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ABSTRACT: There is an urgent need to develop uncharged
radical precursors to be activated under mild photocatalyzed
conditions. 2-Substituted-1,3-oxazolidines (Eox < 1.3 V vs SCE,
smoothly prepared from the corresponding aldehydes) have been
herein employed for the successful release of tertiary, α-oxy, and α-
amido radicals under photo-organo redox catalysis. The reaction
relies on the unprecedented C−C cleavage occurring from the
radical cation of these heterocyclic derivatives. Such a protocol is
applied to the visible-light-driven conjugate radical addition onto Michael acceptors and vinyl (hetero)arenes under mild metal-free
conditions.
KEYWORDS: C−C bond cleavage, conjugate addition, metal-free reaction, oxazolidines, photoorganocatalysis

■ INTRODUCTION
The photochemical/photocatalyzed approach is nowadays the
elective method for the generation of ground-state reactive
intermediates1 including carbon radicals that can be generated
in a mild way using photons as traceless reagents.2 In
particular, great attention has been given, in the last decade,
to the formation of C(sp3)−C(sp3) bonds via the generation of
alkyl radicals,3 and several precursors have been devised3a−i

under tin-free conditions.3e In most cases, the alkyl radical is
tethered to an electroauxiliary group (EA)4 that acts as an
electron donor/acceptor moiety. Upon photocatalytic oxida-
tion/reduction, an electrofugal/nucleofugal group (EA+/−) is
released with the concomitant formation of the alkyl radical
(Figure 1a).3e A charged precursor is usually required to
facilitate such electron transfer reactions. As shown in Figure
1b, both anionic (e.g., alkyl carboxylates,5 alkyl sulfinates,6 alkyl
trifluoroborates,7 bis-catecholato silicates,8 and alkyl oxalates9)
or cationic (e.g., Katritzsky’s salt)3g,10 derivatives have been
tested.
Due to solubility concerns, however, charged radical

precursors can be used only in a limited range of solvents.
Curiously, the development of uncharged, easily available
radical precursors prone to be oxidized under photocatalyzed
conditions is less common. In fact, apart from the case of 1,4-
dihydropyridine derivatives (e.g., A) that exhibits a low Eox
value (1.05 V vs SCE),11 other neutral donors such as
tetraalkyl stannanes (B),12 tetraalkyl silanes (C),13 or 2,2-
dialkyl 1,3-dioxolanes (D)14 can be activated only under quite
prohibitive conditions (Eox up to 2.7 V vs SCE, Figure 1c).
The available literature points out that one of the elective

classes for the design of new uncharged electron donors is
certainly that of tertiary amines (Eox = 0.83 V vs SCE for

triethylamine).5 Formerly, such a class of compounds has been
largely employed as sacrificial electron donors in photoredox
catalysis to reduce a species (or an intermediate) present in
solution.15 Nevertheless, the formation of acidic16 amine
radical cations has been extensively employed in synthesis17 for
the generation of other valuable reactive intermediates, as
sketched in Scheme 1. Indeed, radical cation II often
deprotonates to form a nucleophilic α-amino radical III
(path b) that may, in turn, undergo oxidation to afford an
iminium ion IV (path c)18 that upon the loss of a positively
charged group leads to a 1,3-dipole V (path d).18 In rare
instances, the α-amino radical is photocatalytically reduced to
the corresponding anion VI (path e).19 If the carbons tethered
to the nitrogen atom have no hydrogens, deprotonation from
the N−H group may take place to give nitrogen-centered
radical VII (path f).20 On the other hand, when intermediate II
is generated in a tertiary amine that reluctantly loses a proton
(e.g., quinuclidine), this species acts instead as an efficient
hydrogen atom abstractor (path g).21

We were intrigued, however, by the possible C−C cleavage
to form stable iminium ion IX along with a carbon radical
(path h).22 Examples of this cleavage are only rarely reported
in the literature and point to the requirement of nitrogen-
containing heterocycles as ideal substrates.
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The photocatalyzed single-electron oxidation of (+)-cathar-
anthine X indeed induces a C−C bond cleavage in the
azabicyclo[2.2.2]oct-5-ene core (Scheme 2a), and the so-

modified skeleton of the alkaloid is employed in the
preparation of further natural compounds.17a,23 In another
instance, the cyclopropyl group in bicyclic cyclopropylamines

Figure 1. (a) Adoption of an electroauxiliary group (EA) to facilitate the generation of alkyl radicals. (b) Main classes of charged precursors used
for photocatalyzed alkyl radical formation. (c) Uncharged precursors as electron donors tested for the release of alkyl radicals.

Scheme 1. Intermediates Arising from Photogenerated Amine Radical Cations
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XI was easily opened upon photocatalyzed oxidative conditions
(Scheme 2b).24 The oxidation of tetramethylethanediamine
XII led to the generation of an iminium ion and an α-amino
radical from the fragmentation of the resulting radical cation
(Scheme 2c), but the thus obtained radical was applied
exclusively to the polymerization of 2-hydroxyethylacrylate.25

To our knowledge, however, only dihydroquinazolinones (e.g.,
XIII, Scheme 2d) are used as nitrogen-based heterocycles for
the generation of alkyl radicals by a reductive quenching
catalytic cycle.26

As for the above, a general method to generate (un)-
substituted alkyl radicals by C−C cleavage from a tertiary
amine is so far lacking. We have identified N-methyl
oxazolidines (XIV, the nitrogen analogues of dioxolanes) as
possible candidates to achieve this goal (Scheme 2e). Indeed,
such compounds are oxidized easily (Eox = 1.22 V vs SCE for
2,2,3-trimethyloxazolidine) and act as good electron donors.27

We surmised that the driving force of the cleavage should be
the stability of the resulting iminium ion XV. The present
approach represents a mild alternative route for the generation
of radicals starting from nitrogen-based heterocycles easily
prepared from widely available aldehydes. On these premises,
we investigated 2-substituted N-methyl oxazolidines for the
smooth generation of alkyl radicals to be used in C(sp3)−
C(sp3) bond formation, as detailed in the following.

■ RESULTS AND DISCUSSION
Oxazolidines 1a−f have been easily prepared by treating the
corresponding aldehydes with 2-(methylamino)ethanol. Re-
lated oxazole 1g has been likewise prepared by the reaction of
pivalaldehyde and 2-(methylamino)phenol (see the Support-
ing Information and Scheme S1 for further details). As shown
in Table 1 and Figures S2−S8, compounds 1a−g exhibited an
oxidation potential in the 0.86−1.35 V (vs SCE) range. The

Scheme 2. Cleavage of a C−C Bond from a Radical Cation of an Amine

Table 1. Measured Oxidation Potentials of 1a−g

compound Eox (V vs SCE)

1a 1.33
1b 1.26
1c 1.23
1d 1.22
1e 1.35
1f 1.19
1g 0.86
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Eox of oxazolidines is quite independent of the presence of the
(substituted) alkyl group, whereas the presence of the aromatic
ring in oxazole 1g made the oxidation of the heterocycle
markedly easier (<1 V vs SCE). These low Eox values allow us
to test several (colored) photocatalysts (PCs) for the
occurrence of the desired reaction.
To test our proposal, we then focused on the tert-butylation

of dimethylmaleate 2a using N-methyl-2-tertbutyl-oxazolidine
1a. We then embarked on an extensive survey of reaction
parameters by varying the PC employed (Ir(III)- and Ru(II)-
based complexes as well as photo-organo catalysts), the
reaction media, the stoichiometric ratio of the reactants, as
well as the influence of oxygen in the reaction (see Table S1
for a detailed description of the experiments). A representative
list of control experiments is collected in Table 2.

Table 2. Deviations from the Standard Conditionsa

entry deviations from the standard conditions 3 (% yield)

1 none 88
2 4CzIPN (10 mol %), N2 atmosphere 34
3 DCM as the solvent 52
4 MeOH as the solvent 5
5 N2 atmosphere 71
6 no light 0

aSee Table S1 in the Supporting Information for a detailed
optimization of the standard conditions.

Scheme 3. Photoredox Catalyzed Alkylation of Olefins 2a−j

aReaction carried out on a 1 mmol scale. bReactions with oxazolidine 1b were carried out in a DCE/MeOH 5:1 mixture for solubility concerns.
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Gratifyingly, by adopting the conditions described in Table 1
(entry 1), succinate 3 was isolated in an 88% yield. In detail,
we found that the best reaction conditions were as follows: an
air-equilibrated DCE solution of 2a (0.05 M) in the presence
of 1.5 equiv of 1a, Acr-Mes+ BF4− (10 mol %), irradiated at
405 nm for 24 h (Figure S1). Less satisfactory results were
obtained when replacing Acr-Mes+ BF4 (ERED* > 1.88 V vs
SCE)28 with 4CzIPN (ERED* > 1.38 V vs SCE28 in MeCN,
entry 2) or other metal-free or metal-based PCs (Table S1).
The reaction carried out in neat protic solvents (Table 1, entry
4) or in the absence of oxygen (entry 5) led to a decrease in
the overall yield. Control experiments confirm the photo-
chemical nature of the process (entry 6). The alkylation yield
dropped to 13% when the reaction was carried out in the
presence of TEMPO (1 equiv, Table S1, entry 15). The
reaction carried out in CD2Cl2 did not show any deuterium
incorporation in compound 3 in analogy with the same
reaction occurring in DCM (Figures S9 and S10).
The scope of the reaction has been then extended to

electron-poor alkenes 2b−h and vinyl heteroarenes 2i and 2j.
The results obtained have been depicted in Scheme 3. tert-
Butylated derivatives 3−12 have been obtained in good to
satisfactory yields. In one case (4), the reaction was repeated
on a mmol scale. Allyl-methacrylate 2c was regioselectivity tert-
butylated on the electrophilic C=C bond, but ester 5 was
isolated in only a 46% yield due to its volatility. The method
shows a good tolerance in the presence of different functional
groups including esters, nitriles, amides, carbonyls, and even
heteroarenes. Similar satisfactory results have been obtained
when using oxazolidines 1b−d. In particular, 1b was adopted
to incorporate the adamantyl moiety into olefins, and the
resulting adducts have been isolated in up to a 91% yield (e.g.,
for 14). In this case, methanol (20% v/v) was added to
completely dissolve 1b. To our delight, we found that the
release of substituted alkyl radicals such as α-amido (from 1c)
and α-oxy (from glyceraldehyde derivative 1d) led to alkylated
products 21−28 in the 43−90% range (Scheme 3).
Unfortunately, no alkylation products were detected when 1e

and f and aromatic derivative 1g were used as the radical
precursors.
This is an appealing approach for the generation of tertiary

(e.g., tBu and adamantyl) and α-oxy and α-amido carbon-
centered radicals. The reaction took place upon visible light
using a commercially available and widely employed organic
dye (Acr-Mes+BF4−) as the photoredox catalyst and gives
access to a large variety of alkylated compounds, including,
among others, β-alkyl-amides, nitriles, and ketones, as well as
functionalized nitrogen-based heterocycles via formation of a
C(sp3)−C(sp3) bond.
The preparation of 3−20 allows for the introduction of a

quaternary carbon in an organic molecule by the forging of a
C(sp3)−C(sp3) bond, a topic for which there is great interest
in view of all-carbon quaternary scaffolds present in many
biologically active compounds.29 Moreover, the adamantyla-
tion of olefin is an important strategy to incorporate a moiety
able to impart steric bulkiness, chemical inertness, rigidity, and
lipophilicity to an organic compound; indeed, several
adamantane-based drugs are known to take advantage of
these peculiarities.30 The design of catalysts having the
adamantane scaffold is also another hot topic.31

As for the above, finding new methods for the formation of
tertiary radicals and their application is of utmost importance.3

The photogeneration of these radicals has been only sparsely
reported using Barton esters,32 N-(acyloxy)phthalimides,33

alkyl N-phthalimidoyl oxalates,34 and alkyl carboxylates.5b

Thermal generation of these intermediates involved electro-
philes such as alkyl halides35 or alkylsulfones,36 despite that in
some cases, the desired C(sp3)−C(sp3) bond formation failed
to occur.37

A tentative mechanism for the process illustrated in the
present manuscript is proposed in Scheme 4.
Compounds 1a−g are radical precursors having an Eox < 1.3

V vs SCE (Table 1), comparable to that of other uncharged
1,4-dihydropyridine derivatives (Figure 1c).11 The monoelec-
tronic oxidation of 1a−g by the photoexcited acridinium
catalyst Acr-Mes+* to give the corresponding radical cations
1a−g•+ is thus feasible (path a). At this stage, an
unprecedented C−C cleavage in 1a−d•+ took place, releasing
a carbon-centered radical and a stable iminium ion (29+, path
b). The peculiar structure of the oxazolidines avoid the
possible α-deprotonation at the radical cation stage from
position 2 and 4 as well as from the N-Me group to give an α-
amino radical (path b’). The driving force of such C−C
cleavage is the stability of the tertiary, α-oxy, and α -amido
radicals released.
In the case of oxazolidines 1e and f and oxazole 1g, the

formation of the corresponding radical cation led to an
unproductive alkylation. In the former case, the release of a
primary or a secondary radical is expected to be not so favored
and competitive paths may operate.15 The structure of
compound 1g, however, resembles that of an aniline derivative
and may suffer, in analogy with N,N-dialkyl anilines, of
competitive deprotonation38 or the reactivity of 1g•+ may not
have a role due to the efficient back electron transfer with the
reduced form of the PC.39

The alkyl radicals derived from 1a−d•+ are, in turn, trapped
by electron-poor olefins or vinyl (hetero)aromatics (path c).
Back electron transfer from Acr-Mes• to the adduct radical 30•

(path d) followed by protonation (path e) led to the alkylated
products while restoring the photoredox catalyst. This agrees
with related conjugate radical additions promoted by the

Scheme 4. Suggested Mechanism
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acridinium salt.40 A hydrogen atom transfer from the solvent
by 30• is safely excluded by the deuteration experiments (see
Figures S9−S10). The radical nature of the process is
confirmed by the detrimental effect induced by the presence
of a radical scavenger (TEMPO, see Table S1).

■ CONCLUSIONS
Summing up, we designed a class of smoothly prepared
uncharged precursors for the easy release of alkyl radicals
(tertiary, α-oxy, and α-amido) under photoredox catalyzed
conditions. This process relies on the unprecedented C−C
cleavage in amine radical cations obtained by visible-light
irradiation in the presence of commercially available Acr-Mes+
BF4− as a photo-organocatalyst. This approach was exploited
for the introduction, among the others, of a quaternary carbon
center via C(sp3)−C(sp3) bond formation and for valuable
adamantylations.
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