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Background-—Oxidative stress–mediated Ca2+/calmodulin-dependent protein kinase II (CaMKII) phosphorylation of cardiac ion
channels has emerged as a critical contributor to arrhythmogenesis in cardiac pathology. However, the link between mitochondrial-
derived reactive oxygen species (mdROS) and increased CaMKII activity in the context of cardiac arrhythmias has not been fully
elucidated and is difficult to establish experimentally.

Methods and Results-—We hypothesize that pathological mdROS can cause erratic action potentials through the oxidation-
dependent CaMKII activation pathway. We further propose that CaMKII-dependent phosphorylation of sarcolemmal slow Na+

channels alone is sufficient to elicit early afterdepolarizations. To test the hypotheses, we expanded our well-established guinea pig
cardiomyocyte excitation-contraction coupling, mitochondrial energetics, and ROS-induced-ROS-release model by incorporating
oxidative CaMKII activation and CaMKII-dependent Na+ channel phosphorylation in silico. Simulations show that mdROS mediated-
CaMKII activation elicits early afterdepolarizations by augmenting the late Na+ currents, which can be suppressed by blocking L-
type Ca2+ channels or Na+/Ca2+ exchangers. Interestingly, we found that oxidative CaMKII activation–induced early
afterdepolarizations are sustained even after mdROS has returned to its physiological levels. Moreover, mitochondrial-targeting
antioxidant treatment can suppress the early afterdepolarizations, but only if given in an appropriate time window. Incorporating
concurrent mdROS-induced ryanodine receptors activation further exacerbates the proarrhythmogenic effect of oxidative CaMKII
activation.

Conclusions-—We conclude that oxidative CaMKII activation–dependent Na channel phosphorylation is a critical pathway in
mitochondria-mediated cardiac arrhythmogenesis. ( J Am Heart Assoc. 2018;7:e008939. DOI: 10.1161/JAHA.118.008939.)
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C ardiovascular disease is a major health problem in the
United States and its incidence increases steadily as the

general population ages.1 Despite advances in diagnosis and
treatment, cardiovascular disease mortality remains high,
accounting for nearly 500 000 American deaths each year.1

About one half of cardiovascular disease–related deaths occur
suddenly because of sudden cardiac death resulting from
ventricular arrhythmias.2,3 Although the incidence rate is high,
the precise molecular mechanisms underlying cardiac

arrhythmogenesis are not fully understood, hindering the
development of effective therapeutic strategies.

Recently, loss of mitochondrial function, which is often
observed in many disease processes such as heart failure,
ischemic cardiomyopathy, hypertrophic cardiomyopathy, and
metabolic diseases, has emerged as a key contributor to the
arrhythmogenic substrate. While the detailed mechanistic
pathways remain incompletely understood, work from our
laboratory and others4–7 suggest that the proarrhythmic
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effect of mitochondria dysfunction is at least partially
attributed to the organellar-derived reactive oxygen species
(ROS), which can influence multiple redox-sensitive ion
channels/transporters underlying Ca2+ handling such as
ryanodine receptors (RyRs)6–9 and sarcoplasmic reticulum
(SR) Ca2+ ATPase (SERCA).10,11 Beside Ca2+ handling pro-
teins, excessive ROS can also affect sarcolemmal voltage–
gated Na+ channels,12,13 K+ channels, Na+/Ca2+ exchanger,
and L-type Ca2+ channels (LCCs).11,14–18 In addition to direct
modulation of redox-sensitive ion channels, mitochondrial-
derived ROS (mdROS) may indirectly influence Ca2+ handling
and action potentials (APs) via redox signaling pathways such
as oxidation-mediated Ca2+/calmodulin-dependent kinase II
(CaMKII) phosphorylation. CaMKII is a multifunctional protein
kinase ubiquitously expressed in cardiomyocytes and is
activated by binding to Ca2+/CaM and subsequent auto-
phosphorylation.19,20 A growing body of evidence has demon-
strated that CaMKII can also be activated by ROS.21–24 Once
activated, CaMKII can phosphorylate a wide range of key Ca2+

and Na+ regulatory proteins such as LCCs,25–28 RyRs,29–35

phosphalamban,29,34,36 and Na+ channels.37,38 Importantly,
Xie et al39 showed that H2O2 perfusion–induced oxidative
CaMKII activation leads to afterdepolarizations in isolated
rabbit cardiomyocytes, likely by phosphorylation of Na+

channels and LCCs. Given those advances, the detailed
mechanistic pathways by which oxidation-dependent CaMKII
activation creates a proarrhythmia substrate in diseased
hearts remain unclear, partially because of the multidirec-
tional interaction loops between CaMKII activation and ion

handling. As a powerful tool complementary to experimental
measurement, computational modeling has been applied to
elucidate how CaMKII activation may influence cardiac ion
handling and electrophysiology. For instance, Onal et al40

explored the CaMKII-dependent regulation of late Na+ current
(INa,L), Ca2+ homeostasis, and cellular excitability in atrial
myocytes using a computer model. In another computational
study, Dai et al41 showed that CaMKII overexpression
facilitates early afterdepolarization (EAD) by prolonging the
deactivation of the INa,L, and combination with b-adrenergic
activation further increases EAD risk. Modeling studies also
suggested that CaMKII activation–mediated SR Ca2+ overload
and increased cytosolic Na+ elicit post-acidosis arrhythmias in
human myocytes.42 To examine the role of oxidation-
dependent CaMKII activation in regulating cardiac cell
excitability following myocardial infarction, Christensen
et al43 developed a mathematical model of CaMKII activity,
which, for the first time, includes both oxidative and
autophosphorylation activation pathways. More recently, an
integrative cardiomyocyte model has been developed by
Foteinou et al44 to study the mechanistic role of oxidized
CaMKII in the genesis of H2O2-induced EADs in the heart. In a
similar study, Zhang et al45 developed a new Markov chain
model of CaMKII d-isoform that involves both of the
autophosphorylation and oxidation pathways to simulate
CaMKII activation and its effect on APs under oxidative stress
in cardiomyocytes.

Given the advances, how endogenous ROS, especially
those derived from mitochondria (mdROS), affect CaMKII
activity and consequently ion homeostasis and AP remains
largely unexplored. Dissecting direct mdROS effects and
indirect effects caused by CaMKII phosphorylation is difficult
to address experimentally, as is defining the contribution of
individual targets to arrhythmogenesis. As the voltage-gated
Na+ currents (INa) are a significant contributor to the initiation
and duration of the cardiac AP and a well-recognized
substrate of CaMKII phosphorylation, we hypothesize that
mdROS-mediated oxidative CaMKII activation could elicit
abnormal APs by enhancing INa. To test the hypothesis, we
expanded our well-established cardiomyocyte excitation-con-
traction coupling, mitochondrial energetics, and ROS-induced-
ROS-release (ECME-RIRR)5,46,47 model by incorporating oxida-
tive CaMKII activation and slow Na+ channel phosphorylation.
Our simulations show that mdROS bursts–mediated oxidative
CaMKII activation significantly augments INa,L, which alone is
sufficient to cause EADs. Moreover, we show that under
certain conditions the oxidative CaMKII activation–induced
EADs persist even after mdROS have returned to physiological
levels, an event that is likely attributed to CaMKII’s property
as a “memory molecule.” Finally, model simulations suggest
that timing is critical for antioxidant treatments to effectively
eliminate mdROS-CaMKII activation–induced EADs.

Clinical Perspective

What Is New?

• We developed a multiscale computational model linking
cardiomyocyte mitochondrial energetics to Ca2+/calmod-
ulin-dependent protein kinase II activity and Ca2+ handling.

• Mitochondrial-mediated oxidative Ca2+/calmodulin-depen-
dent protein kinase II activation is sufficient to elicit early
afterdepolarizations solely through enhanced late Na+

current.
• Oxidative Ca2+/calmodulin-dependent protein kinase II
activation–elicited early afterdepolarizations are sustained
even after mitochondrial-derived reactive oxygen species
has returned to its physiological levels.

What Are the Clinical Implications?

• It is critically important to consider mitochondria when
designing novel antiarrhythmic therapies.

• It appears that there is a treatment window for antioxidants
to suppress Ca2+/calmodulin-dependent protein kinase II–
mediated pathological effects.
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Methods
No human or animal subject was involved in this theoretical
study. Thus, there was no institutional review board approval
required. The data, analytic methods, and codes will be made
available to other researchers for purposes of reproducing the
results or replicating the procedure. Model equations and
parameters are available within the article or Tables S1
through S28.

Model Development
In this in silico study, we aimed to examine the effect of
mitochondrial-derived oxidative stress on CaMKII activation to
induce arrhythmias. The model was based on our recently
published guinea pig cardiomyocyte ECME-RIRR model47 and

incorporated several new model components including a
CaMKII activity module, a Markov slow Na+ channel module,
and an Na+ channel phosphorylation module. The scheme of
the expanded ECME-RIRR model is shown in Figure 1, and the
newly added model components are described below.

CaMKII activity module

The CaMKII module model was built based on the Markov
chain models constructed by Foteinou et al44 and Zhang
et al,45 which comprises CaMKII activation by ROS and
experimental data from Erickson et al.22 For simplification, we
assumed that Ca2+/CaM-dependent activity, phosphorylation-
dependent activity, and oxidation-dependent activity are
homogeneous across the cell. With this assumption, the total
activated CaMKII is defined as the sum of these activated

Figure 1. Scheme of the expanded excitation-contraction coupling, mitochondrial energetics, and ROS-induced-ROS-release (RIRR) model that
incorporates oxidative Ca2+/calmodulin-dependent protein kinase II (CaMKII) activation. The electrophysiological module describes the major
ion channels underlying the action potential (eg, fast Na+ channel and Na+/Ca2+ exchanger) and processes involved in Ca2+ handling (eg, local
Ca2+ control and transport of Ca2+ across the sarcoplasmic reticulum). The mitochondrial module accounts for major components of
mitochondrial energetics such as tricarboxylic acid cycle and oxidative phosphorylation, as well as mitochondrial membrane ion channels (eg,
Ca2+ uniport). The RIRR module describes reactive oxygen species (ROS) production (from the electron transport chain), transport (through inner
membrane anion channel [IMAC]), and scavenging (eg, by the superoxide dismutase and glutathione peroxidase enzymes).
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CaMKII (ie, binding Ca2+/CaM, phosphorylated, and oxidized).
The fraction of activated CaMKII can be calculated as:

CaMKIIactive ¼ ½CaMKIIactive�
½CaMKIItotal� � 100% (1)

where [CaMKIIactive] is the concentration of total activated
CaMKII and [CaMKIItotal] is the concentration of total CaMKII.
The complete CaMKII activation model is described in
Figure S1 and Tables S4 and S25.

The Markov slow Na+ channel module

Experimental studies showed that the effect of CaMKII
activation on Na+ channels is mainly on the slow component,
ie, augmenting the INa,L. As our ECME-RIRR model consists
only of the fast INa model, we adopted the Markov framework
of the Na+ channel model developed by Grandi et al48 to
incorporate the INa,L:

INa;L ¼ GNa;L � PLO � ðV� ENaÞ (2)

where GNa,L is the conductance of the late Na
+ channels (mS/

lF) and PLO is the open possibility of the late Na+ channels.
The complete Markov slow Na+ channel model and parame-
ters are listed in Tables S1 and S26, respectively.

Slow Na+ channel dynamic phosphorylation module

For modeling purposes, we contended that Na+ channels are
either phosphorylated by activated CaMKII or not. The
transition between the unphosphorylated and phosphorylated
Na+ channels can be described by a 2-state Markov model
(Figure S1). Specifically, the fraction of phosphorylated Na+

channels is governed by

d/Na;CaMKII

dt
¼ KPhos � ð1� /Na;CaMKIIÞ � KDephos � /Na;CaMKII

(3)

where /Na;CaMKII is the fraction of phosphorylated Na+

channels, KPhos is the phosphorylation rate, which is propor-
tional to the fraction of activated CaMKII, and KDephos is a
constant, which can be determined by the experimental data
as described previously.48 The total INa,L I�Na;L is calculated by
the following equations:

I�Na;L ¼ ð1� /Na;CaMKIIÞ � INa;L þ /Na;CaMKII � I0Na;L (4)

I0Na;L ¼ GNa;L � P0LO � ðV� ENaÞ (5)

In these equations, I0Na,L represents the late Na+ current
caused by CaMKII activation, and P0LO is the open probability
of phosphorylated late Na+ channels. The model parameters
for the phosphorylated and unphosphorylated Na+ channels
by activated CaMKII were refit with experimental data by Aiba
et al49 and are listed in Table S27.

Simulation Protocol
The CaMKII activity and slow Na+ channel module models
were integrated into the guinea pig ventricular myocytes
ECME-RIRR model47 after parameterization. To focus on the
effect of mdROS-mediated oxidative CaMKII activation on AP
and dissect the underlying ionic mechanisms, we did not
consider the direct effect of mdROS on redox-sensitive ion
handling proteins such as RyRs, SERCA, and Na+ channels in
the present study unless otherwise specified. The formulas of
other processes, such as ion channels and metabolic
reactions, and model parameters were the same as those in
the ECME-RIRR model47 (Tables S1 through S28). The code of
the new cell model was written in C++ (Visual Studio,
Microsoft). The nonlinear ordinary differential equations were
integrated numerically with CVODE as previously
described.5,50

The cardiomyocyte was stimulated at 0.25 Hz until the
steady state was reached. The steady state values were then
used as initial conditions for subsequent simulations. For
model validation, we first simulated the effect of pacing cycle
lengths (PCLs; 500, 1000, 2000, and 4000 ms) on AP
duration (APD), then the ROS-induced INa,L augmentation, and
finally EAD incidence rate dependence on PCL under oxidative
stress. Model simulations were compared with experimental
data from the literature. After model validation, we simulated
the effect of mdROS on CaMKII activation, INa,L, cytosolic Na

+

and Ca2+ handling, and AP under various conditions. The
production of mdROS was modeled as a fraction, or shunt, of
electrons from the electron transport chain into the matrix, as
previously described.5,47,51,52 Studies have shown that under
physiological conditions, up to 2% of the electron flowing
the respiratory chain are partially reduced to form the
superoxide,53 thus the physiological value of shunt was set
as 2%. Pathological shunt was set as 10% or 14% to induce
sustained mitochondrial oscillations, which is consistent with
our previous computational studies.5,47,52 The simulation
results were postprocessed and plotted using Origin software
(OriginLab).

Results

Model Validation
To validate the built guinea pig cardiomyocyte ECME-RIRR
model that incorporates new model modules, we first
simulated the effects of CaMKII phosphorylation and PCL on
APD and compared the results with experimental data. Our
simulations showed that increasing the PCL (from 500 to
4000 ms) caused stepwise APD elongation (Figure 2A, gray),
which was further enhanced by CaMKII phosphorylation (data
not shown). Those model predictions were comparable to
experimental data reported by Aiba et al49 (Figure 2A, black).

DOI: 10.1161/JAHA.118.008939 Journal of the American Heart Association 4

Mitochondrial-Mediated Oxidative CaMKII Activation Yang et al
O
R
IG

IN
A
L
R
E
S
E
A
R
C
H



We then simulated the effect of oxidative stress on the
voltage-gated INa (Figure 2B). In an experimental study,
Wagner et al38 showed that H2O2 (200 lmol/L) perfusion
caused a remarkable increase (�177 A ms/F) in INa,L integral
in wild-type mouse ventricular myocytes and this enhance-
ment was substantially reduced in CaMKII knockout car-
diomyocytes (�48.7 A ms/F). Our model simulations showed
a similar trend: reducing CaMKII by 95% (estimated based on
Western blot data in Backs et al54) notably reduced the
oxidative stress–induced INa,L augmentation.

Finally, we examined the effect of ROS on APs at different
PCLs. To be consistent with experimental studies by Xie
et al39 and Zhao et al,55 the concentration of cytosolic ROS
was set as 200 lmol/L in this simulation. Our simulations
showed that oxidative stress–induced EAD incidence rate is

PCL dependent: EADs could be induced readily when PCL was
long (eg, 6 seconds) but hardly when PCL was relatively short
(eg, 1 second) (Figure 2C). Those simulations were in agree-
ment with previous experimental39,55 (Figure 2D) and com-
putational studies.44

Effect of mdROS on CaMKII and Ion Handling
During Mitochondrial Oscillations
After model validation, we simulated how mitochondrial-
derived oxidative stress could influence CaMKII activity and
ion handling in a “beating” guinea pig cardiomyocyte. As
previously reported,5,46,47,52,56 increasing shunt, the fraction
of the electrons of the respiratory chain towards the
generation of O�

2� from 0.02 to 0.10 triggered sustained

Figure 2. Validation of cardiomyocyte excitation-contraction coupling, mitochondrial energetics, and
ROS-induced-ROS-release model that incorporates oxidative Ca2+/calmodulin-dependent protein kinase II
(CaMKII) activation and slow Na+ channels phosphorylation modules. A, The effect of pacing cycle length
(PCL) on the duration of action potential (APD). For comparison, the APDs at different PCLs were normalized
to the APD at PCL=1 second. Blank triangles are model simulations and black squares represent
experimental data from Aiba et al.49 B, The effects of oxidative CaMKII activation on late Na+ current (INa,L).
The integral of INa,L was calculated between 50 and 500 ms after the onset of depolarization. The CaMKII
activation–induced INa,L change (ie, D integral INa,L) was obtained by subtracting the baseline INa,L integral
from the CaMKII INa,L integral. Simulation was run with PCL=2 seconds. Experimental data are from Wagner
et al.38 C, Effect of cytosolic H2O2 on action potential at different PCLs (1000 and 6000 seconds). Left
panel shows model simulations and right panel shows experimental data from isolated rabbit ventricular
myocytes (modified from Zhao et al55 with permission. Copyright© 2012, The American Physiological
Society). WT indicates wild-type.
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mitochondrial oscillations and cyclic ROS production (Fig-
ure S2A). The results indicate that addition of new model
components (eg, mdROS-mediated oxidative CaMKII activa-
tion and CaMKII-dependent Na+ channels phosphorylation)
did not alter the dynamics of the existing model subsystems.
Simulations also show that DΨm depolarization (and the
associated mdROS bursting) led to sustained EADs during
each oscillatory cycle (Figure 3A, for better visualization only
the first depolarization was shown). Cytosolic Na+ concentra-
tion ([Na+]i) climbed gradually during mitochondrial depolar-
ization (Figure 3B). Cytosolic Ca2+ transient rose slightly and
exhibited a large increase during the decay phase (Figure 3C).
The dynamics of the fraction of activated CaMKII were similar
to that of [Na+]i (Figure 3D).

To examine the ionic mechanisms underlying mdROS-
mediated EADs, we analyzed the dynamics of major Ca2+

and Na+ handling currents/fluxes before and after mito-
chondrial depolarization, and with or without mdROS-induced
oxidative CaMKII activation. In the absence of CaMKII
activation, the mdROS bursts slightly elongated APD and
Ca2+ transient, enhanced INa,L, and shifted the Na+-Ca2+

exchanger current (INaCa) forward component to the right
(Figure 4, red lines). The effects on L-type calcium channel
current (ICaL), SR Ca2+ release, and SERCA Ca2+ uptake were

small. Addition of CaMKII activation had negligible effects on
APD and cytosolic Ca2+ concentration ([Ca2+]i), as well as
INaCa, ICaL, and SR Ca2+ handling under physiological mdROS
conditions (ie, polarized DΨm) (Figure 4, blue lines). The INa,L
integral was slightly increased, likely caused by [Ca2+]i-
induced CaMKII activation. During mitochondrial depolariza-
tion, mdROS-mediated CaMKII activation did not change the
peak INa but caused substantial INa,L augmentation (Fig-
ure 4C, olive line arrow #1), resulting in APD prolongation
and AP reverse (Figure 4A, olive lines). The AP reverse
reactivated ICaL (Figure 4E, olive line), which triggered Ca2+-
induced Ca2+ release (Figure 4F, olive lines), leading to a
larger Ca2+ elevation (Figure 4B, olive line) and a second
INa,L surge (Figure 4C, olive line arrow #2). The forward
mode INaCa was initially inhibited and reversed (arrow #1)
and then largely amplified (arrow #2) (Figure 4C, olive line),
caused by AP reverse and altered Na+ and Ca2+ homeosta-
sis. It is worth mentioning that oxidative CaMKII activation
alone could not induce delayed afterdepolarizations (DADs;
data not shown), which is consistent with the findings of
Foteinou et al.44

One unique characteristic of our ECME-RIRR model is its
capability to simulate sustained mitochondrial oscillations50,56

(Figure S2A), allowing examination of the dynamics of AP

Figure 3. Effect of mitochondrial depolarization and mitochondrial-derived reactive oxygen species (ROS)
bursts on action potential (A), cytosolic Na+ ([Na+]i) (B), cytosolic Ca2+ concentration ([Ca2+]i) (C), and
fraction of activated Ca2+/calmodulin-dependent protein kinase II (CaMKII) (D). shunt=0.1 and pacing cycle
length=2 seconds.
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upon mitochondrial repolarization.5,52 As shown in Figure 5A,
after DΨm repolarization, AP EADs surprisingly remained on
the first several (eg, 7 in this simulation) beats, even though
mdROS had reduced to basal levels (Figure S2A). The
sustained EADs then turned to intermittent EADs and
eventually became normal APs. [Ca2+]i (Figure 5B) and
activation of INa,L (Figure 5C) followed the same pattern.
[Na+]i (Figure 5D) and fraction of phosphorylated Na+ chan-
nels (Frac_NaP) (Figure 5E) gradually decreased during the
repolarization phase. However, [Na+]i did not completely
return to the predepolarization level, causing gradual [Na+]i

accumulation along the progression of mitochondrial oscilla-
tions (Figure S2B). In the absence of mdROS-induced
oxidative CaMKII activation, [Na+]i remained relatively con-
stant during mitochondrial oscillations (Figure S2C).

Importantly, with the progression of mitochondrial oscil-
lations, the time needed for AP to return to normal
morphology during DΨm repolarization increased. When
shunt was further increased to 0.14, EADs (constant and
intermittent) were maintained throughout the whole repolar-
ization phase after the third depolarization (Figure S3). This
behavior seemed to be attributed to the elevated CaMKII

Figure 4. Dynamics of action potential (A), cytosolic Ca2+ concentration ([Ca2+]i) (B), Na
+ current (INa) (C),

Na+-Ca2+ exchanger current (INaCa) (D), L-type calcium channel current (ICaL) (E), and sarcoplasmic reticulum
Ca2+ release (Jrel) (F) before (Repo) and after (Depo) mitochondrial depolarization. Ca2+/calmodulin-
dependent protein kinase II (CaMKII) (+) represents the new excitation-contraction coupling, mitochondrial
energetics, and ROS-induced-ROS-release (ECME-RIRR) model consisting of the oxidative CaMKII activation
module, whereas CaMKII (�) represents the previous ECME-RIRR model that does not incorporate the
oxidative CaMKII activation module. shunt=0.1 and pacing cycle length=2 seconds.
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activation and augmentation of INa,L. Thus, we analyzed the
correlation between the number of sustained or intermittent
EADs and the peak [Na+]i during the state transition (eg,
from sustained EADs to intermittent EADs). Results show

that the numbers of sustained EADs and intermittent EADs
were both closely correlated with the peak [Na+]i, especially
under more severe stressed conditions (ie, shunt=0.14)
(Figure 6).

Figure 5. Dynamics of action potential (A), cytosolic Ca2+ concentration ([Ca2+]i) (B), Na
+ current (INa) (C),

cytosolic Na+ concentration ([Na+]i) (D), and fraction of phosphorylated Na+ channels (Frac_NaP) (E) during
the first mitochondrial repolarization. shunt=0.1 and pacing cycle length=2 seconds.
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Effect of Blocking Na+ or Ca2+ Handling Channel
on mdROS-CaMKII Activation–Induced EADs
Next, we examined the effect of completely blocking individ-
ual Na+ or Ca2+ handling channel on mdROS-mediated
oxidative CaMKII activation–induced AP abnormality during
mitochondrial depolarization. Under control conditions (ie,
physiological mdROS production or shunt=0.02), blocking INa,L
had no effect on AP upstroke but slightly shortened APD. The
effects on [Ca2+]i, [Na

+]i, INaCa, ICaL, and the peak of INa were
negligible (data not shown). Under pathological mdROS
production conditions (eg, shunt=0.14), 100% elimination of
INa,L abolished EADs, transient INaCa reverse, and ICaL reacti-
vation, accompanied by reduced [Ca2+]i and [Na+]i overload
(Figure 7A, blue lines).

Similar to INa,L inhibition, completely blocking INaCa
suppressed ICaL reactivation and the subsequent Ca

2+-induced
Ca2+ release, which prevented Ca2+ elevation and abolished
the EADs (Figure 7B, blue lines). INaCa blockage also reduced

INa,L enhancement and [Na+]i (Figure 7B), which was consis-
tent with published data.55 It is worth mentioning that
although transient blockage seems beneficial, long-term INaCa
inhibition may cause significant alteration of [Ca2+]i and [Na+]i
homeostasis and eventually lead to abnormal APs (such as
EADs).

Our model simulations show that blocking ICaL also
eliminated the oxidative CaMKII activation–induced EADs,
which was consistent with previous experimental data
showing that L-type Ca2+ channel inhibitor suppressed
oxidative stress–induced EADs.39 Lack of ICaL activation
facilitated phase 2 AP repolarization, resulting in significant
APD shortening that hindered the subsequent Ca2+-induced
Ca2+ release and Ca2+ overload. Consequently, Na+/Ca2+

exchanger inward current enhancement was suppressed
(Figure 7C). The outcome of ICaL blockade in the absence of
mdROS bursts were shortened APD, abolished AP plateau,
and diminished Ca2+ transients (data not shown), which
agreed with previous studies.57,58

Figure 6. Correlation between the number of sustained early afterdepolarizations (EADs) (A and B) or
intermittent EADs (C and D) and peak Na+ concentration during mitochondrial repolarization at different
shunts (0.1 for A and C and 0.14 for B and D). Black solid lines represent regression and red dash lines
represent 95% confidence bands; pacing cycle length=2 seconds.
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Effect of Antioxidant Treatment on
mdROS-CaMKII Activation–Induced EADs

We then examined whether antioxidant treatment, such as
reducing mitochondrial ROS production or increasing ROS
scavenging could eliminate mdROS-CaMKII activation–in-
duced EADs. In the simulations shown in Figure 8, shunt
was initially set to the basal level (0.02) for 5 seconds, then

increased to 0.1 or 0.14, and finally reduced to 0.02 at
700 seconds. Increasing shunt caused sustained mitochon-
drial oscillations and correlated fluctuations of [Na+]i and
Frac_NaP. Interestingly, both [Na+]i and Frac_NaP increased
gradually with the progression of mitochondrial oscillations,
with the increases more evident at higher shunt (Figure 8A
and 8B). Reducing shunt from 0.1 to the basal level rendered
[Na+]i and Frac_NaP to their initial values and eliminated EADs

Figure 7. Effect of complete blockage of late Na+ current (INa,L) (A), Na
+-Ca2+ exchanger current (INaCa)

(B), or L-type calcium channel current (ICaL) (C) on action potential (1), cytosolic Ca2+ concentration ([Ca2+]i)
(2), cytosolic Na+ concentration ([Na+]i) (3), INaCa (4), INa (5), and ICaL (6) under normal and mitochondrial
depolarization conditions. shunt=0.14 and pacing cycle length=2 seconds.
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(Figure 8, red lines). However, when the preceding shunt was
higher (ie, 0.14), reducing ROS production at 700 seconds
failed to normalize the elevated [Na+]i and Frac_NaP and
suppress EADs (Figure 8, blue lines). Interestingly, we found
that reducing mdROS production (shunt, from 0.14 to 0.02)
earlier (eg, at 350 seconds) converted sustained EADs to
intermittent EADs. When shunt reduction was induced earlier
still (eg, 200 seconds), [Na+] overload and the oxidative
stress–induced EADs were eliminated (Figure 9).

Another strategy to reduce oxidative stress is to use
antioxidant scavengers. In our model, this can be achieved by
increasing et_SOD, a parameter that represents the total
amount of superoxide dismutase. Similar to reducing shunt,
increasing et_SOD, when introduced sufficiently soon after
mitochondrial depolarization (eg, at 200 seconds), success-
fully reduced elevated [Na+]i and suppressed EADs. However,
increasing ROS scavenging later (eg, 300 and 700 seconds)
failed to eliminate EADs (Figure S4). Taken together, those

Figure 8. Effect of reducing shunt on mitochondrial-derived reactive oxygen species (mdROS)-Ca2+/
calmodulin-dependent protein kinase II (CaMKII) activation–induced early afterdepolarizations (EADs). In
these simulations, shunt was set as 0.02 (black line), 0.10 (red line), or 0.14 (blue line) during 0 to
700 seconds and 0.02 thereafter. A, Cytosolic Na+ concentration ([Na+]i), (B) fraction of phosphorylated
Na+ channels (Frac_NaP), and (C) action potentials of the last 2 beats. Pacing cycle length=2 seconds.
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simulations imply that: (1) altered ion (eg, [Na+]i and [Ca2+]i)
homeostasis plays a critical role in mdROS-CaMKII activation–
induced EADs, and (2) timely antioxidant treatment is critical
for its antiarrhythmic effect with the sooner the better.

RyRs Oxidation Effect for Inducing Arrhythmias
In a recent computational study, we showed that mdROS can
induce abnormal Ca2+ cycling and elicit erratic APs by directly
activating RyRs and inhibiting SERCA. Here, we examined
whether concurrent oxidative RyRs activation would exacer-
bate the effect of oxidative CaMKII activation on Ca2+

mishandling and AP abnormality. As shown in Figure 10A,
mdROS induced during phase 2 of the AP, when modeled to
activate CaMKII only, caused an EAD. Adding the effect of
mdROS on SR Ca2+ handling (eg, RyRs activation and SERCA
inhibition) converted the single EAD to multiple EADs. Notably,
when the mdROS burst was induced during phase 4 of the AP,
concurrent oxidative RyRs and CaMKII activation elicited a

DAD, which was otherwise barely seen with oxidative CaMKII
activation alone (Figure 10B). Concurrent RyRs oxidation by
mdROS also exacerbated Na+ and Ca2+ overload during
mitochondrial depolarization (Figure 10C through 10F).

Discussion
In the present study, we expanded our recently published
guinea pig cardiomyocyte ECME-RIRR model47 by incorporat-
ing mdROS-induced oxidative CaMKII activation and slow Na+

channel phosphorylation. Our new model was able to replicate
previous model simulations (eg, sustained mitochondrial
oscillations) and experimental data (eg, rate dependence of
H2O2-induced EADs and ROS-induced increases in intracellu-
lar Na+ and Ca2+). We then simulated how the endogenous
mitochondrial-derived oxidative stress (ie, mdROS) may
influence CaMKII activity and subsequently alter cardiomy-
ocyte ion homeostasis and APs. Our main findings are:
(1) mdROS-mediated oxidative CaMKII activation–induced

Figure 9. Effect of timing of reducing shunt on mitochondrial-derived reactive oxygen species-Ca2+/
calmodulin-dependent protein kinase II (CaMKII) activation–induced early afterdepolarizations (EADs). In
these simulations, shunt was initially set as 0.14 and then reduced to 0.02 at 200 seconds (black line),
300 seconds (red line), or 700 seconds (blue lines). A, Fraction of phosphorylated Na+ channels
(Frac_NaP). B, Action potentials of the last 2 beats. Pacing cycle length=2 seconds.
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augmentation of INa,L alone is sufficient to elicit EADs;
(2) mdROS-CaMKII activation–induced EADs can be sustained
even when mdROS reduces to a physiological level; and
(3) mdROS burst-induced EADs can be suppressed by antiox-
idant treatment only when it is given within a timely window.

It has been proposed that the proarrhythmic effect of
oxidative CaMKII activation is attributed to its capability to
phosphorylate multiple ion channels/transporters underlying
Ca2+ handling and AP. However, the detailed mechanistic
pathways remain incompletely understood, partially because
of the difficulty in experimentally dissecting the contribution
of individual ion currents. For instance, although CaMKII
activation of INa,L has been implicated to be involved in

oxidative stress–induced EADs,39,44,59 whether this INa,L
augmentation alone can induce EADs under oxidative stress
has never been examined. Therefore, in this computational
study, we developed an ECME-RIRR model that considered
only the direct modulatory effect of CaMKII oxidation on INa.
Model simulations showed that oxidative CaMKII activation–
induced augmentation of INa,L, which is comparable to
experimental data (Figure 2B), successfully elicits EADs in a
cardiomyocyte exposure to increased mdROS. Further anal-
ysis suggests that the augmented INa,L causes EADs by
altering both membrane potential and intracellular ion (eg,
Na+ and Ca2+) homeostasis. In particular, our simulations
revealed that the mdROS-CaMKII activation–induced EADs

Figure 10. Concurrent mitochondrial-derived reactive oxygen species (mdROS)–mediated oxidative
ryanodine receptor (RyR) activation and oxidative Ca2+/calmodulin-dependent protein kinase II (CaMKII)
activation on action potential (A and B), cytosolic Ca2+ concentration ([Ca2+]i) (C and D), and cytosolic Na+

concentration ([Na+]i) (E and F). In simulations of (A, C, and E) mdROS bursting was induced at phase 2 of
the action potential and in (B, D, and F) mdROS bursting was induced at phase 4 of the action potential.
Pacing cycle length=2 seconds and shunt=0.1. CON: shunt = 0.02, or no mitochondrial-derived reactive
oxygen species bursting.
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involve the following: (1) increased INa,L leads to APD
prolongation and AP reverse; (2) the AP reverse causes a
shift in Na+/Ca2+ exchanger activity (reverse mode) and ICaL
reactivation; (3) reactivation of ICaL triggers Ca

2+-induced Ca2+

release and results in a larger Ca2+ transient, which further
augments ICaL via a dynamic positive feedback mechanism;
and (4) the large Ca2+ increase activates the forward mode
INaCa and CaMKII-mediated INa,L, collectively resulting in EADs.

It is worth mentioning that while our model suggests that
direct CaMKII activation of ICaL is not required in mdROS-
CaMKII activation–induced EADs, ICaL reactivation, caused by
AP reverse, plays a critical role in the EAD generation, as
blocking ICaL eliminates the mdROS-CaMKII activation–in-
duced EADs. Interestingly, blocking ICaL also caused APD
shortening. This finding is different from that reported in our
recent computational studies47 focusing on mdROS-induced
abnormal SR Ca2+ handling, in which blocking ICaL suppressed
EADs but did not reduce AP prolongation (as compared with
normal mdROS). This suggests that the ionic mechanisms
underlying oxidative CaMKII activation and oxidative RyRs
activation–mediated arrhythmogenesis are different. We also
found that oxidative CaMKII activation alone cannot generate
DADs but concurrent oxidative RyRs and CaMKII activations
can. As previous experimental studies38,39 have recorded both
EADs and DADs in H2O2-perfused isolated cardiomyocytes, it
is likely that both pathways are presented in cardiomyocytes
undergoing oxidative stress. In addition, our channel blocking
simulations indicated that INaCa activation is also involved in
the generation of oxidative CaMKII activation–induced EADs.
Thus, although we showed that oxidative CaMKII activation–
induced INa,L augmentation is capable of eliciting EAD, the
actual arrhythmogenic effects of mdROS are clearly multifac-
torial and new antiarrhythmic treatments targeting both ion
channels/transporters/proteins and mitochondria are
essential.

Another intriguing finding from the present modeling study
is that the mdROS-CaMKII activation–induced EADs may not
terminate immediately upon mitochondrial repolarization,
even though mdROS has been reduced to basal physiological
levels. While the phenomenon of sustained EADs postmito-
chondrial repolarization in cardiomyocytes needs further
experimental verification, it may indeed occur in cells
undergoing oxidative stress such as ischemia reperfusion,
as a result of the specific property of CaMKII as “a memory
molecule.”60 The memory refers to the autophosphorylation-
mediated sustained CaMKII activation even after the dissoci-
ation of Ca2+/CaM or the fall of Ca2+ concentration to
baseline levels, which is essential for memory storage in the
brain. Recently, Song et al61 showed that short-term (5 min-
utes) ROS exposure caused persistent (more than 60 min-
utes) activation of ICaL in isolated rat cardiomyocytes, likely
via the oxidative stress–induced sustained CaMKII activation,

indicating that CaMKII may act as a redox-sensitive “memory
molecule” in cardiomyocytes. Notably, our model simulations
showed that the duration of persistent EADs, or the proar-
rhythmic “memory” of CaMKII activation, is linked to the
severity of mitochondrial dysfunction: the higher the mdROS
bursting, the stronger the memory. Permanent memory might
form if mitochondrial malfunction lasts long enough; in this
case persistent arrhythmias will occur (Figure 8). Thus, as
suggested by our antioxidant treatment simulations (Figure 9
and Figure S4) the ideal antiarrhythmic treatment would
require the intervention be given timely and before the
permanent memory of CaMKII is formed. Our computational
analysis further showed that there is a close correlation
between peak [Na+]i and the robustness of CaMKII’s memory,
or the durations of the sustained and intermittent EADs during
mitochondrial repolarization, suggesting that cytosolic [Na+]i
may be used as a risk factor of oxidative CaMKII activation–
mediated arrhythmogenesis. The gradual [Na+]i accumulation
and sustained EADs facilitated by the oxidative stress–
induced CaMKII-dependent INa,L augmentation has also been
reported by Wagner et al.38

In addition to antioxidant treatment, we also examined
several other possible antiarrhythmic strategies such as
blocking Na+ or Ca2+ channels. Although our simulations
showed that blocking INaCa, ICaL, or INa,L all eliminated the
mdROS-mediated oxidative CaMKII activation–induced EADs,
their antiarrhythmic roles should be further assessed exper-
imentally, as long-term ion channel inhibition may break ion
homeostasis and induce new arrhythmogenic substrates. For
instance, it has been shown that inhibition of Na+/Ca2+

exchanger–mediated Ca2+ extrusion increases Ca2+ spark
frequency in resting cardiac myocytes. Long-term ICaL inhibi-
tion, especially by nondihydropyridine Ca2+ channel blockers,
can cause a shortening of APD and reduce cardiac contrac-
tility and conduction. In addition, the role of Ca2+ channel
blockers in ventricular arrhythmias is limited and less well
defined.62–64 Compared with INaCa and ICaL inhibition, blocking
the INa,L reduces depolarizing current during the plateau phase
of the AP and thus may be more potent and safer. In line with
this, it has been reported that a selective INa,L inhibitor, GS-
458967, prevents APD prolongation without affecting AP
upstroke velocity in guinea pig ventricular myocytes.65,66

Ranolazine, another Na+ channel blocker, has been shown to
reduce EAD and DAD occurrence in various settings where
INaL is enhanced.59

Model Limitations
As our major goal was to examine whether, and if so, mdROS-
CaMKII activation–induced INaL augmentation can induce
EADs, the present model only incorporates CaMKII-dependent
phosphorylation of Na+ channels. However, it is well
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appreciated that many other ion channels/transporters such
as LCCs, RyRs, and K+ channels can be phosphorylated by
CaMKII.67,68 CaMKII can increase ICaL and SR Ca2+ release,
thereby exacerbating Ca2+ overload and increasing the risk of
arrhythmogenesis. Moreover, the activity of LCCs, RyRs, Na+

channels, and K+ channels can be directly influenced by
mdROS.69 The effects of oxidative CaMKII activation and
direct oxidation on ion channels and homeostasis as well as
AP may or may not overlap. Furthermore, previous studies
from our laboratory and others have shown that deregulated
cytosolic ion handling perturbs mitochondrial energetics and
leads to oxidative stress, which can positively feedback on
CaMKII activity. Finally, recent studies suggested that CaMKII
may directly phosphorylate mitochondrial ion channels such
as the Ca2+ uniporter,23 thus altering mitochondrial ion
homeostasis and bioenergetics.23 Those components can be
added to the ECME-RIRR model in the future. That being said,
lack of these mechanisms should have little impact on the
present study, as our main goal was to develop a computa-
tional model to examine whether the mdROS-mediated
CaMKII activation can induce EADs in cardiomyocytes and
to understand the underlying ionic mechanisms.

Conclusions
The present study provides a novel computational tool to
quantitatively investigate the proarrhythmic effects of
mdROS-mediated oxidative CaMKII activation in cardiomy-
ocytes. The results indicate that CaMKII activation is sufficient
to initiate downstream molecular events that promote aber-
rant Ca2+ handling and abnormal APs by sensing elevated
mitochondrial-derived oxidative stress. Our simulations also
underscore the importance of timely treatments in the
context of oxidative CaMKII activation–induced arrhythmias.
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Table S1. Sarcolemmal membrane ionic currents 
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Table S2.  Ca2+ handling system 
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(?)𝑥h@ − 𝜆A,@ + 𝜆A,i + 𝜆A,s + 𝑘?,h
? + 𝑘?,A

? 𝑥hA + 𝜆i,A𝑥hi+𝜆s,A𝑥hs +

𝑘A,?
@ 𝑥?A
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𝑥hi = 𝑘h,?
(@)𝑥@i + 𝜆h,i

(?)𝑥hh + 𝜆A,i𝑥hA − 𝜆i,h + 𝜆i,A + 𝜆i,@= + 𝑘?,h
? +

𝑘?,A
? 𝑥hi+𝜆@=,i𝑥?= + 𝑘A,?

@ 𝑥?i
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𝑥h` = 𝑘h,?
(@)𝑥@` + 𝜆@,`𝑥h@ − 𝜆`,@ + 𝜆`,a + 𝜆`,s

? + 𝑘?,h
? + 𝑘?,A

? 𝑥h`+𝜆a,`𝑥ha + 𝜆s,`𝑥hs +

𝑘A,?
@ 𝑥?`
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𝑥ha = 𝑘h,?
(@)𝑥@a + 𝜆h,a𝑥hh + 𝜆`,a𝑥h` − 𝜆a,h + 𝜆a,` + 𝜆a,] + 𝜆a,@=

? + 𝑘?,h
? +

𝑘?,A
? 𝑥ha+𝜆],a𝑥h] + 𝜆@=,a𝑥?= + 𝑘A,?

@ 𝑥?a
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𝑥h] = 𝑘h,?
(@)𝑥@]+𝜆?,]𝑥h? + 𝜆a,]𝑥ha − 𝜆],? + 𝜆],a + 𝑘?,h

? + 𝑘?,A
? 𝑥h]+𝑘A,?

@ 𝑥?] E158 

𝑥hs = 𝑘h,?
(@)𝑥@s + 𝜆A,s𝑥hA + 𝜆`,s

@ 𝑥h` − 𝜆s,A + 𝜆s,` + 𝜆s,@= + 𝑘?,h
? +

𝑘?,A
? 𝑥hs+𝜆@=,s𝑥?= + 𝑘A,?

@ 𝑥?s
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𝑥?= = 𝑘h,?
(@)𝑥h= + 𝜆i,@=𝑥hi + 𝜆a,@=

? 𝑥ha + 𝜆s,@=𝑥hs

− 𝜆@=,i + 𝜆@=,a + 𝜆@=,s + 𝑘?,h
? + 𝑘?,A

? 𝑥?=+𝑘A,?
@ 𝑥A=
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𝑥?@ = 𝑘h,A
(@)𝑥@@ + 𝑘?,A

(?)𝑥h@ − 𝜆@,h + 𝜆@,A
@ + 𝜆@,` + 𝑘A,h

@ + 𝑘A,?
@ 𝑥?@ + 𝜆h,@𝑥?h +

𝜆A,@𝑥?A + 𝜆`,@𝑥?` 
E161 

𝑥?h = 𝑘h,A
(@)𝑥@h + 𝑘?,A

(?)𝑥hh + 𝜆@,h𝑥?@ − 𝜆h,@ + 𝜆h,? + 𝜆h,i
@ + 𝜆h,a + 𝑘A,h

@ + 𝑘A,?
@ 𝑥?h +

𝜆?,h𝑥?? + 𝜆i,h𝑥?i + 𝜆a,h𝑥?a 
E162 

𝑥?? = 𝑘h,A
(h)𝑥@? + 𝑘?,A

(?)𝑥h? + 𝜆h,?𝑥?h − 𝜆?,h + 𝜆?,] + 𝑘A,h
h + 𝑘A,?

h 𝑥?? + 𝜆],?𝑥?] E163 

𝑥?A = 𝑘h,A
(@)𝑥@A + 𝑘?,A

(?)𝑥hA + 𝜆@,A
(@)𝑥?@ − 𝜆A,@ + 𝜆A,i + 𝜆A,s + 𝑘A,h

@ + 𝑘A,?
@ 𝑥?A +

𝜆i,A𝑥?i + 𝜆s,A𝑥?s 
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𝑥?i = 𝑘h,A
(@)𝑥@i + 𝑘?,A

(?)𝑥hi + 𝜆h,i
(@)𝑥?h + 𝜆A,i𝑥?A − 𝜆i,h + 𝜆i,A + 𝜆i,@= + 𝑘A,h

@ +

𝑘A,?
@ 𝑥?i + 𝜆@=,i𝑥A=
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𝑥?` = 𝑘h,A
(@)𝑥@` + 𝑘?,A

(?)𝑥h` + 𝜆@,`𝑥?@ − 𝜆`,@ + 𝜆`,a + 𝜆`,s
@ + 𝑘A,h

@ + 𝑘A,?
@ 𝑥?` +

𝜆a,`𝑥?a + 𝜆s,`𝑥?s 
E166 

𝑥?a = 𝑘h,A
@ 𝑥@a + 𝑘?,A

? 𝑥ha + 𝜆h,a𝑥?h + 𝜆`,a𝑥?` − 𝜆a,h + 𝜆a,` + 𝜆a,] + 𝜆a,@=
@ + 𝑘A,h

@ +

𝑘A,?
@ 𝑥?] + 𝜆@=,a𝑥A=
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𝑥?] = 𝑘h,A
(@)𝑥@] + 𝑘?,A

(?)𝑥h]+𝜆?,]𝑥?? + 𝜆a,]𝑥?a − 𝜆],? + 𝜆],a + 𝑘A,h
@ + 𝑘A,?

@ 𝑥?] E168 

𝑥?s = 𝑘h,A
(@)𝑥@s + 𝑘?,A

(?)𝑥hs + 𝜆A,s𝑥?A + 𝜆`,s
@ 𝑥?` − 𝜆s,A + 𝜆s,` + 𝜆s,@= + 𝑘A,h

@ +

𝑘A,?
@ 𝑥?s + 𝜆@=,s𝑥A=
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𝑥A= = 𝑘h,A
(@)𝑥h= + 𝑘?,A

(?)𝑥?= + 𝜆i,@=𝑥?i + 𝜆a,@=
? 𝑥?a + 𝜆s,@=𝑥?s − 𝜆@=,i + 𝜆@=,a + 𝜆@=,s +

𝑘A,h
@ + 𝑘A,?

@ 𝑥A=
E170 

𝑝(@) = 𝑥@ + 𝑥h + 𝑥A + 𝑥i + 𝑥` + 𝑥a + 𝑥] + 𝑥s + 𝑥@= + 𝑥@@ + 𝑥@h + 𝑥@A + 𝑥@i + 𝑥@`

+ 𝑥@a + 𝑥@] + 𝑥@s + 𝑥h= + 𝑥?@ + 𝑥?h + 𝑥?? + 𝑥?A + 𝑥?i + 𝑥?` + 𝑥?a
+ 𝑥?] + 𝑥?s + 𝑥A=
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𝑃(h) = 𝑥? + 𝑥@? + 𝑥?? E172 

𝑃 ? = 𝑥h@ + 𝑥hh + 𝑥hA + 𝑥hi + 𝑥h` + 𝑥ha + 𝑥h] + 𝑥hs + 𝑥?= E173 

𝑃(A) = 𝑥h? E174 

The notation λi,j  is used to denote the transition rate from state i to state j for the LCC. The notation kij is 
used to denote the transition rate from state i to state j for the RyR. xi denotes ith state, x} denotes the time 
derivative of the ith state. P(n) denotes the probability that a CaRU is in the nth (n=1,2,3,4) open-closed 
configuration. * The equations are modified to provide better fit of ICaL to experimental data 3. LCC: L-
type Ca2+ channel, RyR: ryanodine receptor, CaRU: Ca2+ release unit. 

Whole-cell Ca2+ flux through the LCCs (JLCC) 

E175 

Whole-cell Ca2+ release through the RyRs (Jrel) 

2 2 (3) 2 2 (4)
(3) (4)( ([ ] [ ] ) ([ ] [ ] ))rel CaRU RyR JSR dm JSR dmJ N r p Ca Ca p Ca Ca+ + + += +  E176 

The Ca2+ flux diffused from the dyadic microdomain (dm) to the cytoplasm (Jxfer) 

E177 

2 (2) 2 2 (4) 2
(2) 0 (4) 0( ([ ] 0.341[ ] ) ([ ] 0.341[ ] ))

1

m m

m

V V
dm dm

LCC CaRU L m V

p Ca e Ca p Ca e Ca
J N J V

e

+ + + ++
=

J xfer = NCaRU rxfer p(i ) ([Ca
2+]dm

(i ) −[Ca2+]i )
i=1

4

∑



Table S3. Sarcoplasmic Reticulum (SR) Ca2+ dynamics 

SR Ca2+ model equations 

( )

1
CSQN
m tot

JSR 2CSQN 2
m JSR

K [CSQN]1
K [Ca ]+

= +
+

E178 

( )

1
CSQN
m tot

NSR 2CSQN 2
m NSR

K [CSQN]1
K [Ca ]+

= +
+

E179 

E180 

E181 

2 2
NSR JSR

tr
tr

[Ca ] [Ca ]J
+ +

= E182 

Jup =
Vmaxf   fb - Vmax r  rb 

1 + fb + rb

 fATP
SERCA

E183 
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E185 

E186 

E187 

( )

1
CMDN
m tot

i 2CMDN 2+
m i

K [CMDN]= 1
K + [Ca ]

+

trpn
d[HTRPNCa] d[LTRPNCa]J  =  + 

dt dt

Nfb2
i

b
fb

[Ca ]f   
K

+

=

Nrb2
SR

b
rb

[Ca ]r  
K

+

=

1ATP
m,upSERCA i i

ATP '
i i,up i,up

K [ADP] [ADP]f  = . 1 1  
[ATP] K K

+ + +

( )2
ltrpn i tot

ltrpn Norm

d[LTRPNCa] k [Ca ] [LTRPN] [LTRPNCa]
dt

2k 1 Force [LTRPNCa]
3

+ +=
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E189 

2
myoNSR

NSR up tr
NSR

Vd[Ca ] ( J J )
dt V

+

= E190 

2
JSR NSR SS

JSR tr rel
JSR JSR

d[Ca ] V V( J J )
dt V V

+

= E191 

SR Ca2+ model parameters 

( )2
htrpn i tot

htrpn

d[HTRPNCa] k [Ca ] [HTRPN] [HTRPNCa]
dt

k [HTRPNCa]

+ +=

( )

( )

cap
xfer up trpn Ca,b NaCa pCa2

myoi
i

mito
NaCa uni

myo

A
J  - J  - J  - I  - 2 I + I

2V Fd[Ca ]  = 
dt V V  - V  

V

+

+

Symbol Value Units Description Ref. 

VNSR 1.4 pL NSR volume 4

VJSR 0.16 pL JSR volume 4

0.8 mM 
Ca2+ half saturation constant for 

calsequestrin 
4

2.38×10-3 mM Ca2+ half saturation constant for calmodulin 4

20 mM-1 �ms-1 Ca2+ on-rate for troponin high affinity sites 5

3.3×10-4 ms-1 Ca2+ off-rate for troponin high affinity sites 4

40 mM-1 � ms-1 Ca2+ on-rate for troponin low affinity sites 5

4x10-2 ms-1 Ca2+ off-rate for troponin low affinity sites 4

[HTRPN]tot 0.14 mM Total troponin high-affinity sites 4

[LTRPN]tot 0.07 mM Total troponin low-affinity sites 4

[CMDN]tot 5.0×10-2 mM 
Total myoplasmic calmoduling 

concentration 
4

[CSQN]tot 5 mM Total SR calsequestrin concentration * 

tr 0.5747 ms 
Time constant for transfer from NSR to 

JSR 
4

CSQN
mK
CMDN
mK

htrpnk+

htrpnk

ltrpnk+

ltrpnk



* These parameters were adjusted to achieve a ~37% of SR Ca2+ depletion during a normal AP cycle.

**These parameters were adjusted to maintain [Ca2+]NSR at 0.45mM 6-8 while avoiding net reverse 
SERCA flux. 

Effect of ROS on RyR open probability and SR Ca2+ release 

Jrel _ ROS = NCaRU rRyR( p(3)_ ROS ([Ca
2+]SR −[Ca

2+]dm
(3) )+ p(4)_ ROS ([Ca

2+]SR −[Ca
2+]dm

(4) ))

= NCaRU rRyR
PO _ ryr _ ROS
PO _ ryr

p(3) [Ca
2+]SR −[Ca

2+]dm
(3)( )+ p(4) [Ca2+]SR −[Ca2+]dm(4)( )( )

E192 

where _Oryr ROS

Oryr

P
P

is the ROS-dependent scaling factor of RyR opening probability. 

Table S4. CaMKII Activation Module 

Transition rate expression (ms-1) 

E193

JRyR_max 16.6 ms-1 RyR flux channel constant * 

CaRUN  300000 Number of Ca2+ release units * 

Vmax,f 2.989×10-4 ms-1 SERCA forward rate parameter 4

Vmax,r 3.979×10-4 ms-1 SERCA reverse rate parameter 4

Kfb 1.5×10-4 mM 
Forward Ca2+ half saturation constant of 

SERCA 
** 

Krb 3.3 mM 
Reverse Ca2+ half saturation constant of 

SERCA 
** 

Nfb 0.5 Forward cooperativity constant of SERCA ** 

Nrb 0.5 Reverse cooperativity constant of SERCA ** 
ATP
m,upK 0.01 mM ATP half saturation constant for SERCA 4

i,upK  0.1 mM ADP first inhibition constant for SERCA 4

'
i,upK  1 mM 

ADP second inhibition constant for 

SERCA 
4
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CaMKII Activation Balance Equations 
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where  represents the percentage of activated CaMKII. 

Table S5. Ionic concentrations balance equations 

E219 

d[Na+ ]i
dt

= ° (IN a + IN a;L + IN a;b + Ins;N a + 3IN aCa + 3IN aK )
Acap
VmyoF

d[Na+ ]i
dt

= ° (IN a + IN a;L + IN a;b + Ins;N a + 3IN aCa + 3IN aK )
Acap
VmyoF
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Table S6. Force generation model 5 
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Table S7. Mitochondrial membrane potential (DYm) 
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Table S8. Energy metabolism system 

Mitochondrial metabolites balance equations 
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Cytosolic metabolic reaction rate 

E265 

E266 

E267 

E268 

Tricarboxylic acid cycle reaction rate 
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Oxidative phosphorylation reaction rates 

E283 

2 2

1
2 2

KGDH m
a Mg Ca

D D

[Mg ] [Ca ]f = 1  1  
K K

+ +

+ +

+ +

aKG

KGDH KGDH
cat T

KGDH nKG NAD
KGDH KGDHM M
a a

 k  EV  
K K1  f  f

[ KG] [NAD]

=

+ +

= SL
E

m
m

SL
fSL

K

]CoA[[Suc][ATP] - [ADP] [SCoA] k  V

+++

=

FUM
i

OAA
sdhi,

Suc
M

SDH
T

SDH
cat

K
[FUM]  1

K
[OAA]  1

[Suc]
K  1

 Ek   SDHV

FH
f FH

E

[MAL] k [FUM] - 
KFHV =

12

h,a offset
h1 h1 h2

[H ] [H ]f 1    k
k k  k

+ +

= + + +

2
h3 h3 h4

h,i 2
k k  kf   1  

[H ] [H ]+ += + +

][
K

K
[OAA]  1

][
K 

][
K 

K
[OAA]  1

][
K  1

f f  Ek
  NAD

M
OAA
i

MAL
M

NAD
M

OAA
i

MAL
M

ih,ah,
MDH
T

MDH
cat

NADMALNADMAL

VMDH
+++++

=

( )
AAT

AAT E
f AAT AAT

E f

K k [OAA][GLU] 
K [ ] k

=
+

ASP
AAT

ASP

kV
k KG

+++

++

=
T R

 F 6 g
T R

A F

32
T R

F 6
T R

A F

1

T R
 F 6 g

T R
F A

c2
T R

 F 6 g

a
T R

F A
T R

 6F

c1a

res
O

HresBres

HresHresB

2

e e r  r  ee r  1

e  er  e r-ee r  r

 0.5  V



E284 

E285 

𝑁𝐴𝐷C = 𝐶4( − [𝑁𝐴𝐷𝐻] 
E286 

E287 

E288 

E289 

E290 

E291 

E292 

E293 

( )

+++

+

=
T R
  F6 g

T R
A F

32
T R

 F6
T R

A F

1

T R
 6F g

ba
T R
 F

res
HresBres

H

e e r  r  e r  1

e r  r  r

 6  

e

e

V

resA

a

He

= + ][NAD
[NADH]K ln 

F
T R  resresA

( )
res(F) H

res(F) res(F)B H

A  F g 6F 
R T R T

a a b

res(F)
He(F) F A F A6 F g 6 F 

R T R TR T R T
1 2 3

r  e  r   r  e

V  4 

1  r  e e r  r  e  e

+

=

+ + +

=
[FAD]

][FADHK ln 
F
T R A 2

(F)res(F)res

+++

++

=
T R

  F3
T R

A F

32
T R

 F3
T R

A F

1

T R
  F3

T R
 FA

c2
T R

  F3

a
T R
 FA

T R
  F3

c1a
 2

F1
ATPase

HF1BF1

H1FH1FB

e e p  p  ee p  1

e e p  e p-ee p  p10  

 -  V

( )

+++

++

=
T R

  F3
T R

A F

32
T R

 F3
T R

A F

1

T R
  F3

ba
T R

A F

a
2

F1
Hu

HF1BF1

HF1

e e p  p  ee p  1

e p  p -e  1 p10  

 3-  V

=
 Pi][

[ATP] K ln 
F
T R  m

F11
m

F ADP
A

HHHleak  g  V =

H m
R T  -2.303  pH
F

= +



Mitochondrial Ca2+ handling rates 

E294 

E295 

ROS-induced-ROS-release rates 

E296 

E297 

E298 

 
E299 

( )

( )o
m

a

3 o2 2
mi i

trans transuni
uni max

-2 F  - 
42 R  T

i
n2trans i

act

2 F  - [Ca ] [Ca ]1  
K K R T

V  V

[Ca ] L1  1 - e 
K [Ca ]1  

K

+ +

+

+

+
=

+ +

+

( )

NaCa
NaCa max

2[Ca ]b F ΔΨ  - Ψ mm ln 2R T [Ca ]ie e
n

KKNa Ca1  1  2[Na ] [Ca ]i m

V  V

+

+

+ ++ +

=

!

1 5 1 3 .-2 2
SOD SOD SOD SOD SOD 2 _H2O2

i
_

5 1 3 .- 1 32 2 2 2
SOD SOD SOD 2 _ SOD SODH2O2 H2O2

i i

[H O ]2 k  k  k k 1   E  [O ]
K

  
[H O ] [H O ]k 2 k k 1  [O ] k  k 1  
K K

T
p mito

SOD mito

p mito

V
× + +

=

× + + + +

_

1 5 1 3 .-2 2
SOD SOD SOD SOD SOD 2H2O2

i
1.82

5 1 3 .- 1 32 2 2 2
SOD SOD SOD

.

2 SOD SODH2O2 H2O2
i i

2

[H O ]2 k  k k  k 1   E  [O ]
K 2585.8986

[H O ] [H O ]k 2 k  k 1  [O ]  k  k 1

] )

K

([

  
K

SOD SR

T
S

SR

R

SR

V

X

f O

× + +

=

× + + + +

=

][
22

1
 

22]O[H 2  OHfrT
CATCATCAT eEkV =

]O[H   [GSH] 
[GSH] ]O[H 

  
2221

22
T

+
= GPX

GPX
E

V



E300 

E301 

E302 

E303 

ROS-induced-ROS-release metabolites balance equations 

E304 

E305 

E306 

E307 

ROS diffusion between mitochondrion and SR 

d[O2
.−]SR(t)
dt

= D
O2
.− ⋅
[O2

.−]p_mito (t)−[O2
.−]SR(t)

X 2
+νcyto_MSM ⋅ f ([O2

.−]SR(t))
E308 

[NADPH]
K

[GSSG]
K  

[NADPH]
K

[GSSG]
K  1

E k
  NADPH

M
GSSG
M

NADPH
M

GSSG
M

T
GR

1
GR

+++
=GRV

.-
IMAC 2 mitoRT

F .-
2 p_mito

V [O ] j . - log
[O ]

Tr
ROS m

m

V =

( )
max

IMAC L m
cc
.-

2 i

b GV a GK1 1  e[O ]
b
m m

= + +
+

+

][2][ GSSGGSHGT ×+=

2

.
Tr2

O ROS
[ ]   shunt V Vmitod O
dt

=

.
2 _ Tr

ROS SOD_mito

[ ]
 V - Vp mitod O

dt
=

2 2
SOD_mito CAT GPX

[ ]   V - V  - Vd H O
dt

=

GPXGR V  - V   ][
=

dt
GSHd



Table S9. General parameters 

Symbol Value Units Description Ref. 

F 96.5 C·mmol-1 Faraday constant 

T 310 K Absolute temperature 

R 8.31 J·mol-1·K-1 Universal gas constant 

Cm 1.0 µF·cm-2 Membrane capacitance 7

Acap 1.54x10-4 cm2 Capacitative cell surface area 7

Vmyo 25.84 pL Cytosolic volume 7

Vmito 15.89 pL Mitochondrial volume 7

Vss 2.5x10-7 pL SS volume ** 

[K+]o 5.4 mM Extracellular K+ concentration 7

[Na+]o 140.0 mM 
Extracellular Na+ 

concentration 
7

[Ca2+]o 2.0 mM 
Extracellular Ca2+ 

concentration 
7

* estimated. ** was slightly modified to achieve ~37% of SR Ca2+ depletion during a normal AP cycle.

Table S10. Sarcolemmal membrane current parameters 

Symbol Value Units Description Ref. 

NaG  12.8 mS·µF-1 Maximal Na channel conductance 7

PKG 8.28×10-3 mS·µF-1 
Maximal plateau K+ channel 

conductance 
4

PNa,K 0.0183 Na+ permeability of K+ channel 4

kNaCa 9000 µA·µF-1 Scaling factor of Na+/Ca+ exchange 4

km,Na 87.5 mM Na half saturation constant NCX 4

km,Ca 1.38 mM Na half saturation constant NCX 4

ksat 0.1 Na+/Ca2+ exchange saturation factor at 
negative potentials 

4

h 0.35 Controls voltage dependence of NCX 4



Table S11. Na+/K+ pump parameters 

Symbol Value Units Description Ref. 

3.247 µA·µF-1 Maximum Na+/K+ pump current 4

Km,Nai 10 mM Na half saturation for Na+/K+ pump 4

Km,Ko 1.5 mM K half saturation for Na+/K+ pump 4

1,ATP
NaKK  8.0×10-3 mM 

ATP half saturation constant for 

Na+/K+ pump  
4

i,ADP
NaKK  0.1 mM 

ADP inhibition constant for Na+/K+ 

pump 
4

Table S12. Non-specific channel current parameters 

Symbol Value Units Description Ref. 

ns(Na)P  1.75×10-7 cm·s-1 
Non-specific channel current Na 

permeability 
4

Km,ns(Ca) 1.2×10-3 mM 
Ca2+ half saturation constant for non-

specific current 
4

 0 cm·s-1 
Non-specific channel current K 

permeability 
4

Table S13 Background Ca2+ current parameters 

Symbol Value Units Description Ref. 

Ca,bG  3.22×10-3 mS·µF-1 
Maximum background current Ca2+ 

conductance 
4

Na,bG  3.5e-3 mS·µF-1 
Maximum background current Na+ 

conductance 
* 

* The parameters were adjusted to maintain [Na+] at 8.5 mM under normal condition. 

NaKI

ns(K)P



Table S14. Sarcolemmal Ca2+ current parameters 

Symbol Value Units Description Ref. 

IpCa_max 0.575 µA·µF-1 Maximum sarcolemmal Ca2+ pump current 4

Km
pCa 5×10-4 mM 

Ca2+ half saturation constant for sarcolemmal Ca2+ 

pump 
4

ATP
m1_ pCaK 0.012 mM 

First ATP half saturation constant for sarcolemmal 

Ca2+ pump  
4

ATP
m2_ pCaK  0.23 mM 

Second ATP half saturation constant for sarcolemmal 

Ca2+ pump 
4

ADP
i _ pCaK 1.0 mM ADP inhibition constant for sarcolemmal Ca2+ pump 4

Table S15. Sarcoplasmic reticulum Ca2+ ATPase parameters 

Symbol Value Units Description Ref. 

Vmax,f 2.99×10-4 ms-1 SERCA forward rate parameter 4

Vmax,r 3.98×10-4 ms-1 SERCA reverse rate parameter 4

Kfb 1.5×10-4 mM 
Forward Ca2+ half saturation constant of 

SERCA 
* 

Krb 3.3 mM 
Reverse Ca2+ half saturation constant of 

SERCA 
* 

Nfb 0.5 Forward cooperativity constant of SERCA * 

Nrb 0.5 Reverse cooperativity constant of SERCA * 
ATP
m,upK 0.01 mM ATP half saturation constant for SERCA 4

i,upK  0.14 mM ADP first inhibition constant for SERCA 4

'
i,upK  5.1 mM ADP second inhibition constant for SERCA 4

*These parameters were adjusted to maintain diastolic [Ca2+]i near 60 nM and [Ca2+]SR near 0.45
mM while avoiding net reverse SERCA flux at 1 Hz pacing.



Table S16. L-type Ca2+ current parameters 

Symbol Value Units Description Ref. 

CaP 9.13×10-13 cm·s-1 L-type Ca2+ channel permeability to Ca2+ 7

CaRUN 300000 Number of Ca2+ release units * 

f 0.85 ms-1 Transit rate into open state 7

g 2 ms-1 Transit rate out of open state 7

a 5.0 LCC mode transition parameter 7

b 10.0 Mode transition parameter 7

𝛾= 7.5 Mode transition parameter 7

𝜔 0.068 Mode transition parameter * 

* These parameters are modified to provide better fit of ICaL to experimental data 3. 

Table S17. Ca2+ release channel parameters 

Symbol Value Units Description Ref. 

𝑘0@,h 5265 ms-1 RyR channel rate parameter 7

𝑘0h,@ 1500 ms-1 RyR channel rate parameter 7

𝑘0h,? 2.36e8 ms-1 RyR channel rate parameter 7

𝑘0?,h 9.6 ms-1 RyR channel rate parameter 7

𝑘0A,? 13.65 ms-1 RyR channel rate parameter 7

𝑘0?,A 1.42e6 ms-1 RyR channel rate parameter 7

𝑘0h,i 2.36e6 ms-1 RyR channel rate parameter 7

𝑘0i,h 0.0013 ms-1 RyR channel rate parameter 7

𝑘0`,i 30 ms-1 RyR channel rate parameter 7

𝑘0i,` 1.89e7 ms-1 RyR channel rate parameter 7

𝑘0A,i 0.07 ms-1 RyR channel rate parameter 7

𝑘0i,A 93.39 ms-1 RyR channel rate parameter 7



Table S18. Force generation parameters 

Symbol Value Units Description Ref. 

0.04 ms-1 Transition rate from tropomyosin 
permissive to non-permissive 

5

SL 2.15 µm Sarcomere length 5

fXB 0.05 ms-1 Transition rate from weak to strong 
cross bridge  

9

0.1 ms-1 Minimum transition rate from strong to 
weak cross bridge 

9

goff 0.01 ms-1 
Minimium transition rate from strong 
to weak cross bridge for non-
permissive tropomyosin  

5

z 0.1 N·mm-2 Conversion factor normalizing to 
physiological force 

5

4.8×10-4 mM·ms-1 Maximal rate of ATP hydrolysis by 
myofibrils (AM ATPase)  

10

0.03 mM ATP half saturation constant of AM 
ATPase 

10

0.26 mM 
ADP inhibition constant of AM 

ATPase 
10

Table S19. Cytoplasmic energy handling parameters 

Symbol Value Units Description Ref. 

CT 25 mM Total concentration of creatine metabolites 
(both compartments)  

11, 12

cyto
CKk 1.4×10-4 ms-1 Forward rate constant of cytoplasmic CK 13

mito
CKk 1.33×10-6 ms-1 Forward rate constant of mitochondrial CK 13

Cr
trk 2.0×10-3 ms-1 Transfer rate constant of CrP 13

KEQ 0.0095 Equilibrium constant of CK 9, 11

trop
pnk

min
XBg

max
AMV

ATP
M,AMK

i,AMK



cyto
ATPaseV 1.0x10-5 mM·ms-1 Constitutive cytosolic ATP consumption 

rate  
14

Table S20. Tricarboxylic acid cycle parameters 

Symbol Value Units Description Ref. 

[AcCoA] 1.0 mM Acetyl CoA concentration 15

0.5 ms-1 Catalytic constant of CS 4

0.4 mM Concentration of CS 7, 15

1.26×10-2 mM Michaelis constant for AcCoA 15

6.4×10-4 mM Michaelis constant for OAA 15

CKint 1.0 mM 
Sum of TCA cycle intermediates’ 

concentration  
15

1.25×10-2 ms-1 Forward rate constant of ACO 15

2.22 Equilibrium constant of ACO 15

0.62 mM Activation constant by ADP 4

0.0005 mM Activation constant for Ca2+ 4

0.19 mM Inhibition constant by NADH 15

0.05 ms-1 Rate constant of IDH 4

0.109 mM Concentration of  IDH 15

[H+] 2.5×10-5 mM Matrix proton concentration 15

kh,1 8.1×10-5 mM Ionization constant of IDH 15

kh,2 5.98×10-5 mM Ionization constant of IDH 15

1.52 mM Michaelis constant for isocitrate 15

ni 2.0 Cooperativity for isocitrate 15

CS
catk
CS
TE
AcCoA
MK
OAA
MK

ACO
fk
ACO
EK
a
ADPK

a
CaK

NADH,iK

IDH
catk
IDH
TE

ISOC
MK



0.92 mM Michaelis constant for NAD+ 15

0.031 mM Activation constant for Mg2+  15

1.27×10-3 mM Activation constant for Ca2+ 15

0.5 mM Concentration of  KGDH 15

 0.075 ms-1 Rate constant of KGDH 4

1.94 mM Michaelis constant for aKG 15

38.7 mM Michaelis constant for NAD 15

naKG 1.2 Hill coefficient of KGDH for aKG 15

Mg2+ 0.4 mM Mg2+ concentration in mitochondria 15

5.0×10-3 mM-1·ms-1 Forward rate constant of SL 4

3.12 
Equilibrium constant of the SL 

reaction 
15

[CoA] 0.02 mM Coenzyme A concentration 15

5.0×10-3 ms-1 Rate constant of SDH 4

0.5 mM SDH enzyme concentration 15

0.03 mM Michaelis constant for succinate 15

1.3 mM Inhibition constant by fumarate 15

 0.15 mM Inhibition constant by oxalacetate 15

3.32×10-3 ms-1 Forward rate constant for FH 4

1.0 Equilibrium constant of FH 15

kh1 1.13×10-5 mM Ionization constant of MDH 15

kh2 26.7 mM Ionization constant of MDH 15

kh3 6.68×10-9 mM Ionization constant of MDH 15

kh4 5.62×10-6 mM Ionization constant of MDH 15

koffset 3.99×10-2 pH-independent term in the pH 
activation factor of MDH 

15

0.11 ms-1 Rate constant of MDH 4

NAD
MK

+2Mg
DK

+2Ca
DK
KGDH
TE
KGDH
catk

KG
MK
NAD
MK

SL
fk

SL
EK

SDH
catk

SDH
TE
Suc
MK
FUM
iK
OAA
sdh,iK

FH
fk
FH
EK

MDH
catk



0.15 mM Total MDH enzyme concentration 15

1.49 mM Michaelis constant for malate 15

3.1×10-3 mM Inhibition constant for oxalacetate 15

0.22 mM Michaelis constant for NAD+ 15

[GLU] 1 mM Glutamate concentration 15

6.44×10-4 ms-1 Forward rate constant of AAT 15

6.6 Equilibrium constant of AAT 15

kASP 1.5×10-6 ms-1 Rate constant of aspartate consumption 4

Table S21. Oxidative phosphorylation parameters 

Symbol Value Units Description Ref. 

ra 6.39×10-13 ms-1 Sum of products of rate constants 15

rb 1.76×10-16 ms-1 Sum of products of rate constants 15

rc1 2.66×10-22 ms-1 Sum of products of rate constants 15

rc2 8.63×10-30 ms-1 Sum of products of rate constants 15

r1 2.08×10-18 Sum of products of rate constants 15

r2 1.73×10-9 Sum of products of rate constants 15

r3 1.06×10-26 Sum of products of rate constants 15

rres 0.1×10-3 mM Concentration of electron carriers 
(respiratory complexes I-III-IV) 

4

Kres 1.35×1018 Equilibrium constant of respiration 15

rres(F) 3.75×10-4 mM Concentration of electron carriers 
(respiratory complexes II-III-IV) 

4

DYB 50 mV Phase boundary potential 15

g 0.85 Correction factor for voltage 15

Kres(F) 5.77×1013 Equilibrium constant of FADH2 
oxidation 

15

[FADH2] 1.24 mM Concentration of FADH2 (reduced) 15

[FAD] 0.01 mM Concentration of FAD (oxidized) 15

MDH
TE
MAL
MK
OAA
iK
NAD
MK

AAT
fk
AAT
EK



pa 1.66×10-8 ms-1 Sum of products of rate constants 15

pb 3.37×10-10 ms-1 Sum of products of rate constants 15

pc1 9.65×10-17 ms-1 Sum of products of rate constants 15

pc2 4.59×10-17 ms-1 Sum of products of rate constants 15

p1 1.35×10-8 Sum of products of rate constants 15

p2 7.74×10-7 Sum of products of rate constants 15

p3 6.65×10-15 Sum of products of rate constants 15

rF1 0.05 mM Concentration of F1F0-ATPase 4

KF1 1.71×106 Equilibrium	constant	of	ATP	
hydrolysis	

15

Pi 2.0 mM Inorganic phosphate concentration 4

CA 1.5 mM 
Total	sum	of	mito	adenine	

nucleotides		
4

VmaxANT 0.005 mM·ms-1 Maximal rate of the ANT 4, 15

hANT 0.5 Fraction of DYm 15

gH 1.0×10-8 
mM·ms-

1·mV-1 
Ionic conductance of the inner 
membrane 

15

DpH -0.6 pH units pH gradient across the inner memb. 15

CPN 1.0 mM Total sum of mito pyridine 
nucleotides 

15

Cmito 1.81×10-3 mM·mV-1 Inner membrane capacitance 15

Table S22. Mitochondrial Ca2+ handling parameters 

Symbol Value Units Description Ref. 

0.028 mM·ms-1 Vmax uniport Ca2+ transport 4

DY° 91 mV Offset membrane potential 15

Kact 3.8×10-4 mM Activation	constant	
15

Ktrans 0.019 mM Kd for translocated Ca2+ 15

L 110.0 
Keq for conformational transitions in 

uniporter 
15

uni
maxV



na 2.8 Uniporter activation cooperativity 15

1×10-4 mM·ms-1 Vmax of Na+/Ca 2+ antiporter * 

b 0.5 DYm dependence of Na+/Ca2+ antiporter 15

KNa 9.4 mM Antiporter Na+ constant 15

KCa 3.75×10-4 mM Antiporter Ca2+ constant 15

n 3 Na+/Ca2+ antiporter cooperativity 15

d 3.0x10-4 Fraction of free [Ca2+]m 15

*: The maximal rate of the Na+/Ca2+ antiporter was adjusted to balance the mitochondrial Ca2+ level. 

Table S23. ROS-induced-ROS-release parameters 

Symbol Value Units Description Ref. 

af 1×10-4 Activation factor by cytoplasmic O2.
- 4

Kcc 0.01 mM Activation constant of IMAC by O2.
- 4

G_L 3.50×10-8 mM·ms-1·mV-1 Leak conductance for IMAC
4

G_max 3.91×10-6 mM·ms-1·mV-1 Integral conductance of IMAC at saturation
4

0.07 mV-1 Steepness factor 
4

4 mV Potential at half-saturation 
4

k1_SOD 1.2×103 mM·ms-1 Second-order rate constant of conversion 
between native oxidized and reduced SOD 

4

k5_SOD 2.5×10-4 mM-1·ms-1 First-order rate constant for conversion 
between inactive and active oxidized SOD 

4

k3_SOD 24 mM-1·ms-1 
Second-order rate constant of conversion 
between native reduced SOD and its inactive 
form 

4

etSOD 1.43×10-3 mM Intracellular concentration of SOD 
4

0.5 mM Inhibition constant for H2O2 
4

17 mM-1·ms-1 Rate constant of CAT 
4

0.01 mM Intracellular CAT concentration 
4

fr 0.05 Hydrogen peroxide inhibition factor for CAT 
4

0.01 mM Intracellular GPX concentration 
4

5×10-3 mM·ms Constant for GPX activity 
4

0.75 mM·ms Constant for GPX activity 
4

NaCa
maxV

b
m

H2O2
iK
1
CATk
T
CATE

T
GPXE

1

2



5×10-3 ms-1 Rate constant of GR 
4

0.01 mM Intracellular GR concentration 
4

0.06 mM Michaelis constant for oxidized glutathione 
of GR  

4

0.015 mM Michaelis constant for NADH for GR 
4

NADPH 1 mM Total NADH pool 
4

1 mM Total glutathione pool 
4

shunt 0.02 Fraction of O2 to form superoxide. 
4

j 0.1 Fraction of IMAC conductance. 
4

*: The ROS diffusion coefficient and the distance between SR and mitochondria were adjusted to be 
inconsistent with previous experimental studies 16, 17. 

Table S24. ROS diffusion model parameters 

Symbol Value Units Description Ref. 

DO2.- 0.295 µm2·ms-1 O2
.- diffusion coefficient * 

X 75 nm Distance between SR and mitochondria * 

cryr 0.2 ROS enhancement coefficient ** 

kryr 19.55 mM-1 ROS enhancement effective factor ** 

cSERCA 1.02 ROS inhibition coefficient ** 

kSERCA 43.67 mM-1 ROS inhibition effective factor ** 

Vcyto_MSM 2.05×105 Cytosolic/MSM effective volume ratio *** 

*: The ROS diffusion coefficient and the distance between SR and mitochondria were adjusted to be 
inconsistent with previous experimental studies 16, 17. 
**: The values of model parameter were obtained using the least-square curve fitting method, as 
described in the text. 
***: estimated. 

Table S25. CaMKII activation parameters 

Symbol Value Units description Ref. 
2.5 mM-1·ms-1 The kinetic rate constant 1, 18, 19

0.05 ms-1 The kinetic rate constant 1, 18, 19

88.25 mM-1·ms-1 The kinetic rate constant 1, 18, 19

1
GRk
T
GRE
GSSG
MK
NADPH
MK

TG



12.5 mM-1·ms-1 The kinetic rate constant 1, 18, 19

1.25 ms-1 The kinetic rate constant 1, 18, 19

2.1 mM-1·ms-1 The association rate constant 1, 18, 19

0.7×10-4 ms-1 The dissociation rate constant 1, 18, 19

0.95×10-3 ms-1 The dissociation rate constant 1, 18, 19

0.95×10-6 ms-1 The dissociation rate constant 1, 18, 19

5.4×10-3 ms-1 The phosphorylation rate constant 1, 18, 19

1.72×10-3 ms-1 The dephosphorylation rate 
constant 

1, 18, 19

19.1×10-3 mM The binding affinity for 
ATP  

1, 18, 19

11.0×10-3 mM The binding affinity for 
PP1 

1, 18, 19

0.013 mM-1·ms-1 The oxidation rate by ROS 1

1.0×10-4 ms-1 The reduction rate by 
MrsA  

1

14.3×10-3 mM The concentration of protein phosphatases 1

50.0×10-3 mM The concentration of total CaM 1

3.15×10-6 mM The concentration of total CaMKII 1

Table S26. Markov late sodium channels parameters 

Parameter Unphosphorylated Phosphorylated Ref. 
P1a1 3.99 3.99 20

P2a1 0.02 0.02 

P1a4 5.76 5.76 

P2a4 107.67 1.67 

P1a5 1.63×10
-8

2.5×10
-8

P2a5 6.21 6.21 

P1b1 0.03 0.03 

P2b1 9.35 9.35 

P1b2 0.037 0.037 

P2b2 6.66 6.66 

P1b3 1.67×10
-3

1.67×10
-3

P2b3 17.33 17.33 

P1b5 0.013 0.013 



P2b5 -7.2×10
-6

-1.82×10
-6

P1a6 27.27 1.99 

P1b6 2.45×10
-6

3.77×10
-6

P2b6 11.79 11.79 

P1a7 0.0047 0.0018 

P2a7 25.91 151.60 

P1b7 0.03 0.03 

P2b7 53.44 53.44 

P1a8 1.62×10
-6

7.24×10
-6

P1b8 1.54×10
-3

1.54×10
-3

P1a42 1.21 0.10 

Table S27. Sodium channels Phosphorylation Parameters 

Symbol Value Units description Ref. 

8 Conduction rate of late sodium channels 20

7.19×10-4 The unphosphorylation rate of Na+ channels 21

1.07 The phosphorylation rate of Na+ channels * 

*The dephosphorylation rate was fit using the experiment data 2 

Table S28. States variables initial values 

Symbol Unit Description Value 

V mV Sarcolemmal membrane potential -84.24

mNa Sodium channel activation gate 0.033 

hNa Sodium channel inactivation gate 0.98 

jNa Sodium channel slow inactivation gate 0.99 

Xk Potassium channel activation gate 1.89×10-4 

[Na+]i mM Intracellular Na+ concentration 8.12 



[K+]i mM Intracellular K+ concentration 136.9 

[Ca2+]i mM Intracellular Ca2+ concentration 5.08×10-5 

[Ca2+]JSR mM JSR Ca2+ concentration 0.47 

[Ca2+]NSR mM NSR Ca2+ concentration 0.47 

[Ca2+]m mM Mitochondrial free Ca2+ concentration 1.44×10-4 

𝑥@ State 1 of Calcium release 6.9×10-4 

𝑥h State 2 of Calcium release 1.89×10-1 

𝑥? State 3 of Calcium release 7.91×10-2 

𝑥A State 4 of Calcium release 5.41×10-6 

𝑥i State 5 of Calcium release 5.15×10-2 

𝑥` State 6 of Calcium release 1.35×10-3 

𝑥a State 7 of Calcium release 3.71×10-1 

𝑥] State 8 of Calcium release 1.58×10-1 

𝑥s State 9 of Calcium release 8.17×10-6 

𝑥@= State 10 of Calcium release 7.77×10-2 

𝑥@@ State 11 of Calcium release 6.09×10-10 

𝑥@h State 12 of Calcium release 1.77×10-7 

𝑥@? State 13 of Calcium release 1.26×10-6 

𝑥@A State 14 of Calcium release 8.14×10-11 

𝑥@i State 15 of Calcium release 7.52×10-7 

𝑥@` State 16 of Calcium release 1.71×10-10 

𝑥@a State 17 of Calcium release 4.67×10-8 

𝑥@] State 18 of Calcium release 2.22×10-8 

𝑥@s State 19 of Calcium release 1.71×10-11 

𝑥h= State 20 of Calcium release 1.62×10-7 

𝑥h@ State 21 of Calcium release 8.74×10-6 

𝑥hh State 22 of Calcium release 2.55×10-3 



𝑥h? State 23 of Calcium release 2.86×10-3 

𝑥hA State 24 of Calcium release 1.33×10-6 

𝑥hi State 25 of Calcium release 1.23×10-2 

𝑥h` State 26 of Calcium release 4.84×10-7 

𝑥ha State 27 of Calcium release 1.30×10-4 

𝑥h] State 28 of Calcium release 9.42×10-5 

𝑥hs State 29 of Calcium release 2.62×10-7 

𝑥?= State 30 of Calcium release 2.48×10-3 

𝑥?@ State 31 of Calcium release 3.54×10-5 

𝑥?h State 32 of Calcium release 9.74×10-3 

𝑥?? State 33 of Calcium release 4.19×10-3 

𝑥?A State 34 of Calcium release 1.16×10-6 

𝑥?i State 35 of Calcium release 1.10×10-2 

𝑥?` State 36 of Calcium release 4.47×10-5 

𝑥?a State 37 of Calcium release 1.23×10-2 

𝑥?] State 38 of Calcium release 5.23×10-3 

𝑥?s State 39 of Calcium release 8.87×10-7 

𝑥A= State 40 of Calcium release 8.46×10-3 

[LTRPNCa] mM Ca2+ bound to low affinity troponin sites 3.29×10-3 

[HTRPNCa] mM Ca2+ bound to high affinity troponin sites 0.11 

[N0] Non-permissive tropomyosin with 0 cross bridges 0.99 

[N1] Non-permissive tropomyosin with 1 cross bridges 7.91×10-7 

[P0] Permissive tropomyosin with 0 cross bridges 9.07×10-7 

[P1] Permissive tropomyosin with 1 cross bridges 9.88×10-7 

[P2] Permissive tropomyosin with 2 cross bridges 1.47×10-6 

[P3] Permissive tropomyosin with 3 cross bridges 1.28×10-6 

[ATP]i mM EC coupling linked ATP concentration 7.97 



[ATP]ic mM 
Cytosolic ATP concentration not linked to EC 

coupling 
7.95 

[CrP]i mM 
Mitochondrial linked creatine phosphate 

concentration 
15.27 

[CrP]ic mM Cytosolic creatine phosphate concentration 15.28 

[ADP]m mM Mitochondrial ADP concentration 0.010 

[NADH] mM Mitochondrial NADH concentration 9.18 

DYm mV Inner mitochondrial membrane potential 131.3 

[ISOC] mM Isocitrate concentration (mitochondrial) 0.55 

[aKG] mM a ketoglutarate concentration (mitochondrial) 3.79×10-5 

[SCoA] mM Succinyl CoA concentration (mitochondrial) 0.18 

[Suc] mM Succinate concentration (mitochondrial) 1.15×10-4 

[FUM] mM Fumarate concentration (mitochondrial) 0.013 

[MAL] mM Malate concentration (mitochondrial) 9.67×10-3 

[OAA] mM Oxalacetate concentration (mitochondrial) 3.35×10-8 

[O2
.-]p_mito mM O2

.- concentration (peri_mito) 9.45×10-7 

[O2
.-]SR mM O2

.- concentration (peri-SR) 1.39×10-10 

[O2
.-]mito mM O2

.- concentration (mitocondrial) 0.29 

[H2O2] mM Hydrogen peroxdize (cytoplasmic) 6.70×10-7 

[GSH] mM Reduced glutathione (cytoplasmic) 0.99 

[CaMCa] mM CaM with one Ca2+ ion binded 1.35×10-4 

[CaMCa2] mM CaM with two Ca2+ ion binded 1.29×10-5 

[CaMCa3] mM CaM with three Ca2+ ion binded 7.02×10-9 

[CaMCa4] mM CaM with four Ca2+ ion binded 7.62×10-11 

[B] mM CaMKII with Ca2+/CaM binded 7.62×10-11 

[P] mM 
CaMKII with Ca2+/CaM binded and being 

phosphorylated 
1.05×10-12 

[A] mM CaMKII with being phosphorylated 1.03×10-16 



[OxB] mM 
CaMKII with Ca2+/CaM binded and being 

oxidated  
4.04×10-14 

[OxP] mM 
CaMKII with  Ca2+/CaM binded and being 

phosphorylated and oxidated 
5.13×10-17 

[OxA] mM 
CaMKII with being phosphorylated and 

oxidated 
1.00×10-19 

State of unphosphorylated sodium channels 5.21×10-1 

State of unphosphorylated sodium channels 2.98×10-2 

State of unphosphorylated sodium channels 3.71×10-5 

State of unphosphorylated sodium channels 8.37×10-3 

State of unphosphorylated sodium channels 1.33×10-4 

State of unphosphorylated sodium channels 4.16×10-1 

State of unphosphorylated sodium channels 2.38×10-2 

State of unphosphorylated sodium channels 2.96×10-5 

State of unphosphorylated sodium channels 6.78×10-8 

State of unphosphorylated sodium channels 3.92×10-4 

State of unphosphorylated sodium channels 2.24×10-5 

State of unphosphorylated sodium channels 2.79×10-8 

State of unphosphorylated sodium channels 6.39×10-11 

State of phosphorylated sodium channels 4.19×10-1 

State of phosphorylated sodium channels 2.39×10-2 

State of phosphorylated sodium channels 2.98×10-5 

State of phosphorylated sodium channels 7.33×10-4 

State of phosphorylated sodium channels 7.39×10-5 

State of phosphorylated sodium channels 5.24×10-1 

State of phosphorylated sodium channels 2.99×10-2 

State of phosphorylated sodium channels 3.73×10-5 



State of phosphorylated sodium channels 8.54×10-8 

State of phosphorylated sodium channels 2.29×10-3 

State of phosphorylated sodium channels 1.31×10-4 

State of phosphorylated sodium channels 1.63×10-7 

State of phosphorylated sodium channels 3.74×10-10 

The fraction of unphosphorylated Na+ channels 7.81×10-1 

The fraction of phosphorylated Na+ channels 2.2×10-1 



Figure S1. Top: The Scheme of CaMKII activation model modified from Foteinou et al. 1. In this 
model, there is only one inactive state (state I). CaMKII can be activated via binding Ca2+/CaM, 
autophosphorylating, and oxidizing. Bottom: The scheme of Markov model for CaMKII 
activation-dependent sodium channel phosphorylation. We hypothesized that the phosphorylated 
rate was proportional to CaMKII autophosphorylation rate and the fraction of activated CaMKII. 
The dephosphorylation rate was a constant which was fit using the experiment data from Wagner 
et al. 2. CaMKII: Ca2+/calmodulin-dependent protein kinase II; CaM: calmodulin.  



Figure S2. (A): Increasing shunt from 0.02 to 0.1 caused sustained mitochondrial oscillations 
and cyclic reactive oxygen species (ROS) bursts in a cardiomyocyte. (B): Dynamics of cytosolic 
Na+ concentration ([Na+]i) during mitochondrial oscillations in the presence of oxidative 
CaMKII oxidation. (C): Dynamics of cytosolic Na+ concentration during mitochondrial 
oscillations in the absence of oxidative CaMKII oxidation. CaMKII: Ca2+/calmodulin-dependent 
protein kinase II. 



Figure S3. After the 3rd depolarization, the EADs sustained throughout the whole repolarization 
phase. Shunt = 0.14, PCL = 2s. EADs: early afterdepolarizations; PCL: pacing cycle length. 



Figure S4. Effect of increasing ROS scavenging (i.e. et_SOD) on mdROS-CaMKII activation-
induced EADs. et_SOD was increased from 1.43 x 10-3 mM (baseline value) to 1.8 x 10-3 mM at 
200s (black line), 300s (red line), or 700s (blue line).  (A): The fraction of phosphorylation 
sodium channels. (B): Action potentials of the last two beats. shunt = 0.14 and PCL = 2s. 
mdROS: mitochondrial-derived reactive oxygen species; CaMKII: Ca2+/calmodulin-dependent 
protein kinase II; EADs: early afterdepolarizations; PCL: pacing cycle length. 
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