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The type VI secretion system (T6SS) is a transmembrane protein nanomachine
employed by many gram-negative bacteria to directly translocate effectors into adjacent
cells or the extracellular milieu, showing multiple functions in both interbacterial
competition and bacteria-host interactions. Metal ion transport is a newly discovered
T6SS function. This review summarizes the identified T6SS functions and highlights the
features of metal ion transport mediated by T6SS and discusses its regulation.
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INTRODUCTION

The type VI secretion system (T6SS) is a transmembrane protein nanomachine employed by many
gram-negative bacteria to translocate effectors directly into adjacent target cells or the extracellular
milieu (Cianfanelli et al., 2016). T6SS was regarded as virulence-associated secretion apparatus
because of its association with pathogenicity (Mougous et al., 2006; Pukatzki et al., 2006). However,
subsequent studies have demonstrated T6SS function is involved in multiple physiological and
biochemical processes apart from bacterial pathogenesis, such as interbacterial competition (Hood
et al., 2010; Chassaing and Cascales, 2018), commensalism or symbiosis (Chow and Mazmanian,
2010), stress response (Weber et al., 2009; Wan et al., 2017), biofilm formation (Zhang et al., 2011;
Gallique et al., 2017), and horizontal gene transfer (Borgeaud et al., 2015).

It has been reported that the T6SS function is determined by the loading effectors that can be
delivered extracellularly based on energy consumption and load transport (Cianfanelli et al., 2016;
Coulthurst, 2019). Many T6SS effectors related to virulence or competition that target the cell wall,
membranes, and nucleic acids have been reported (Yang et al., 2018; Song et al., 2021). Several
effectors with special activities have also been found. For example, a T6SS dependent effector,
YezP, has been reported to combine with Zn2+ and contribute to Zn2+ transport to deal with
environmental stresses (Wang et al., 2015), and subsequent studies confirmed the function of T6SS
dependent transport of metal ions (Lin et al., 2017; Si et al., 2017b). This review highlights the
features of T6SS-dependent metal ion transport and its regulation.

TYPE VI SECRETION SYSTEM FUNCTIONS FOR METAL IONS
TRANSPORT

Metal ions are commonly found in all organisms in association with proteins, such as enzymes,
storage proteins, and transcription factors. The metal ions are involved in many crucial biological

Abbreviations: T6SS, type VI secretion system; Azu, azurin.
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processes and are necessary for cell survival (Hood and
Skaar, 2012). Bacteria have evolved sophisticated acquisition
systems, including low- and high-affinity transport systems
for scavenging essential chelated or free metals from the
environment (Porcheron et al., 2013). As a versatile secretion
system widely distributed in Gram-negative bacteria, The T6SS
was found to participate in the transport of iron, zinc, copper,
manganese, and molybdate, summarized in Table 1.

Zinc
Zinc is the second most important transition metal ion in
living organisms after iron, playing an essential catalytic and
structural role in several proteins involved in DNA replication,
glycolysis, pH regulation, amino acid biosynthesis, extracellular
peptidoglycan, and low molecular weight thiols (Porcheron et al.,
2013). Zinc status is linked to the maintenance of intracellular
redox buffering (Andreini et al., 2006). Both the high-affinity
transporter ZnuACB and the low-affinity uptake system ZupT
mediate zinc uptake across the cytoplasmic membrane (Hantke,
2005). Zinc is an essential nutrient for cells; Excess of zinc is
toxic. Therefore, bacterial cells should achieve a delicate balance
between ensuring sufficient zinc concentrations to fulfill essential
functions while limiting concentration to prevent toxic effects.
Zinc homeostasis is mediated by a network of zinc influx and
efflux pumps (Wang et al., 2012; Wang and Fierke, 2013).

Wang et al. (2015) reported that the T6SS-4 from Yersinia
pseudotuberculosis (Yptb) can combat multiple adverse stresses
and host nutritional immunity, by displaying an unexpected
function in transport of Zn2+. Zinc transport is achieved by
T6SS-4-mediated secretion of a Zn2+-binding protein substrate,
YezP (YPK_3549), which binds Zn2+ with high affinity, and
represents a novel class of T6SS effector distinct from those
extensively studied as bacteriolytic toxins or eukaryotic cell-
targeting effectors. Hydroxyl radicals are deleterious reactive
oxygen species that are often generated via Fenton chemistry
under stress conditions (Mols and Abee, 2011). T6SS-4 was
critical to neutralize hydroxyl radicals accumulated under adverse
stress conditions, by accumulating Zn2+, which can mitigate
hydroxyl radicals to reduce them damage. By mitigating the
detrimental hydroxyl radicals induced by multiple stresses,
T6SS-4 provided a molecular explanation to the phenomenon of

TABLE 1 | T6SS dependent ions transport related factors.

Bacteria species T6SS
effector

Membrane
transporter

Metal ions Citation

Y. pseudotuberculosis YezP Zinc Wang et al., 2015

Y. pseudotuberculosis TssS Manganese Zhu et al., 2021

B. thailandensis TseM MnoT Manganese Si et al., 2017b

B. thailandensis TseZ HmuR Zinc Si et al., 2017a

B. pseudomallei TseZ BhuR Zinc DeShazer, 2019

B. pseudomallei TseM MnoT Manganese DeShazer, 2019

P. aeruginosa TseF FptA/OprF Iron Lin et al., 2017

P. aeruginosa Azu OprC Copper Han et al., 2019

P. aeruginosa ModA IcmP Molybdate Wang et al., 2021

C. necator TeoL CubA/CstR Iron Li et al., 2021

“cross-protection” in which cells subjected to one stress become
resistant to distinctly different insults (Isohanni et al., 2013).
Consistent with the function of T6SS-4 in combating stress, its
expression is regulated by multiple transcription regulators, such
as OmpR (Gueguen et al., 2013; Zhang et al., 2013), OxyR (Wang
et al., 2015), RovM (Song et al., 2015), RpoS (Guan et al., 2015),
and RelA (Yang et al., 2019), all of which respond to various
stresses (Song et al., 2015; Zhao et al., 2017; Yang et al., 2019).
Both ZntR and Zur, two zinc responsive regulators, are also
involved in T6SS-4 regulation by directly binding to its promoter
region (Wang et al., 2017; Cai et al., 2021).

The type VI secretion system-4 dependent zinc
transport also plays a crucial role in the interactions of
pathogenic Y. pseudotuberculosis with its mammalian host,
as Y. pseudotuberculosis T6SS-4 mutants are attenuated in
virulence against mice. Especially, mutation of T6SS-4 or
yezP together with znuCB [a classic zinc transporter known
to combat host nutritional immunity (Hood et al., 2012; Liu
et al., 2012)] resulted in mutants that almost completely lost
the virulence against mice, suggesting the importance of T6SS-4
the resistance to host nutritional immunity (Wang et al., 2015).
This finding revealed a new mechanism of T6SS in pathogenesis.
Further studies on Burkholderia thailandensis have revealed
the mechanism of zinc ions transport across the membrane
through T6SS (Si et al., 2017a). The T6SS-4 in B. thailandensis is
involved in zinc acquisition via contact-independent secretion of
a zinc-scavenging protein, TseZ (BTH_II1884), which cooperates
with HmuR, the outer membrane heme transporter for zinc
acquisition. T6SS secreted TseZ directly binds zinc ions and
interacts with the heme transporter HmuR to transport zinc
across the outer membrane. HmuR is a redox-regulated dual
functional transporter. Under normal conditions, HmuR is
used mainly for the transport of heme-iron; HmuR switches
to transport of zinc upon sensing extracellular oxidative
stress. Under mild oxidative stress condition, HmuR-mediated
zinc transport alone is sufficient to maintain intracellular
redox homeostasis. In contrast, under severe oxidative stress
challenge, T6SS-4 is fully induced and secretes the proteinaceous
zincophore TseZ to enhance the efficiency of HmuR-mediated
zinc transport (Si et al., 2017a).

In Burkholderia pseudomallei, the T6SS-2 gene cluster
also encodes a zinc binding protein (TseZ). TonB-dependent
transporters that interact with TseZ and actively transport Zn2+

across the outer membrane have also been identified as BhuR
(DeShazer, 2019).

Manganese
Manganese is also an essential micronutrient for many cellular
components or processes, such as lipid, protein, carbohydrate
metabolism, transcriptional regulation, and resistance to
oxidative stress (Kehres and Maguire, 2003). Manganese plays
a crucial role in bacterial iron homeostasis and protection
against oxidative damage (Puri et al., 2010). Two manganese
ions, Mn2+and Mn3+, are found in most organisms. In
contrast to Fe2+, free Mn2+ is not toxic in a biological
environment; thus, it can replace the more reactive Fe2+

in Fe2+-containing proteins, reducing oxidative damage to
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these proteins (Hood and Skaar, 2012). Manganese can also
enhance oxidative stress resistance by serving as a cofactor
for ROS-detoxifying enzymes, such as SodA and KatN, or
through the formation of non-proteinaceous manganese
antioxidants (Aguirre and Culotta, 2012; Barnese et al., 2012).
Two major transporters import extracellular manganese across
the cytoplasmic membrane: a proton-dependent Nramp-
related transport system (MntH) and an ATP-binding cassette
transporter (SitABCD and YfeABCD) (Goswami et al., 2001;
Forbes and Gros, 2003).

The B. thailandensis T6SS-4 plays an important role in
survival under oxidative stress by uptake Mn2+ through secreting
TseM (BTH_II1883). TseM, a T6SS-4-dependent Mn2+-binding
effector, is involved in the intracellular accumulation of
manganese (Mn2+) under oxidative stress, and an Mn2+-specific
TonB-dependent outer membrane transporter MnoT, has been
shown to be its interacting partner (Si et al., 2017b). Under
high Mn2+ conditions, passive diffusion of Mn2+ through porins
fulfills cellular Mn2+ requirements. Low Mn2+ triggers the
induction of the TonB-dependent outer membrane transporter
MnoT for the active transport of Mn2+ across the outer
membrane. T6SS-4 expression is activated by the conserved
oxidative stress regulator OxyR. Activated T6SS-4 secretes TseM
into the extracellular milieu to scavenge Mn2+ and delivers its
Mn2+ load to MnoT via direct interaction. The T6SS-MnoT
mediated active Mn2+ transport system also participates in the
interbacterial competition and bacterial virulence. The T6SS-
4 provides growth advantage in nutrient-limited environments
and is critical for virulence in Galleria mellonella larvae (Si
et al., 2017b). Similarly, a Mn2+-binding effector (TseM)
secreted by T6SS-2, together with its transmembrane transporter
MnoT, was used to maintain redox homeostasis via Mn2+

acquisition in the B. pseudomallei complex (DeShazer, 2019).
Recently, Y. pseudotuberculosis T6SS-4 was also found to secret
a Mn2+-binding micropeptide, TssS, for Mn2+ acquisition and
oxidative stress resistance. Remarkably, TssS was revealed to be
delivered into host cells to inhibit the STING-mediated innate
immune response by sequestering Mn2+. This finding provides
a new perspective on the role of the T6SS in pathogenesis
(Zhu et al., 2021).

Iron
Iron is an essential nutrient for living organisms by acting as a
cofactor for a large number of enzymes and regulatory proteins.
Although iron is abundant in the Earth’s crust, the bioavailability
iron is severely restricted due to extremely low solubility under
aerobic conditions (Schaible and Kaufmann, 2004; Miethke and
Marahiel, 2007). To acquire sufficient iron for growth, bacteria
have evolved several strategies, including import of ferrous iron
by ATP- or GTP-dependent inner membrane transporters and
TonB-ExbB-ExbD-dependent transport of ferric-siderophores,
transferrin, haem, or haem-bound proteins through specific outer
membrane receptors (Braun, 2001; Hood and Skaar, 2012).

Pseudomonas aeruginosa competes for iron by producing
the high affinity siderophores pyoverdine and pyochelin, as
well as hemophores, and it can also import xenosiderophores
released by other bacteria (Cornelis, 2010). As a P. aeruginosa

mutant lacking three known iron acquisition systems (PA13Fe)
retains the ability to grow in an iron deficient media, a novel
iron acquisition pathway coupling the H3-T6SS effector TseF
(PA2374), Pseudomonas quinolone signal (PQS, 2-heptyl-3-
hydroxy-4-quinolone), outer membrane vesicles (OMVs), and
the outer membrane receptors FptA and OprF was identified (Lin
et al., 2017). TseF does not bind iron, but it interacts with the iron
chelating PQS with a high affinity. The PQS molecule has been
long known to bind iron with a high affinity but the physiological
role of such binding remains unknown (Bredenbruch et al., 2006;
Diggle et al., 2006). TseF engages siderophore receptor FptA
and the porin OprF for iron acquisition (Nissen-Meyer et al.,
1992). Consistent with the biochemical results, both FptA and
OprF are required for TseF-mediated iron acquisition. Like the
hydrophobic PQS, TseF is incorporated into outer membrane
vesicles (OMVs), which have been suggested to play a role in
iron acquisition in P. aeruginosa by unknown mechanism (Kulp
and Kuehn, 2010). The T6SS substrate TseF integrates several
molecules previously known to be involved in iron acquisition
to transport iron to the cell. The tseF gene is present in many
bacteria, suggesting wide use of this iron acquisition mechanism.
The H3-T6SSpromoters and tseF expression for iron acquisition
are commonly repressed by the ferric uptake regulator (Fur) for
intracellular iron homeostasis (Lin et al., 2017). In Cupriavidus
necator, T6SS1 secreted TeoL preferentially in association with
OMVs through interactions with LPS, which enables bacterial
cells to recruit OMVs derived from different species and confers
advantages to bacterial cells for iron acquisition (Li et al., 2021).

An iron chelator, pyoverdine, secreted by Pseudomonas
taiwanensis, can inhibit the growth of the rice bacterial blight
pathogen Xanthomonas oryzae pv. oryzae (Xoo). T6SS is involved
in the secretion of the endogenous iron chelator pyoverdine;
however, the mechanism is unknown (Chen et al., 2016).
Notably, the regulation of T6SS by Fur or iron has also been
reported in Escherichia coli (Brunet et al., 2011), Edwardsiella
tarda (Chakraborty et al., 2011), Burkholderia mallei, and
B. pseudomallei (Burtnick and Brett, 2013), implicating the
possible roles of these T6SSs in iron acquisition.

Copper
As one of the most stable divalent transition metals, cupric
copper (Cu2+) displays a high affinity for metalloproteins
(Waldron and Robinson, 2009). Copper is a catalyzer for electron
transfer reactions in bacteria and a cofactor of copper-detoxifying
enzymes (Dupont et al., 2011; Hodgkinson and Petris, 2012).
Because copper is toxic, intracellular copper levels must be tightly
controlled to ensure the homeostasis required for cuproprotein
synthesis and prevent toxic effects (Argüello et al., 2013). ComC
in E. coli represses copper uptake and thus plays an important
role in copper homeostasis, and its homologs have been found
in many gram-negative bacteria (Rademacher and Masepohl,
2012). For the import of copper, a few cytoplasmic Cu2+-
sensing transcriptional regulators (CueR, CsoR, and CopY)
(Strausak and Solioz, 1997; Outten et al., 2000; Liu et al.,
2007) and periplasmic Cu2+-sensing two-component systems
(CopR/S, CusR/S, and PcoR/S) (Rensing and Grass, 2003; Teitzel
et al., 2006) have been found to play important roles. However,
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copper efflux in pathogenic enterobacteria is more crucial than
copper uptake (Nies and Herzberg, 2013). The inner membrane
heavy metal pumps (transmembrane P1B-type ATPases) in many
gram-negative bacteria are responsible for the exportation of
cytoplasmic copper to the periplasm (Klein and Lewinson, 2011).

In P. aeruginosa, azurin (Azu) has a high affinity for oxidized
Cu2+-bound proteins (Nar et al., 1992; Zhang and Rainey, 2008).
Based on an analysis of the P. aeruginosa H2-T6SS-dependent
secretomes, Azu was characterized as an H2-T6SS-dependent
copper (Cu2+)-binding effector. OprC, a Cu2+-specific TonB-
dependent outer membrane transporter, has been identified as
an Azu-interacting partner. Both Azu and OprC are directly
regulated by the transcriptional regulator CueR and are induced
by low Cu2+concentrations (Han et al., 2019).

Pseudomonas aeruginosa possesses three T6SS loci: H1-, H2-,
and H3-T6SSs that provide a fitness advantage in bacterial
community competition by delivering toxins to target cells
(Mougous et al., 2006; Russell et al., 2011). The identified
T6SS-dependent antibacterial toxin effectors include Tse1-Tse3,
PldA, TplE, and PldB (Russell et al., 2011; Jiang et al., 2014;
Sana et al., 2015). T6SS-mediated Cu acquisition also provides
a growth advantage in bacterial competition, indicating the
critical role of the Azu-OprC-mediated Cu2+ transport system
(Han et al., 2019). Like VgrG2b that is secreted by H2-T6SS
and shows an anti-eukaryotic function, the H2-T6SS-dependent
Cu2+ transport system is important for bacterial virulence

in the blood and lungs of infected mice (Sana et al., 2015;
Han et al., 2019).

Molybdenum
Molybdenum is a trace metal element for nitrate metabolism in
many bacteria and exists in the form of its oxyanion, molybdate
(MoO4

2−) under natural conditions (Grunden and Shanmugam,
1997). Bacteria acquire molybdate mainly through the high-
affinity ATP-binding cassette permease ModABC (Pederick
et al., 2014) and non-specific anion importers (Self et al.,
2001). The imported MoO4

2−often becomes a part of the
Manganese chelating protein molecule to form a molybdenum
cofactor, participating in the activity of molybdo-enzymes
(Kraft et al., 2011).

In P. aeruginosa, the H2-T6SS secreted ModA has been
identified as a molybdate-binding protein and mediated
molybdate acquisition. Moreover, a ModA partner that
participates in molybdate transport has also been identified
as IcmP that is an insulin-cleaving metalloproteinase outer
membrane protein (Wang et al., 2021). The T6SS-ModA-IcmP
system contributes to bacterial virulence and participates in
bacterial competition under anaerobic conditions. Studies have
shown that the molybdenum homeostasis of P. aeruginosa
PA1006 is necessary for nitrate utilization, biofilm formation,
and virulence (Filiatrault et al., 2013; Tombline et al., 2013). In
a mouse model of acute pneumonia, the P. aeruginosa 1clpV2,

FIGURE 1 | Schematic diagram of the type VI secretion system (T6SS) dependent ions transport.
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1modA, and 1anr mutants exhibited attenuated virulence,
indicating that the H2-T6SS-mediated molybdate transport
system contributes to the resistance to host nutritional immunity
(Wang et al., 2021). Like the previously discovered two H1-T6SS
effectors Tse1 and Tse3, which can hydrolyze peptidoglycan and
provide a competitive fitness advantage (Russell et al., 2011), H2-
T6SS improves bacterial competition by promoting molybdate
(MoO4

2−) acquisition under anaerobic conditions (Wang et al.,
2021). As a transcriptional regulator, Anr can activate H2-T6SS
expression under anaerobic conditions (Wang et al., 2021). Anr
in P. aeruginosa controls the switch from aerobic to anaerobic
growth and plays a pivotal role in adapting to microaerobic or
anoxic conditions (Ugidos et al., 2008; Tata et al., 2017).

CONCLUSION

All organisms keep metal homeostasis for physiological demands
by sensing small fluctuations in metal levels (Porcheron et al.,
2013). Bacteria have developed complex transport systems
for each metal whose expression is coordinated by their
corresponding regulators (such as Fur, MntR, CueR, and Zur,
etc.) (Wakeman and Skaar, 2012). T6SS was a newly found device
for bacteria to acquire metal ions, expanding our understanding
on sophistication of bacterial metal ion acquisition systems. T6SS
participation in metal ion uptake, which assists the bacterial
low- and high-affinity transport systems to scavenge from the
environment essential metals in chelated or free forms. In
addition, the metal ion transport function of T6SS is usually
involved in multiple biological processes and is crucial for
bacterial survival and host colonization. Traditionally, T6SS is
recognized as a contact-dependent molecular machinery. Recent
studies revealed that T6SSs play crucial roles in shaping the
composition of a microbial population in hosts or environmental
niches, either by directly killing competing cells via contact-
dependent (Russell et al., 2011) and contact-independent (Song
et al., 2021) translocation of toxins, or by competing for essential
nutrients via contact-independent secretion of metal ion binding

effectors. For example, the T6SS-HmuR-mediated active zinc
transport system is involved in a contact-independent bacteria-
bacteria competition for nutrients (Si et al., 2017a,b; Han et al.,
2019; Wang et al., 2021).

A schematic diagram was used to show the process of
metal ions transport through T6SS (Figure 1). Briefly, the T6SS
dependent effectors bind to specific metal ions or ionic complexes
in the environment. Accompanied by a transmembrane ion
transporter, the corresponding ions are transferred to the cell.
The ions transport process is collaboratively fulfilled by the
T6SS effectors and their transmembrane partners. It is worth
mentioning that the metal ions transporting function of T6SS
is often activated under special circumstances, such as low ions
concentrations or environmental stresses and is regulated by
multiple transcriptional regulators. So far, it is unknown whether
T6SS correlates with metal ions efflux. We believe that ions
transport through T6SS expands the range of functions associated
with this secretory nanomachines and merits additional studies
in other bacteria.
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