms curated by the physi-
cians themselves in easily parsable formats for down-
stream bioinformatics pipelines. In cases where genetic 
variant data is attained for patients, there are a variety 
of tools that can utilize this deeper, more normalized 
phenotype data to rank candidate genes for variants 
[19, 42–44].

With this tool, we hope to create a more consistent 
and standardized method for expert curation of pheno-
type terminology for reproducibility and dissemination 
to bioinformatics pipelines. In this study, we describe 
the tool development process and how to use the tool 
at point-of-care. We demonstrate how the tool has 
improved the accuracy, speed and willingness of physi-
cians in phenotyping their patients at a major genetic 
testing center for pediatric patients. Finally, we provide 
a realistic example of how discrete, structured phenotyp-
ing of patients can lead to a genetic diagnosis in disease.
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Materials
Development
Using the Agile software methodology and a series of 
development sprints [45], the Emerging Technology 
and Transformation Team actively involved customers 
in the product development process and continually 
implemented their feedback and rapidly tested each 
feature. The goal of the design was to create an inter-
face that was easy to use for clinicians with no spe-
cialized technical background, particularly those less 
familiar with various ontological databases. The devel-
opment team worked with providers at the RIMGC at 
CHOP to design and validate the interface. Autocom-
pletion was added to deal with common typographic 
errors that led to incomplete or inaccurate annotations 
and increased note taking time. Physician suggestions, 
such as adding comments to the HPO terms for nega-
tion and gene updates, were critical. Providers were 
given biweekly demonstrations to assess progress, 
perform tests and work with the product; provider 
feedback was clear and concise as requirements were 
clearly specified for feedback, and every new feature 
was tested immediately in production by physicians 
and counselors.

Typical use case of PheNominal
The PheNominal app is smoothly integrated into the 
Epic electronic health record (Epic Systems Corpora-
tion, Verona, WI), and currently available as a tab labeled 
“HPO URL” in the Epic Hyperspace once the patient 
chart is opened. The application works akin to a shop-
ping cart for an online website (Fig. 1). Training in using 
the tool involves a brief live demo for prospective users 
on how they can search and enter a HPO term for the 
patient and some troubleshooting guidelines. Users have 
access to the entire HPO vocabulary, which is kept up-
to-date: as of January 2021 it has over 13,000 terms and 
156,000 annotations. The user can browse the full scope 
of HPO simply by typing the initial letters of a term, using 
the “autocomplete” feature as an accelerator, selecting 
the term, and clicking “Add HPO” to confirm selection. 
Users can browser the HPO hierarchy to find the cor-
rect level of precision by clicking “Details,” which reveals 
the related synonymous, superclass, and subclass terms, 
as well as the description of the term and gene annota-
tion data for the term from Entrez [46] and HGNC [47] 
(Fig. 1, Part 3).

As the user adds terms to the “shopping cart,” they can 
add free-text annotations to each term, such as linked 

Fig. 1  PheNominal basic use case. In part 2, the user is considering the addition of 2 discrete HPO terms, synophrys (unibrow) and polysyndactyly 
of hallux (extra big toe) for their patient. In part 3, the superclass and subclass terms are highlighted, as in some cases the user may prefer to be 
more or less specific in their term choice. After adding terms in part 2, in part 4 the user may choose to save the terms to the EHR, which makes 
them immediately available for inclusion in patient notes as a pre-formatted Rich Text Format (RTF) table, as well as available for downstream use in 
bioinformatics or analytics pipelines
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genes, or if the term is a negated term (Fig.  1, Part 4). 
Clicking “Save Terms” saves the information to “Exist-
ing HPO Terms.” The full set of HPO terms and annota-
tions are formatted as a single JavaScript Object Notation 
(JSON) string, which is then stored in the Epic Chronicles 
database as an Epic SmartData Element (SDE). An SDE is 
a vendor-specific technique for storing discrete key-value 
pairs in Epic such that important phenotype information 
can be stored consistently, reproducibly, and discretely. 
New, modified, or removed terms are saved to the patient’s 
medical record after updating terms as well (Additional 
File 1, demo at: PheNominal Demonstration and Tutorial). 
Because the Epic EHR has standard web service methods 
to access and write SDEs as well as methods to manipu-
late SDE data within a clinical note using “SmartLinks,” we 
are able to format and present an RTF formatted tabular 
view of the JSON data for use in Epic notes, retrieve dis-
crete HPO terms for use in downstream bioinformatics 
and pipelines, and query patient records for specific terms 
in the enterprise data warehouse (Fig. 2, Additional file 1).

App architecture and design
The app was developed in JavaScript and CSS using Node.
js. It communicates in real-time with Epic Caché as well 
as the Bioontology API from BioPortal, which gives us 
the benefit of access to the very latest version of the HPO 
ontology and its terms. We also maintain a local version 
of the HPO ontology for performance that is also kept 
up-to-date via mailing lists and automated server queries. 
Users can benefit from access to fully updated terms as 
well as outdated terms if necessary, as all saved terms are 
version-tagged and permanently stored in the electronic 
health record unless updated by an authorized user.

PheNominal uses two vendor-specific web services 
(getSmartDataValues and setSmartDataValues) to access 
and write HPO terms as SDEs (Fig.  3). When the end 
user launches PheNominal, the tool retrieves and parses 
the most current HPO term set from NCBO BioPortal 
via the Bioontology API [48]. As the user manipulates 
HPO terms in the interface, changes are relayed to the 
application server to send and receive relevant data. The 
web services communicate via Epic Interconnect to gen-
erate two SDEs, a JSON payload and a pre-formatted RTF 
table for inclusion in clinical notes. If the user decides to 
save the term, this is updated downstream by adding the 
SDE to our Epic Clarity database for the patient. Finally, 
as in Fig.  2, Epic Smartlink allows for easy insertion of 
SDEs into patient notes.

Results
We collaborated with the Emerging Technology and 
Transformation team of the IT department and the clini-
cians and counselors of the RIMGC at CHOP to assess 

the improvement of PheNominal over manual entry of 
phenotype terms in number, accuracy, and speed. The IT 
team members were only the designers of the tool, and 
the RIMGC clinicians and counselors were the users. 
Before PheNominal, RIMGC clinicians had to navigate 
to the HPO web page manually, copy HPO terms and 
IDs, return to the Epic Hyperspace to paste them into 
patient notes without correcting them, or even type them 
out manually. This had an unacceptably high error rate 
for reliable inclusion in bioinformatics pipelines. During 
an effort to manually convert free text HPO terms from 
manually entered, historical notes into discrete HPO 
terms, the development team found thousands of HPO 
terms that had incorrect annotations, missing data, or 
typographic errors. Forty of these records were so cor-
rupted they could not be migrated programmatically. The 
need for a tool like PheNominal became abundantly clear 
early on in the migration process.

In over almost 5  years of the legacy system of man-
ual SmartPhrase input, only 1175 individuals’ records 
were annotated with HPO terms. But in the 1  year and 
4  months since PheNominal’s implementation in the 
system, over 1500 patients’ records were annotated 
(Table  1). When the Legacy system was in place, HPO 
terms were only assigned to patients undergoing exome 
sequencing tests. Since the implementation of Phe-
Nominal, HPO terms have been assigned to all patients 
undergoing any clinical evaluation as well as those under-
going any genetic testing through the RIMGC program. 
The ease of use of the PheNominal app allowed it to be 
applied to the entire patient population evaluated by the 
RIMGC clinic, which is the primary reason for the nota-
ble increase in the number of patients served. In a little 
over a year after PheNominal’s implementation, 1000 
more HPO terms were saved into Epic accurately than 
in nearly 5 years of manual input, with 3 times the aver-
age speed at 5 min per patient. The other benefit of hav-
ing an automated app with autocompletion is it ensures 
all terms are entered correctly, and thus discretely, for 
future pipelines and downstream analyses. In addition 
all terms must be entered and viewed on an encounter-
by-encounter basis for each patient in the legacy system, 
but with PheNominal, all HPO terms can be edited and 
viewed simultaneously for convenience and speed. It is 
important to note that there was no difference between 
the patient populations served by the Legacy system and 
PheNominal, nor in the clinical teams doing the HPO 
annotation: for each case the annotation was performed 
by a genetic counselor and reviewed by a physician 
geneticist.

After PheNominal was implemented around the end 
of June 2019, the number of patient records annotated 
per month only went up slightly over time, but the HPO 
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terms annotated per patient substantially increased 
(Fig.  4). This is partially due to recruitment of more 
patients outside of simple clinical testing over time but 
primarily because there was a marked increase in com-
fort by physicians and counselors using the tool to find 
the most specific and descriptive terms as the users 
familiarized themselves with the ontology. We believe, 

while difficult to quantify, that this factor contributed 
strongly to the large gradual increase in HPO term count 
per month over time, which is not explained by the far 
less appreciable increase in patient count per month.

By virtue of PheNominal, not only are there less 
errors due to the discrete choices provided by the 
app, but now users can traverse parent and child HPO 

Fig. 2  Integrating HPO terms from PheNominal into patient notes as RTF tables. a HPO terms are stored as two discrete SDEs: one, a 
JSON-formatted payload containing date and version information, and the other, b a simplified RTF table intended for use in clinical notes. 
Including the SmartLink “.chophpo” in a clinical note pulls the preformatted RTF table with annotations into the note itself
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terms in the ontology tree with ease. For example, as 
in the HPO paper from Robinson et  al. [49], a physi-
cian can navigate the tree and where they would pre-
viously annotate “hip dislocation” they can now write 
“congenital bilateral hip dislocation.” Alternatively, a 
user may wish to be less specific, when they do not have 
enough facts to identify a specific feature. PheNominal 
therefore makes overall diagnosis easier, and assists in 

accurate gene-phenotype association for downstream 
bioinformatics and sequencing pipelines.

As an example of how PheNominal assists in down-
stream analysis, we took a sample of unannotated patient 
notes from Yu et al. on a patient with hereditary spastic 
paraplegia [50] (Fig. 5). We can add the terms from the 
patient notes with PheNominal, under the assumption 
it would prevent input error with its autocompletion, 

Fig. 3  PheNominal system architecture and workflow. Users can search, review, add and delete HPO terms by having the Progress Notes open 
side by side for clinical analysis. The search is based on an external API built by NCBO BioPortal, which gets the HPO data from the HPO site. We 
store a copy of the full HPO data locally into our local application server and use it to populate the HPO details such as HPO name, description, 
synonyms, superclasses, subclasses and HPO gene association. Terms are discretely stored in the EHR, and pushed to Epic Chronicles, and daily to 
Epic Clarity and our proprietary CHOP data warehouse, and can be imported into the clinical note directly for use in other downstream pipelines, or 
downloaded from Clarity by direct SQL query by authorized researchers

Table 1  Comparison between legacy system (manual entry of SmartPhrases) and PheNominal on patient encounters. This compares 
the total measurement period for each system, number of patients served, the number of HPO terms entered correctly, how long each 
method takes on average, and how terms are viewed and if they are truly discrete in all cases

Legacy (manual entry) PheNominal

Time 4 years, 9.5 months
(09/01/2014–06/19/2019)

1 year, 7.5 months
(06/19/2019–1/31/2021)

Patients served 1175 1760

HPO terms saved 10,050 13,566

Time to enter terms 15 min mean 5 min mean, 2 min mode

Viewing terms for a patient Each encounter must be opened individually All at once across encounters

Discrete? No Yes



Page 7 of 11Havrilla et al. BMC Medical Informatics and Decision Making          (2022) 22:198 	

which is the set of HPO terms seen on the left side of 
Fig.  5. However, if we allowed physicians to type the 
notes or manually enter or copy-paste the HPO terms 
into patient notes and parse them using the basic Aho-
Corasick algorithm from Doc2Hpo, we could run into 
some preventable user errors, such as pasting incomplete 
terms or misspelling terms. As mentioned previously, the 
RIMGC produced thousands of incorrect annotations. 
For the sake of argument, if these mistakes remove even 1 
term from the 5 term list in Fig. 5, we go from scoring the 
causal gene (without any genetic variant knowledge) in 
the top 3 genes, to scoring it in the top 127 genes, using 
Phen2Gene in our downstream pipeline. PheNominal is 
critical for preventing simple errors like these that can 
seriously hinder or prevent the proper diagnosis of dis-
ease for troubled patients.

Discussion
Here, we report PheNominal, a point-of-care web appli-
cation, embedded within Epic electronic health record 
(EHR) workflows, to permit capture of standardized 
phenotype data. PheNominal has improved the speed 
and ease with which physicians and genetic counselors 
can input discrete, reliable phenotypic data in the EHR. 

Specificity of terms can now be easily modulated, and the 
more specific an HPO term, the more information it con-
tains. There are clear advantages of using PheNominal 
to consistently and reproducibly capture discrete HPO 
terms for downstream use in computational pipelines, as 
opposed to the makeshift post-hoc extraction of the past. 
Thanks to PheNominal, annotation mistakes and sparse 
phenotyping made by manual copy-and-paste entry can 
become an ancient memory for all healthcare systems 
and providers.

Future improvements to PheNominal will address 
limitations in compatibility, interoperability and com-
prehensiveness of the tool. Because PheNominal acts 
as a general-purpose ontology browser and annota-
tion tool, it can be expanded to include other ontologies 
beyond HPO. We can also provide sorted autocomplete 
information that is ranked by relevance so that users are 
less likely to choose the wrong term, so we are not sim-
ply substituting typing errors for term selection errors. 
Term recommendations may be further improved by 
future work in NLP tools that can predict potential HPO 
terms based on a set of already chosen terms, though at 
the moment no tools can fulfill this purpose. Addition-
ally, while PheNominal currently uses vendor-specific 

Fig. 4  Distribution of HPO terms, and patients served at the Roberts Individualized Medical Genetics Center at the Children’s Hospital of 
Philadelphia after the initial implementation of PheNominal implementation from July 2019 to January 2021. The green line number of unique 
patients with HPO terms annotated by PheNominal per month. The blue line is the number of HPO terms annotated for all patients per month by 
PheNominal. This figure was generated in R using the abovementioned data gathered from the RIMGC directly
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web services to read/write Epic SDEs, there is strong 
motivation to port the platform to use FHIR resources to 
improve cross-platform interoperability.

Because EHR vendors differ in their implementation of 
FHIR, and because PheNominal is dependent on the use 
of SDEs to store raw JSON data, there are some impor-
tant considerations for future FHIR integration efforts. 
Some of the point-of-care affordances, such as the real-
time availability of the entered terms in clinical notes, are 
harder to port to other EHRs or in a pure FHIR app, and 
the SmartPhrase concept may no longer be supported in 
all cases, which makes porting currently annotated Pro-
gress Notes difficult. But while the FHIR standard is still 
going through major changes, early conversations with 
the FHIR Genomics Working Group at CHOP have been 
positive and suggest a few potential options for conver-
sion to FHIR-based resources.

Integrating new information into PheNominal is 
relatively easy. There is already an API in place for 
Phen2Gene [19] to take the gene annotations from Phe-
Nominal and return scores for each term within a second. 
With Phen2Gene ranking genes, we can sort by score, 
and prioritize potentially causal genes for physicians and 
genetic counselors at the point of care. Since we are using 
the Bioontology API, porting other ontologies contained 
in NCBO BioPortal is also easy: OMIM [51], SNOMED 

[52], MeSH [53], ICD-10 [54], ORDO [55], and DOID 
[56]. It is also entirely possible to combine other data 
collection tools at the point of care with the help of 
PheNominal and with the help of SDEs, integrating this 
information into downstream clinical workflows for Clin-
ical Decision Support (CDS). We hope that clinicians and 
counselors will find this application a useful resource for 
improving the sensitivity and reproducibility of pheno-
typic annotation, and would use it to improve diagnosis 
speed and accuracy at the point of care.

Conclusion
PheNominal is a pilot effort to incorporate structured phe-
notype information using precise dictionaries into down-
stream diagnostic and research pipelines by reducing 
manual input during phenotype documentation and gener-
ation of patient notes. This reduces errors in data entry that 
lead to more accurate downstream results in delineating the 
subphenotype, and predicting candidate genes for disease.

We believe there are 5 main innovations of PheNominal. 
It is a tool for discrete, point-of-care capture of clinically 
precise phenotype terms with minimal effort. It utilizes 
secure and standard-compliant encoding and storage of 
the HPO terms directly into the EHR. The data is dual-
formatted both to permit downstream reuse in JSON for-
mat, containing date and version information, as well as 

Fig. 5  Inputting terms with the support of PheNominal versus manual extraction downstream with NLP tools. In this example, we derived several 
HPO terms derived from patient notes with the help of PheNominal. We provide realistic examples of 3 reproducible copy-paste errors like “limb” to 
“lim” that produce missing terms when parsed by NLP algorithms such as Doc2Hpo. The derived HPO terms are then passed to Phen2Gene, which 
ranks potential disease genes based on phenotype information alone. In this example, the rank drops from 3 to 127, which may result in a variant in 
a candidate gene (SPG11) not to appear on the final diagnostic report
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to allow point-of-care insertion into a clinical note in RTF 
format. PheNominal is integrated into the EHR directly 
through native web services, permitting generalizability 
to any other EHR implementations and the FHIR stand-
ard. Lastly, it permits integration of other ontologies and 
evolving standards like Phenopackets.
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