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Abstract

Escherichia coli O104:H4, a hybrid pathotype reported in a large 2011 foodborne outbreak

in Germany, has not been detected in cattle feces. However, cattle harbor and shed in the

feces other O104 serotypes, particularly O104:H7, which has been associated with sporadic

cases of diarrhea in humans. The objective of our study was to assess the virulence poten-

tial of Shiga toxin-producing E. coli (STEC) O104:H7 isolated from feces of feedlot cattle

using DNA microarray. Six strains of STEC O104:H7 isolated from cattle feces were ana-

lyzed using FDA-E. coli Identification (ECID) DNA microarray to determine their virulence

profiles and compare them to the human strains (clinical) of O104:H7, STEC O104:H4 (Ger-

man outbreak strain), and O104:H21 (milk-associated Montana outbreak strain). Scatter

plots were generated from the array data to visualize the gene-level differences between

bovine and human O104 strains, and Pearson correlation coefficients (r) were determined.

Splits tree was generated to analyze relatedness between the strains. All O104:H7 strains,

both bovine and human, similar to O104:H4 and O104:H21 outbreak strains were negative

for intimin (eae). The bovine strains were positive for Shiga toxin 1 subtype c (stx1c), entero-

hemolysin (ehxA), tellurite resistance gene (terD), IrgA homolog protein (iha), type 1 fim-

briae (fimH), and negative for genes that code for effector proteins of type III secretory

system. The six cattle O104 strains were closely related (r = 0.86–0.98) to each other,

except for a few differences in phage related and non-annotated genes. One of the human

clinical O104:H7 strains (2011C-3665) was more closely related to the bovine O104:H7

strains (r = 0.81–0.85) than the other four human clinical O104:H7 strains (r = 0.75–0.79).

Montana outbreak strain (O104:H21) was more closely related to four of the human clinical

O104:H7 strains than the bovine O104:H7 strains. None of the bovine E. coli O104 strains

carried genes characteristic of E. coli O104:H4 German outbreak strain and unlike other

human strains were also negative for Shiga toxin 2. Because cattle E. coli O104:H7 strains
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possess stx1c and genes that code for enterohemolysin and a variety of adhesins, the sero-

type has the potential to be a diarrheagenic foodborne pathogen in humans.

Introduction

Escherichia coli O104:H4, a hybrid pathotype possessing genes characteristic of enteroaggregative

E. coli (EAEC) and Shiga toxin (Stx)-producing E. coli (STEC), was responsible for a large food-

borne outbreak of hemorrhagic colitis and hemolytic uremic syndrome in Europe, mainly Ger-

many, in 2011. The O104:H4 serotype was also isolated from patients suffering from bloody

diarrhea in the Republic of Georgia in 2009 and comparative genomics revealed that they are

nearest neighbors to 2011 German outbreak strains. However, there were structural and nucleo-

tide differences in plasmid and prophage profiles and in antimicrobial resistance between German

and Georgian strains [1]. Because Stx-negative EAEC O104:H4 had been previously isolated from

humans in African countries, it was suggested that the hybrid pathotype has evolved from EAEC

O104:H4 by the uptake of Stx-carrying bacteriophage [2–5]. Escherichia coli O104:H4 serotype

has not been detected in cattle, unlike other major STEC serotypes that cause human illnesses [6–

8]. However, cattle harbor O104 serotypes other than H4 in the gut and shed them in the feces [6,

9, 10]. A stx2-carrying O104:H21 serotype, possibly of cattle origin, was implicated in an outbreak

of hemorrhagic colitis associated with consumption of raw milk in Helena, Montana in 1994 [11].

We have conducted a study with cattle feces collected from a number of feedlots (n = 29) to deter-

mine the prevalence of O104 serogroup and reported that serotype O104:H7 was the most com-

monly isolated stx-carrying O104 serotype [9]. The O104:H7 serotype is reported to be associated

with sporadic diarrheal cases in humans [12, 13], however, there has been no evidence to suggest

that cattle were the source of human infections. Not much is known about the virulence potential

of the strains of E. coli O104:H7 of cattle origin, particularly in relation to human clinical strains

of O104:H7. Therefore, the objectives of our study were to analyze the gene content to assess the

virulence potential of cattle O104:H7 strains using FDA-ECID DNA microarray and to compare

their virulence gene profiles with that of human STEC O104:H7 (clinical strains), O104:H21

(milk-associated Montana outbreak strain) and O104:H4 (German outbreak) strains.

Materials and methods

Kansas State University Institutional Biosafety Committee and Institutional Animal Care and

Use Committee approved this study.

E. coli O104 strains

Six strains of STEC O104:H7 (2013-6-659A, 2013-6-672E, 2013-6-685A, 2013-6-48C, 2013-6-

122E and 2013-6-148B), isolated from feedlot cattle fecal samples collected at a Midwest

slaughter plant [9], were utilized in this study. Additionally, five strains of human O104:H7

(06–3637, 07–3598, 08–4061, 2011C-3665, and 2012C-3400; Centers for Disease Control and

Prevention, Atlanta, GA), human STEC clinical strains of O104:H4 (BAA-2326; German out-

break), and O104:H21 (BAA-178; Montana outbreak) were included in the study.

Microarray assay and data analysis

The strains were subjected to a custom Affymetrix DNA microarray developed by the FDA for

identification and characterization of E. coli [14]. The array was designed using 368 E. coli and

DNA microarray analysis of E. coli O104:H7
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Shigella sequence sets to identify 55,918 annotated open reading frames. The array incorpo-

rates 41,932 probe sets, which includes 54 closed chromosomes, 47 closed plasmids, and 267

whole genome shotgun sequences. The array can be used to identify 152 O types, 54 H types, 4

stx1 subtypes, 8 stx2 subtypes, 48 eae subtypes, and other virulence genes. The microarray

assay was performed according to the protocol described by Patel et al. 2016. Briefly, each

strain was grown overnight in Luria broth (Sigma-Aldrich Co., St. Louis, MO) at 37˚C. Total

DNA was extracted from 1 ml of the culture and fragmented by a brief digestion with RQ1

RNase-Free DNase I. The 3’ end of the digested DNA was labelled with biotin, hybridized to

FDA-ECID array and incubated for 16 h at 45˚C. The presence or absence of each gene was

determined using Robust MultiArray Averaging (RMA) method and MAS5.0 algorithm.

Robust MultiArray Averaging (RMA) summarized probe set intensity data is provided in S1

Excel File. In addition to bovine and human O104:H7 strains, other O104 strains of different

serotypes (H2, H4, H8, H12, H21, H23) from our culture collection were also included in the

phylogenetic analysis, performed using FDA-ECID gene differences data from all the probe-

sets. The tree was developed using Neighbor net algorithm using Neighbor joining method

(SplitsTree4). Pearson correlation coefficients (r) were determined to compare the bovine

O104:H7 and human (O104:H7, O104:H4, O104:H21) strains. Pair wise scatter plots were also

generated to visualize the gene level differences between the strains. Hierarchical cluster den-

drogram was generated by array probe set differences for 241 strains including the diarrhea-

genic E. coli strains from our culture collection representing the broad diversity across the E.

coli species.

Results

The gene contents of six O104:H7 strains, isolated from cattle feces, were compared to human

O104:H7 strains associated with sporadic diarrhea, and German outbreak strain of O104:H4

(BAA-2326) and Montana outbreak strain of O104:H21 (BAA-178). All O104 strains, cattle or

human, were negative for eae (intimin) and for genes associated with type III secretory system

(escR, espA, espD, escD, escR, espD, espB, ler, escT, sepL, sepQ, and tir).

Cattle O104:H7

All bovine O104:H7 strains were positive for the following virulence genes characteristic of

STEC pathotype: stx1 (subtype c), terD (tellurite resistance protein), and iha (IrgA homolog

adhesin). Enterohemolysin (ehxA) was present in four of the six bovine strains. The strains

were also positive for adhesins, lpfA (long polar fimbriae) and fimH (mannose specific adhe-

sin); and antimicrobial resistance genes, such as ampH (penicillin binding protein), marC
(multiple antibiotic resistance protein), and pmrD (polymyxin resistance protein) (Table 1).

The six cattle O104 strains were closely related (r = 0.86–0.98; Table 2) to each other, except

for a few differences in phage related and non-annotated genes (data not shown). Scatter plot

data of the strain pairs revealed that three bovine O104:H7 strains, 2013-6-659A, 2013-6-672E

and 2013-6-685A, isolated from the same feedlot, were almost indistinguishable (Fig 1A).

Cattle O104:H7 vs. Human O104:H7

Of the five human O104:H7 strains, three were positive for stx2, one was positive for stx1 (sub-

type c) and another was negative for both. Virulence genes such as ehxA, ampH, lpfA, fimH,

pmrD, and marC were present in both human and bovine O104:H7 strains (Table 1). The

human strains contained the following virulence genes that were absent in the bovine strains:

sub (4/5 strains; encodes for subtilase cytotoxin), espP (4/5 strains; encodes for extracellular

serine protease), and saa (4/5 strains; encodes for STEC auto agglutinating adhesin). Some of

DNA microarray analysis of E. coli O104:H7
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the virulence genes present in bovine O104:H7 strains, such as terD and iha were absent in

human O104:H7 strains. One human clinical (O104:H7; 2011C-3665) strain was more closely

related to bovine O104:H7 strains (r = 0.81–0.85; Table 2; Fig 1B; Fig 2) than the other four

human strains (Fig 1C; Fig 2; S1 Fig). The human strain was positive for stx1c, lpfA, ampH,

fimH, marC, pmrD and negative for other virulence genes such as stx2, sub, saa, and espP, simi-

lar to the bovine O104:H7 strains, however, it was negative for terD, ehxA and iha unlike the

bovine O104:H7 strains. The human strain, 2011C-3665, had the lowest number of probe sets

(3,344 to 4,024) different from any of the bovine strains. Comparison of bovine O104:H7

strains with the other four human clinical (O104:H7) strains revealed probe set differences

ranging from 3,481 to 5,412.

Table 1. Comparison of major virulence genes of bovine E. coli O104:H7 with human O104:H7 strains based on microarray.

Bovine O104:H7 strains Human O104:H7 strains

Genes Product 2013-6-

659A

2013-6-

672E

2013-6-

685A

2013-6-

48C

2013-6-

122E

2013-6-

148B

06–

3637

07–

3598

08–

4061

2011C-

3665

2012C-

3400

Enterohemorrhagic E. coli (EHEC)

stx1 Shiga toxin 1 + + + + + + +

stx2 Shiga toxin 2 + + +

terD Tellurite resistance protein + + + + + +

ehxA Enterohemolysin + + + + + + + +

sub Subtilase cytotoxin + + + +

iha IrgA homologue adhesion + + + + + +

saa Shiga toxin-producing E. coli
autoagglutinating adhesin

+ + + +

Other genes

ampH Penicillin binding protein + + + + + + + + + + +

lpfA Long polar fimbriae + + + + + + + + + + +

fimH Mannose specific adhesin + + + + + + + + + + +

pmrD Polymyxin resistance protein + + + + + + + + + + +

marC Multiple antibiotic resistance protein + + + + + + + + + + +

espP Extracellular serine protease + + + +

https://doi.org/10.1371/journal.pone.0196490.t001

Table 2. Pearson correlation analysis of cattle O104:H7 and human O104:H7 strains.

Cattle O104:H7 Human O104:H7

Strains 2013-6-659A 2013-6-672E 2013-6-685A 2013-6-48C 2013-6-122E 2013-6-148B 06–3637 07–3598 08–4061 2011C-3665 2012C-3400

Bovine O104:H7

2013-6-659A 1 0.98 0.94 0.94 0.91 0.9 0.78 0.78 0.77 0.83 0.76

2013-6-672E 0.98 1 0.95 0.94 0.92 0.9 0.77 0.78 0.77 0.83 0.76

2013-6-685A 0.94 0.95 1 0.91 0.91 0.91 0.77 0.77 0.77 0.85 0.76

2013-6-48C 0.94 0.94 0.91 1 0.89 0.86 0.77 0.77 0.76 0.81 0.75

2013-6-122E 0.91 0.92 0.91 0.89 1 0.93 0.78 0.79 0.78 0.85 0.78

2013-6-148B 0.90 0.90 0.91 0.86 0.93 1 0.77 0.78 0.77 0.84 0.77

Human O104:H7

06–3637 0.78 0.77 0.77 0.77 0.78 0.77 1 0.94 0.93 0.78 0.91

07–3598 0.78 0.78 0.77 0.77 0.79 0.78 0.94 1 0.95 0.78 0.93

08–4061 0.77 0.77 0.77 0.76 0.78 0.77 0.93 0.95 1 0.78 0.93

2011C-3665 0.83 0.83 0.85 0.81 0.85 0.84 0.78 0.78 0.78 1 0.77

2012C-3400 0.76 0.76 0.76 0.75 0.78 0.77 0.91 0.93 0.93 0.77 1

https://doi.org/10.1371/journal.pone.0196490.t002
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Cattle O104:H7 vs. human O104:H4 and O104:H21

Virulence genes characteristic of enteroaggregative E. coli (pet- Per-activated serine protease

autotransporter enterotoxin, aatA- EAEC virulence plasmid (pAA), aggR- Transcriptional reg-

ulator, pic-Protein involved in intestinal colonization, and aatP- permease) were present in the

German outbreak (O104:H4) strain (S1 Table), but absent in O104:H7 and O104:H21 strains.

Extracellular serine protease (espP) was present only in the Montana outbreak strain, but

absent in German outbreak and bovine O104:H7 strains. The bovine O104:H7 strains and the

German O104:H4 strain were positive for terD. Enterohemolysin gene (ehxA), absent in the

O104:H4 strain, was present in four bovine O104:H7 strains and in the O104:H21 strain. Some

of the virulence genes (ampH, pmrD, marC, and lpfA) detected in bovine O104:H7 strains and

human clinical O104:H7 strains were also present in O104:H4 and O104:H21 strains (Table 1;

S1 Table). The complete list of genes detected in bovine E. coli O104:H7 and human O104:H4

and O104:H21 outbreak strains is shown in S1 Table.

Fig 1. Scatter plots of pairwise comparisons between Escherichia coli O104:H7 strains of bovine and human

origin. Each dot represents the robust multiarray average (RMA)-summarized probe set intensity. Dots clustered on

the diagonal line represent genes present in both genomes; scattered dots indicate genome-specific probe sets: upper-

left for the genes represented by the Y-axis, and lower-right for the genes represented by the X-axis. Dots in the plots

are colored red to blue (2.6 to 12) based on the normalized RMA intensity values using human clinical O104:H7 (06–

3637) as the reference strain.

https://doi.org/10.1371/journal.pone.0196490.g001

Fig 2. Splits tree representation of O104 diversity in our collections. Phylogenetic analysis of 33 O104 strains using

the FDA-ECID gene differences data from all the probe sets. The tree was developed using the Neighbor net algorithm

using Neighbor joining method (SplitsTree4). Microarray analysis of these strains was able to reveal several large

parallel paths, indicative of phylogenetic incompatibilities due to probable recombination. The scale bar represents a

0.01 base substitution (bp) per site.

https://doi.org/10.1371/journal.pone.0196490.g002
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Phylogenetic relationship

To gain perspective on the importance of O104 with regard to pathogenicity potential, we ana-

lyzed its relationship to the observed diversity in the E. coli species using the pan genome

array. E. coli segregate into six observable phylogroups (A, B1, B2, CL, D, E, and F) as reported

previously [14]. All strains analyzed in this study belonged to the B1 phylogroup (Fig 3A).

However, O104:H4 strains of the German and Georgian outbreaks of 2011 and 2009 [15],

respectively (Fig 3A noted with asterisks), are distant from either the clinical or bovine O104:

H7 strains (denoted in red and green boxes, respectively). The most closely related strain at a

pan genome level, to four out of five clinical strains in this study was the O104:H21 strain iso-

lated from bovine milk samples in Montana. The other clinical strain clustered with the bovine

strains and this collective group was most closely related to a stx1 and 2 positive O146:H21

diarrheagenic E. coli strain.

As a corollary, we compared all O104 strains in our collection belonging to different sero-

types independently to measure genomic networking and presumed recombination (Fig 2)

which separated into 8 general groups. Similar to the hierarchical clustering method, one clini-

cal O104:H7 strain (2011C-3665) clustered with the bovine O104:H7 STEC strains showing

some parallel recombinatory paths. Likewise, O104 Georgian and German strains were dis-

tinctly separate groups. Regardless, given the instances of virulence markers noted above

Fig 3. Genotype analysis of the O104 strains from bovine and clinical origins. (A) Hierarchical cluster dendrogram generated by array probeset differences for 241

strains including the diarrheagenic Escherichia coli collection representing the broad diversity across the E. coli species. Phylogroups are highlighted with color

shading. The strains reported in this study from human clinical and bovine origin are highlighted in red and green boxes, respectively. Additionally, O104:H4 strains

from the German and Georgian outbreaks [15] (indicated with asterisk) are used as reference. The scale bar represents the number of probeset differences. (B)

Enlargement of the cluster region containing bovine and human E. coli O104:H7 strains from our study.

https://doi.org/10.1371/journal.pone.0196490.g003
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(Table 1) and observed relationships to known pathogens, O104:H7 is an important serotype

to monitor for significant human pathogenicity potential.

Discussion

Several molecular methods are available for the genetic characterization of foodborne patho-

gens, including Shiga toxin-producing E. coli. Molecular techniques, such as DNA microarray

and whole genome sequencing (WGS), allow genome-wide characterization of the organisms.

The limitation of the microarray is that it allows the detection of only specific gene targets,

unlike WGS, which enables the detection of novel genes in the target organisms. However,

WGS is time-consuming and laborious compared to microarray [14, 16]. Custom DNA micro-

array detecting multitude of genes, designed using published whole genome sequences of E.

coli and Shigella, enable rapid genome-scale analysis of pathogenic E. coli [14, 17–19].

All the bovine O104:H7 strains investigated in this study were negative for stx2, which is

more frequently associated with human illnesses, particularly hemolytic uremic syndrome, than

stx1 [20]. The bovine O104:H7 strains and one of the five human O104:H7 strain were positive

for stx1 of subtype 1c. Other STEC serogroups carrying stx1c have been associated with diarrhea

and in a few cases serious complications in human patients [21]. For example, STEC O78:H-

carrying stx1c was reported to be the causative agent of HUS in a 2-week old boy in Finland

[22]. Only human clinical O104:H7 (3/5) and both human outbreak strains (O104:H4 and

O104:H21) carried stx2. However, stx2 subtype was not identified in our study, because the

array cannot differentiate the stx2 subtypes [14]. All O104:H7 strains, both bovine and human,

similar to O104:H4 and O104:H21 outbreak strains [9, 11, 23], were negative for intimin (eae),
an adhesin involved in the attachment to the host cells [24]. However, O104:H7 carried other

adhesins, such as IrgA homologue adhesion (iha), mannose-specific adhesin (fimH), and long

polar fimbriae (lpfA), which are involved in adhesion of bacteria to the host epithelial cells [25–

27]. These adhesins may be involved in the attachment of the bacteria to the host cells in the

absence of intimin. Long polar fimbriae (lpfA), which is also present in German outbreak strain

(O104:H4), has been reported to be involved in initial attachment and colonization of the intes-

tine [26]. Enterohemolysin (ehxA) was present in four of the bovine strains and in all human

O104:H7 strains, except one, and in Montana outbreak strain (O104:H21). Previous studies

have reported the association of ehxA with diarrhea and hemolytic uremic syndrome [28].

Cheng et al. (2015) have reported that hemolysin encoded by ehxA in E. coli O157:H7 is

involved in cytotoxicity of macrophages and release of IL-1β in humans [29]. All bovine O104:

H7 strains and the German outbreak strain were positive for terD, which codes for tellurite

resistance protein. Shiga toxin-producing E. coli serogroups such as O26, O45, O111 and O157

carry tellurite resistance gene [30]. Tellurite resistance gene has been reported to be involved in

the survival of bacteria by conferring protection against host defense [31].

Although there was some similarity in the virulence gene profile of human and bovine

O104 strains, the key virulence genes, such as stx2 responsible for more serious infections,

including hemolytic uremic syndrome, was absent in bovine strains, but present in human

clinical and outbreak strains. Escherichia coli O104:H4 responsible for food-borne outbreak in

Germany has been reported to be evolved by the uptake of stx2 encoding bacteriophages [32].

Similarly, bovine O104:H7 strains could evolve into highly pathogenic strains by acquiring

other virulence genes responsible for human illnesses by gain and loss of genomic islands,

prophages, and plasmids. All the strains investigated in the present study belong to B1 phy-

logroup. Most E. coli strains isolated from beef cattle carrying virulence genes (hlyA, stx1, stx2,

eae) belonged to this phylogroup [33]. Phylogenetic analysis of STEC strains has revealed that

majority (70%) of them belonged to B1 phylogroup [34].

DNA microarray analysis of E. coli O104:H7
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Based on the scatterplots, splits tree, cluster dendrogram and Pearson correlation coeffi-

cients; all the bovine O104:H7 strains were closely related to each other, and one of the five

human clinical strains (O104:H7; 2011C-3665) included in the study was also more closely

related with the bovine strains. The close genetic relatedness of the human clinical strain

(O104:H7; 2011C-3665) and bovine O104:H7 strains is further explained by fewer probe set

differences (3,344 to 4,024) between them, they also showed similarity in their virulence gene

profile. These findings indicate that the human clinical strain (2011C-3665) and the bovine

strains most likely shared similar environment. This suggests that cattle feces could potentially

be a source of O104:H7 strains associated with diarrhea in humans. Additionally, H-type

appears to be more important than O-type as an attribute in relating all of the clinical and

bovine strains included in this study based on the phylogenetic analysis. Similar finding was

reported on O104 STEC strains based on pulsed-field gel electrophoresis [13]. Ju et al. (2012)

hypothesized that E. coli serogroups carrying same flagellar antigens share common ancestors

based on phylogenetic analysis of whole genome sequences of non-O157 E. coli serogroups

[35]. We compared bovine and human O104:H7 strains to human outbreak strains of O104

belonging to different serotypes (O104:H4 and O104:H21) to determine similarities. However,

our study revealed that the outbreak strains are distantly related to bovine and human O104:

H7 strains, except for a few virulence genes common among all the strains.

In conclusion, microarray-based analyses of genes of bovine O104:H7 strains isolated from

cattle feces suggest the potential of the serotype to be a diarrheagenic human pathogen.

Because cattle harbor these strains and shed them in their feces, O104:H7 strains also have the

potential to be foodborne pathogens to humans.
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