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A B S T R A C T   

The use of a 10 gene transcriptional signature as part of the GARD model has been shown to be predictive of 
radiotherapy benefit for a range of cancers, with the potential to determine an optimal overall dose per patient. 
We used publicly available RNA-seq transcriptomics data from a luminal B breast cancer patient and from 14 
prostate cancer patients to explore the radiosensitivity indices (RSI) and so GARD estimates of both tumour and 
proximal normal biopsies from each individual. Clear differences of clinical relevance in derived radiobiological 
properties between tumour and proximal normal tissues were evident for the breast cancer patient, whilst such 
differences across the prostate cancer cohort were more equivocal. Using the prostate cancer cohort’s median 
tumour predicted GARD value as a threshold for high therapeutic effect for radiotherapy, we found evidence that 
a higher overall prescribed dose than the widely used 72 Gy/36fx could benefit half of these patients. This 
exploratory study demonstrates the potential combining the GARD model with sequencing based transcriptomics 
could have in informing personalised radiotherapeutic practise for both breast and prostate cancer patients.   

1. Introduction 

Despite the widespread use and acknowledged efficacy of radio
therapy in treating patients with a range of cancers, there is a growing 
appreciation that the standardised treatment regimen prescribed for 
specific tumours may be sub-optimal. The one-size-fits-all approach is 
unlikely to have an equal therapeutic effect for all patients due to patient 
genotype and tumour heterogeneity. The growth in the use of genomics 
assays over the past decade has provided a means to formally assess 
radiosensitivity at the individual level. Work studying clonogen survival 
curves from a subset of the NCI60 panel together with associated tran
scriptional activity culminated in the derivation of a 10-gene panel 
based radiosensitivity index (RSI), measured in units of SF2, which was 
validated in several clinical studies [1], demonstrating enhanced radi
otherapeutic efficacy based on a given tumour’s transcriptomic derived 
RSI. 

Subsequent work incorporating the predicted transcriptional RSI 
into the Linear Quadratic formalism yielded the development of the 
Genome Adjusted Radiation Dose (GARD) model [2], which permits 
estimation of patient specific radiobiological properties directly from 
the expression profile of the tumour under scrutiny. Several subsequent 
studies have further validated the efficacy of the GARD model in 

quantifying the efficacy of radiotherapy for certain patients over others 
for several cancer types, and in using the distribution of GARD estimates 
among a given cohort to identify those patients for whom a lesser or 
greater overall radiation dose would be appropriate to optimise tumour 
control [3,4]. In the most recent study, a pooled pan-cancer analysis in 
11 separate clinical cohorts of 1,615 unique patients with 7 different 
cancer types definitely demonstrated the GARD derived dose, not overall 
physical RT doses, was predictive of RT benefit as regards recurrence 
and overall survival [5]. 

Quantifying normal tissue complications is a critical component of 
any radiation treatment plan, and by convention this is determined from 
agreed tissue-specific radiobiological parameters that are considered 
universally applicable to all patients. However, the personalised and 
fundamentally genomic nature of radiotoxicity has been known for some 
time [6–8]. The conventional GARD formalism lacks a means of quan
tifying radiosensitivity for proximal normal tissues to the tumour being 
targeted, as the RSI is typically estimated from expression microarray 
analyses which are based around a differential estimate of expression 
between pair-matched tumour and normal tissue samples. Indeed, 
questions have been raised about the potential presence of normal tissue 
within the tumour samples compromising the GARD assay itself [9]. We 
reasoned that by directly sequencing transcripts from both tumour and 
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normal tissue samples using RNA-seq, we could implement the GARD 
model for both separately, and use this information to assess the suit
ability of radiation dose escalation for a given patient, in particular for 
those cases where limiting proximal normal tissue radiotoxicity is a 
priority. 

In this short communication, we articulate an exploratory study 
involving publicly available RNA sequence data for one breast cancer 
patient (T  = 10, N  = 3) where we describe our novel methodology to 
generate RSI estimates directly from such transcriptomic data, and how 
we use these to characterise the likely radiotherapeutic response - both 
tumour and proximal normal tissue - of this patient to a standard frac
tionation treatment regimen of 50 Gy/25fx. We additionally apply the 
same approach to a publicly available RNA sequence data archive for 14 
prostate cancer patients (T = 1, N = 1 for each patient). As the radio
toxicity of proximal normal prostate tissue is not of current clinical 
relevance, our interest here is to determine if dose escalation would be 
appropriate for all/any of these patients as derived from each tumour’s 
RSI. As no prior studies involving prostate cancer have been reported 
using the GARD methodology, this component of our exploratory study 
is particularly novel. 

2. Materials and Methods 

2.1. Sequence Data 

10 tumour and 3 adjacent normal samples were biopsied from a 
single Korean woman diagnosed with invasive ductal luminal B carci
noma, and the extracted RNA sequenced using ∼100 bp paired-end 
reads on an Illumina HiSeq 2500 platform [10,11]. Patient metadata 
can be found in Supplementary Table S1. For the prostate cancer cohort, 
data was retrieved from a previously published study examining and 
building a transcriptomic landscape for prostate cancer from 14 pa
tients, in this case the biopsies obtained following radical prostatectomy 
[12]. Data for each patient contains 1 tumour and 1 adjacent normal 
sample. RNA was sequenced with 90 bp paired-end reads on the Illumina 
HiSeq 2000 platform. Patient metadata can be found in Supplementary 
Tables S2 & S3. 

2.2. Analysis 

All sequence data were assessed for quality control using FastQC/ 
MultiQC [13,14] and RseQC package [15], and aligned to Ensembl 
Version 104 of the human genome using HISAT2 [16]. Differential 
expression was determined using kallisto [17] and DESeq2 [18]. PCA 
analysis of gene expression variation within both cohorts following 
regularized-logarithm transformation was used to identify poor quality 
samples. The resulting PCA and Transcription Integrity Number (TIN) 
plots can be found in Supplementary FiguresS1 & S2. All processing was 
implemented using Nextflow scripting [19] curated within a Docker/ 
Singularity container permitting ease of reproducibility [20]. Gene level 
transcript count data was normalized to counts per million using edgeR 
[21], followed by trimmed means of M (TMM) values, a normalization 
method which allows comparison across multiple samples [22]. 

The radiosensitivity index (RSI) was calculated directly from the 
expression values determined for the 10-gene panel of [1] using the 
following formula: 

RSI = − 0.0098009 ∗ AR+ 0.0128283 ∗ cJun+ 0.0254552

∗ STAT1 − 0.0017589 ∗ PKC − 0.0038171 ∗ RelA+ 0.1070213

∗ cABL − 0.0002509 ∗ SUMO1 − 0.0092431 ∗ CDK1 − 0.0204469

∗ HDAC1 − 0.0441683 ∗ IRF1
(1)  

The Genomic-Adjusted Radiation Dose (GARD) can be calculated as 
defined [23] using the α value determined by the radiosensitivity index, 

and β as a fixed 0.05, using the following formula: 

GARD = nd(α+ βd) (2)  

where the α parameter determined as follows: 

α =
ln(RSI) + βnd2

− nd
= ( − 0.5ln(RSI)) − 0.1 (3)  

where n are the number of fractions of dose d. Conversely, for a given 
GARD value, one can estimate the optimal radiation dose, and so using a 
GARD threshold value, derive the optimum dose per patient. 

All statistical evaluation was performed using R [24,25]. RSI and 
GARD variance for both breast cancer and prostate cancer datasets were 
calculated using Welch’s T-test. 

2.3. Results 

After quality control measures, the breast cancer dataset was reduced 
to T = 9, N = 3, following the removal of one outlier tumour sample 
from this study (Supplementary Figure S1). RSI was measured and 
resulted in values of 0.43 ± 0.038 and 0.52 ± 0.045 for tumour and 
normal tissue samples respectively for the luminal B breast cancer pa
tient (P = 0.049)(Fig. 1A), with values of 0.43 ± 0.024 and 0.46 ± 0.049 
for tumour and normal tissue samples respectively for the prostate 
cancer patient (P = 0.073)(Fig. 1B). The same data represented as both 
scatter and bar plots may be found in Supplementary Figures S3 & S4. 

We hypothesised a standard-of-care dose RT of 50 Gy in 25 fractions 
to derive GARD values for the breast cancer case, yielding a GARD value 
of 21.18 ± 2.04 and 16.24 ± 2.17 for the tumour and normal tissue 
samples respectively (P = 0.035). This matches the threshold derived by 
[5] as demonstrating a positive therapeutic index, indicating such a 
fractionation regimen would have been appropriate for this patient. We 
similarly applied a hypothetical standard-of-care RT of 72 Gy in 36 
fractions for each of the prostate samples, however there was no sta
tistical difference between the derived cancer/normal GARD values 
(30.66±2.05/28.54±3.92, P = 0.088). 

We used the median predicted GARD value for the tumour samples to 
define a threshold for GARD ‘high’ predictive of a high therapeutic ef
fect, as previously proposed by [23], and derived an empirical distri
bution function plot (Fig. 2A) for each patient. A LOESS model fit 
through the optimal patient dosages yields a sigmoidal curve, as pre
dicted from tumour control probability (TCP) models and previously 
demonstrated in [26,27], where the sigmoidal distribution was gener
ated from a TCP model using Gaussian distributed α values at 0.35 with 
0.08 standard deviation, suggesting a similar relationship between α 
values and optimal patient dosage using the GARD model. Fig. 2A 
highlights the benefit higher overall dosages could have for several 
patients, in some cases greater than the standard prescribed (72 Gy/ 
36fx). 35% of patients would achieve a high TCP at 70 Gy dosage in 2 Gy 
fractions, with 92% of patients obtaining high TCP at 75 Gy. 

3. Discussion 

This study aimed to create a RNA-seq based methodology for RSI 
calculation and utilize the GARD model in order to assess the efficacy of 
planned standard of care radiotherapy on an individualized basis, taking 
into account adjacent normal tissue radiosensitivity as required. The 
latter is of particular importance for those cancers localised within 
existing organs for which there is a need to limit radiotoxicity, such as 
breast cancers. The use of RNA-seq data distinguishes it from the con
ventional GARD estimation which is based on a gene expression 
microarray methodology. Recent work by Dai et al. [28] attempted to 
determine RSI directly from RNA-seq data, however that approach could 
not correct for cross-sample count normalization [29]. By applying a 
weighted trimmed means of M (TMM) values with log2 transformation, 
we have been able to correct for both inter-sample gene count 
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Fig. 1. A: Luminal B Breast Cancer Patient: Boxplot showcasing RSI for 9 tumour and 3 adjacent normal tissue samples. B: Prostate Cancer Patient: Boxplot 
showcasing RSI for tumour and adjacent normal tissue in 14 normal-tumour matched samples. 

Fig. 2. A: Empirical cumulative distribution plot for the minimum total radiotherapy dose for tumour control per patient in the prostate dataset, using median GARD 
across the prostate dataset as the threshold for a high GARD score. The labels indicate each patient’s GARD value in the plot. 
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comparison and cross sample normalization [30]. 
We used this methodology to explore the radiosensitivity heteroge

neity across tumour and adjacent normal tissue in two datasets, in a 
single patient with luminal B breast cancer and in 14 patients with 
prostate cancer. In both cases, the gene panel derived RSI values showed 
greater consistency for the tumour against the normal samples for both 
cancer types, in addition to an overall trend for greater RSI associated 
with normal tissues. Whilst more forensic analysis would be necessary to 
confirm normal tissue ‘contamination’ in the tumour samples, its clear 
that the differences in RSI are consistent with differing transcriptional 
signatures, consistent with our gene expression analysis (data not 
shown), resolving to some extent prior concerns of normal tissue 
contamination compromising the GARD model [9]. 

For the luminal B breast cancer dataset, both RSI and GARD esti
mates were significantly different between the tumour and normal tissue 
biopsies from the same patient, with the GARD value at the 21 threshold 
previously reported for enhanced radiotherapeutic efficacy [5]. The 
significant difference in GARD derived optimal dose between both 
breast tissue types indicates the potential for enhanced tumour control 
probability by increasing the overall biological effective dose without 
enhancing normal toxicity. Optimal radiotherapeutic regimens aim to 
maximise the therapeutic index between tumour control and normal 
tissue complication probabilities. This preliminary study demonstrates 
the potential of using GARD to characterise the predicted radio
therapeutic outcome of both the tumour and proximal normal tissue for 
a given patient, and in so doing, provide valuable additional information 
towards personalising treatment. 

Limiting radiotoxicity to proximal normal prostate tissue is not 
considered in clinical practise, and so the variations in tumour-normal 
RSI determined for each patient in the prostate cancer cohort are not 
in any way actionable, other than pointing to clearly differing radiobi
ological conditions between both tissue types. The majority of patients 
in the prostate cancer cohort show tumour RSI values in excess of 0.4, 
which has been previously proposed as being a threshold indicating 
suitability for hypofractionation[31,32] (Supplementary FigureS4). 
Many of these same patients were also identified as likely requiring a 
higher prescribed dose to achieve optimal GARD for tumour control in 
our study (Fig. 2). Of note is the fact that there is no evident correlation 
between the RSI estimates and other clinical variables such as PSA, 
stage, or Gleason Score (Table S1). Whilst we caution drawing conclu
sions on such a small sample, taken together these data suggest that such 
RSI profiling may have value in radiation treatment planning for treat
ing localised disease in this first application of the GARD model to 
prostate cancer. 
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