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Identification of potentially oncogenic alterations from tumor-
only samples reveals Fanconi anemia pathway mutations in

bladder carcinomas

Chioma J Madubata@'?, Alireza Roshan-Ghias'?, Timothy Chu'?, Samuel Resnick'?, Junfei Zhao'?, Luis Arnes'?,

Jiguang Wang'** and Raul Rabadan'?

Cancer is caused by germline and somatic mutations, which can share biological features such as amino acid change. However,
integrated germline and somatic analysis remains uncommon. We present a framework that uses machine learning to learn
features of recurrent somatic mutations to (1) predict somatic variants from tumor-only samples and (2) identify somatic-like
germline variants for integrated analysis of tumor-normal DNA. Using data from 1769 patients from seven cancer types (bladder,
glioblastoma, low-grade glioma, lung, melanoma, stomach, and pediatric glioma), we show that “somatic-like” germline variants are
enriched for autosomal-dominant cancer-predisposition genes (p < 4.35 x 10™'%), including TP53. Our framework identifies germline
and somatic nonsense variants in BRCA2 and other Fanconi anemia genes in 11% (11/100) of bladder cancer cases, suggesting a
potential genetic predisposition in these patients. The bladder carcinoma patients with Fanconi anemia nonsense variants display a
BRCA-deficiency somatic mutation signature, suggesting treatment targeted to DNA repair.
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INTRODUCTION

Cancer often results from specific DNA alterations, and identifica-
tion of cancer-causing mutations underlies genome-based preci-
sion cancer treatment." Somatic mutations can be identified by
sequencing matched tumor and normal DNA,?> where normal
samples can come from blood or any other non-tumor tissue, and
then removing any shared variants (germline variants). This paired
tumor-normal analysis has identified oncogenic somatic muta-
tions in multiple cancer types, including cohorts originally
analyzed by The Cancer Genome Atlas (TCGA).>™®

Despite the value in sequencing matched normal DNA to truly
differentiate germline and somatic variants,” the historically high
cost of sequencing led to tumor-only sequencing in many
research projects'® and clinical settings."' Tumor-only
sequences contain both germline and somatic alterations, but
differentiating the 10-100s of somatic mutations'>'* from tens of
thousands of germline variants remains challenging. Common
attempts to identify somatic variants from tumor-only WES data
involve removing dbSNP'®> mutations common in the general
population and focusing on genes in the Catalogue Of Somatic
Mutations In Cancer (COSMIC).'® These strategies fail to recognize
private polymorphisms that are not annotated in public reposi-
tories and preclude the discovery of novel oncogenic events.

A limited number of computational strategies exist to identify
somatic variants from tumor-only WES data. Certain strategies rely
on a single patient’s sequence alignment information, either
predicting somatic deletions based on read-pair alignments and
read depth® or predicting somatic single nucleotide variants (SNV)
using base quality, variant allele frequency (VAF), and sequencing

error.'” Other strategies use population allele frequency tabulated
from a cohort of normal genomes to remove potential germline
SNPs.'® None of these techniques integrate information from both
the individual patient sequence and the total patient cohort.
These techniques also fail to leverage valuable databases of
somatic mutations or predicted mutation effects.

Integrated information from individual patients, patient cohorts,
and databases can inform an alternative approach that learns
biological features from known somatic variants in order to
predict somatic variants from tumor-only samples. This approach
would require a patient cohort with some matched tumor-normal
cases and some tumor-only cases. The tumor-normal cases would
form a test set for identifying true somatic mutations, and the
biological features of these confirmed somatic variants would be
used to classify variants from the remaining tumor-only samples.
Prior studies of mixed tumor-normal and tumor-only cohorts used
manual recurrence analysis of specific genes to reveal altered
genes in lymphoma,’® %° relapsed pediatric acute lymphoblastic
leukemia,?' and pediatric glioma,?* but the focus on gene identity
had decreased power to identify oncogenic variants. In contrast,
the approach we suggest would use machine learning instead of
manual analysis, make predictions across the whole exome
instead of focusing on specific genes, and use multiple biological
features to increase power to predict somatic variants.

While tumor-only analysis remains common and somatic
mutations associate with cancer development, germline DNA
alterations can also be oncogenic.® A standardized framework for
unified analysis of germline and somatic variants could reveal key
oncogenic pathways. Recent analysis of sporadic ovarian cancer
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found significantly enriched germline and somatic alterations in
the Fanconi anemia (FA) and MAPK pathways.® Furthermore,
certain oncogenic germline variants share biological features with
known somatic variants, such as affecting the same amino acid.>*
A machine learning framework built upon biological features of
somatic variants would have high power to identify germline
variants with somatic features that might influence tumor
development.

Thus, we present a framework to address the separate but
related challenges of tumor-only somatic analysis and integrated
germline-somatic analysis. Our Tumor-Only Boosting Identifica-
tion framework (TOBI) learns from a small training set of tumor-
normal pairs to generate a classification model that identifies
variants with somatic characteristics from tumor-only samples. If
normal DNA is available, we can assess whether TOBI predicted
certain germline variants as somatic; we refer to these variants as
“somatic-like” germline variants. Somatic-like germline variants
complement the somatic landscape, promoting integrated analy-
sis of oncogenic processes. TOBI uses gradient boosting, a
machine learning algorithm with consistently superior perfor-
mance in diverse classification tasks.?> Using 1769 patients across
seven tumor types, we developed TOBI, evaluated TOBI's ability to
identify somatic variants, and identified somatic-like germline
variants (SLG variants), including variants with known or possible
oncogenic potential.

RESULTS

Framework for predicting somatic, germline and SLG variants
Our framework consists of four main steps: steps I-lll accommo-
date tumor WES data at different stages of analysis, and step IV
incorporates germline VAF when available (Fig. 1a). Step | receives
aligned WES files (bam files), calls variants against a human
reference genome, and annotates variants (full details in
Methods). These variant calls (.vcf files) are the input for Step II,
allowing users to jump to Step Il if they have previous annotated
variants from tumor-only samples. Step Il filters variants using
biological and technical criteria described in the Methods,
retaining high quality variants that are rare in the population
(population minor allele frequency less than 1% in the 1000
Genomes Project?®).

Step Il receives the remaining training set variants and uses
the gradient boosting machine learning algorithm to generate
the somatic classification model. Gradient boosting generates a
classifier from an ensemble of decision trees, where each
subsequent tree learns from the previously misclassified training
set observations.”” For example, some features of previously
described highly-recurrent variants will easily classify hotspot
variants, while other features will be more relevant for classifying
rarer mutations in subsequent trees. We optimized the gradient
boosting parameters using systematic grid search (Methods).
Each variant in the training set represents an observation for
machine learning. Ten biological features were used for gradient
boosting (full features in Supplementary Text); features include
database-derived features from COSMIC, cohort-associated fea-
tures such as “Variants per Gene”, and individual sequence
features such as tumor VAF. Model generation requires training
set variants annotated with true somatic status, defined by a user-
generated list of somatic variants output from separate somatic
variant calling pipelines (e.g., MuTect,”® SAVI*°). Step Il ends by
applying the final somatic classification model to the test set
variants.

Finally, Step IV occurs only if normal WES DNA is available for
test set samples, and distinguishes somatic variants from somatic-
like germline variants.
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TOBI training and test sets

We developed TOBI using glioblastoma multiforme (GBM) cases
from TCGA,? and assessed TOBI on five adult cancer types from
TCGA: bladder urothelial carcinoma (BLCA),® brain lower grade
glioma (LGG),* lung adenocarcinoma (LUAD),> skin cutaneous
melanoma (SKCM),*® and stomach adenocarcinoma (STAD).?' We
used TCGA’s previously published somatic calls as the “true
somatic” calls for labeling training set variants. To assess TOBI's
performance on pediatric tumors, we analyzed pediatric glioma
cases (Ped.Glioma), including cases with published tumor-normal
analysis'® 32 and tumor-only cases.® '% 22 The number of cases per
cancer type, and the number of cases used in each figure, is in
Supplementary Table 1a.

Since cancer-sequencing studies have variable numbers of
paired tumor-normal samples®'® we assessed the number of
training cases required for model generation (Fig. 1b). Increasing
the number of training set tumor samples from 1 to 50 samples
improved performance, with F-scores plateauing between 20 and
50 training cases in the six adult cancers. Twenty training cases
produced an average F-score within 10% of the F-score at the
maximum training set size (Supplementary Table 1b). Thus, in the
remainder of our analysis, we used 20 random cases as the
training set size and all remaining cases as the test set to reflect a
WES scenario where the majority of patient samples are tumor-
only.

Historical tumor-only samples may be formalin-fixed and
paraffin-embedded (FFPE), which introduces sequencing artifacts.
We applied TOBI's LUAD classification model to FFPE LUAD cases
(Supplementary Fig. 7, Supplementary Table 7), and observed a
slightly decreased F-score for FPPE (0.68) vs. frozen samples (0.81).
FFPE samples had similar sensitivity and specificity (0.94, 0.97)
compared to frozen samples (0.87, 0.96).

Next, we assessed how differences in patient ancestry,
sequencing institution, or hypermutator status within a cohort
might affect TOBI performance. Stratifying on a patient’s reported
race, TOBI had decreased mean F-scores when the training and
test set differed by race in almost all cancers (Supplementary Fig.
2, Supplementary Table 2c). Differing sequencing institutions
between the training and test set also generated lower mean F-
scores in almost all cross-institutional predictions (TCGA GBM with
a cohort of 80 additional non-TCGA cases*® in Supplementary Fig.
3a-c and Supplementary Table 3; Ped.Glioma analysis in
Supplementary Fig. 3d). Finally, using hypermutator status from
the STAD publication,®' we found no significant effect on TOBI's
performance when analyzing a non-hypermutator population or
mixed population (61 hypermutator, 219 non-hypermutator)
(Supplementary Fig. 4, Supplementary Table 4). Thus, TOBI's
performance might improve with features denoting patient race
or institutional differences, but performance appears robust to
hypermutator samples.

TOBI features

We assessed the importance of our ten biological features to a
cancer type’s final classification model using relative influence,** a
measure of how frequently one feature is used in the decision
trees within the final classification model (Fig. 1c). In all adult
cancers, the feature with greatest relative influence was “Variants
in Gene”, the total number of variants per gene normalized by
cohort size. In pediatric glioma, the feature with greatest relative
influence was “Num. COSMIC Var.”, representing the number of
cases in COSMIC with a specific variant; this may reflect both the
lower mutation burden in pediatric glioma and the prevalence of
hotspot mutations in H3F3A. As expected, removal of these top
features from the classification model caused a slight drop
in F-score, while removal of other individual features or both
COSMIC-derived features minimally affected performance (Sup-
plementary Fig. 1).
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Machine Learning Features

TOBI framework and features. a Outline for predicting somatic variants with TOBI. TOBI accepts tumor-only DNA, separated into a

training set of cases with prior tumor-normal somatic analysis available and a test set. The steps of TOBI analysis are (l) variant calling and
annotation, (Il) filtering, (Ill) machine learning to classify “somatic” and “germline” variants, and (IV) identification of somatic-like germline
variants. Step lll predictions result in tens of predicted somatic variants per case. b Average F-score for increasing numbers of cases in the
training set in seven cancer types. Number of samples in the training set equals number in testing set. Points represent average predictions
from five runs with randomly selected training and testing sets cases; error bars represent +/— s.e.m. TOBl.bam indicates samples were
analyzed from aligned sequence files (.bam) using TOBI steps I-lll; TOBlvcf indicates samples were analyzed from variant call files (.vcf) using
TOBI steps II-lll. ¢ Relative importance of features in gradient boosting classification model generated from a training set with twenty cases in

each individual cancer

High performance somatic variant identification

We compared TOBI's somatic classifications to published somatic
calls from tumor-normal analysis of test set cases,®>™® 30 31 10. 32
Across all variants, TOBI had a sensitivity of 86.6%; for nonsynon-
ymous variants, TOBl had a sensitivity of 87.2%. Additional
performance metrics are in Supplementary Table 5 and Supple-
mentary figure 5a. TOBI also has high sensitivity for variants with
tumor VAF as low as 5% (Supplementary figure 5b,c). Per gene, the
number of cases with nonsynonymous variants predicted as
somatic closely matches published somatic analysis (Figs. 2a, b).
TOBI's sensitivity in a cancer type positively correlates with the
median somatic SNV per megabase (Mb) across all cases of that

Published in partnership with the Center of Excellence in Genomic Medicine Research

cancer (Spearman rho 0.964, p-value < 0.003 for both all gene and
driver only sensitivity, Supplementary Figure 13). TOBI predictions
on previously published somatic mutations are in Supplementary
Table 6.

While TOBI identifies variants with somatic characteristics, an
important challenge in precision medicine involves finding genes
that promote tumor development (“driver genes”). Thus, we
assessed whether TOBI's predictions were enriched for driver
genes in each tumor type, defining driver genes as those with
evidence of positive selection in somatic mutation patterns as
published by the Intogen group.?® In six cancers, TOBI has a higher
true positive rate of nonsynonymous variants in driver genes

npj Genomic Medicine (2017) 29
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Fig.2 Somatic variant prediction captures driver genes. a For each indicated cancer type, top panel shows percentages of true positive (TP) or
false negative (FN) TOBI somatic predictions in nonsynonymous variants across all genes or only driver genes. b Comparison of actual vs.
predicted cases with somatic, nonsynonymous variants in each cancer type. Dot color corresponds to the fraction of synonymous variants out
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published somatic variants are not shown. ¢ Number of cases with predicted somatic variants when pediatric glioma classification model is
applied to 68 tumor-only samples; genes predicted in at least three cases shown. For all cancers, twenty randomly selected tumor-normal
cases comprised training set; remaining paired tumor-normal samples formed testing set

compared to all genes (Fig. 2b). Such enrichment occurred despite
training sets retaining synonymous variants and probable
passenger variants. This driver gene enrichment did not solely
arise from predicting highly recurrent genes, as suggested by
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TOBI's similar performance in high, medium, and low recurrence
genes in most cancers (Supplementary Fig. 6).

Finally, to demonstrate analysis of a truly tumor-only data set,
we applied the pediatric glioma classification model to 68 tumor-
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only cases (Fig. 2c), identifying known driver genes in pediatric
glioma (TP53, H3F3A, PIK3CA). All predicted BRAF and IDH1 variants
occurred at known somatic hotspots (BRAF V600E, IDHT R132H).

TOBI outperforms other tumor-only analysis tools

Using six GBM and six Ped.Glioma cases, we compared TOBI's
results to those from other software for tumor- onlgl WES somatic
variant analysis: Virtual Normal Correction (VNC)'® and SomVar-
IUS' (Supplementary Table 8). Compared to VNC, TOBI has higher
F-scores (0.48 for Ped.Glioma and 0.22 for GBM; VNC F-score less
than 0.0002 for both Ped.Glioma and GBM). SomVarlUS did not
identify any true somatic mutations in Ped.Glioma. TOBI also
predicts orders of magnitude fewer somatic variants per case
compared to VNC and SomVarlUS (TOBI: ~5-50; VNC: ~300,000;
SomVarlUS: ~100-3000). TOBI's higher F-scores and biologically
appropriate number of somatic variants indicates that TOBI
outperforms these methods.

We also compared TOBI to methods that assess a variant’s
disease potential®**>? since these methods have been used to
assess effects of somatic variants. Using published somatic
variants from tumor-normal analysis as the gold standard, TOBI
consistently had the highest AUC (Supplementary figure 8).

Identification of “somatic-like” germline variants

Having established TOBI's ability to identify somatic variants from
tumor-only samples, we next assessed whether TOBI was
capturing germline variants with somatic features. TOBI's false
positive (FP) variants could include germline variants that share
features with true somatic variants, making them “somatic-like”
germline (SLG) variants. SLG variants could be benign or
oncogenic. Alternatively, FP variants might be tumor-specific
variants that were not previously published due to variability in
somatic variant analysis.*°

First, we assessed TOBI's overall false positive rate (FPR) in the
cancer test sets. Since FP variants may include SLG variants, we
also calculated the FPR from applying the Ped.Glioma classifica-
tion model to a set of 100 non-tumor exomes from individuals
without cancer sequenced by the 1000 Genomes Project.?® The
FPR in these 1000 Genomes individuals (median FPR 0.25%, range
0.15-1.62%) was significantly lower than the FPR in any of the
cancer cohorts (Supplementary Fig. 9). The higher FPR from tumor
cohorts suggests that some FP calls represent somatic-like
germline variants.

To identify SLG variants, we analyzed germline VAF from 1327
test cases in six cancers excluding GBM. VAF is the fraction of
exome sequencing reads corresponding to the variant allele at a
genomic site within a specific patient sample. To be classified as
an SLG variant, a FP variant needed a germline VAF of at least 30%
to decrease the probability that the germline variant represented
tumor contamination or artifacts.* Since certain germline variants
highly increase predisposition to cancer,”” %' we analyzed SLG
variants for enrichment in 60 genes associated with autosomal
dominant cancer-predisposition syndromes,®* or “AD genes”
(listed in Supplementary Table 9), and found significant enrich-
ment of AD genes in nonsynonymous SLG variants (p < 1.53 x
107"% Fig. 3a). SLG nonsynonymous variants in TP53 occurred in
seven cases (Fig. 3c). Certain inactivating mutations in tumor
suppressors are heterozygous germline variants, but show loss of
heterozygosity in the tumor.** Five of TP53 SLG variants exhibit
evidence of loss of heterozygosity, with germline VAFs below 45%
and tumor VAFs above 70%.

Focusing on nonsynonymous FP variants in AD genes, we found
15 cases with TP53 mutations and at least seven cases with
mutations in CDH1, RB1, RET or TSC2 (Fig. 3b). In three Ped.Glioma
cases, TOBI predicted somatic TP53 variants with tumor VAF
greater than 65% and germline VAF of 0% (Fig. 3¢; variants G105V,
R175H, and R273C). Despite the high tumor VAF and low germline
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Fig. 3 “Somatic-like” germline (SLG) variants are enriched for genes
associated with autosomal dominant cancer-predisposition syn-
dromes (AD genes). a Variants predicted as somatic by TOBI include
22,048 variants not reported as somatic in published analysis of
1327 cases from five adult cancer types and pediatric glioma, with
significant enrichment for AD genes in all FP variants and the subset
of nonsynonymous variants with germline allele frequency greater
than 30%. p-value from Poisson cumulative distribution. b Distribu-
tion of patient cases with FP variants in AD genes. Cancer
abbreviations and color consistent with Figs. 1 and 2. ¢ FP variants
in TP53 domains. Height of line represents allele frequency, with
normal frequency at the blue point and tumor frequency in black.
Circles indicate patients where normal frequency of variant is
greater than or equal to 30%; diamonds indicate normal frequency
less than 30%. Color of variant name corresponds to cancer color in
b. “<” indicates P71L and P72A occurred in same LUAD patient.
“R273C (2)" indicates two patients with LGG had this variant. Colored
“+" or “A" indicate individual patient allele frequencies

VAF, these variants were not published as somatic variants in
outside tumor-normal analysis,'® illustrating that TOBI can identify
somatic variants that may be inconsistently called.

Certain germline variants in cancer-associated genes correlate
with earlier age of diagnosis,*’ so we analyzed whether presence
of nonsynonymous SLG variants in 565 cancer-associated
genes®® (list in Supplementary Table 9) associated with earlier
age of diagnosis in any cancer type. Supplementary table 10
provides the number of cases with SLG variants in these cancer-
associated genes for each cancer type. In LGG, patients with
cancer-associated SLG variants had significantly earlier age at
diagnosis (median 37 years vs. 41 years, p=0.0013; Fig. 4a;
Supplementary Fig. 10). The most LGG cases had SLG variants
in TP53 (n =4), followed by IDH1 (three cases: V711 [COSM96923],
one case: R82K [COSM4169909]) and RET (Y791F [COSM115
9820], 1852M [COSM4573611], R982H [COSM1264016], T1038A
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[COSM4650197]). Many genes with SLG variants in LGG have also
shown recurrent somatic mutations in prior analysis* (e.g., TP53,
IDH1, EGFR, and NF2; Fig. 4b).

Bladder cancer cases with inactivating mutations in FA pathway

display somatic signature of BRCA-deficiency

Truncating germline alterations in cancer predisposition genes
have been reported in 4-19% of cancer types.*' Accordingly, we
examined the exome-wide SLG nonsense variants in each cancer
type. Bladder carcinoma cases showed significant enrichment of
SLG nonsense variants in the FA pathway based on pathway
assessment with g:Profiler*® (49 genes with SLG variants, 54 genes
in FA pathway, 3 overlapping genes; p-value of 0.029 after
multiple testing correction; Supplementary Fig. 11). The FA
pathway normally performs DNA repair of interstrand crosslinks,
which requires homologous recombination.**

We then assessed the overall occurrence of germline and
somatic nonsense mutations in the FA pathway predicted by TOBI
(Fig. 5a). In bladder cancer, TOBI predicted these variants in 11%
(11/100) of patients. Less than 2.5% of patients in any other cancer
type had predicted nonsense FA variants. True somatic nonsense
variants occurred in 6% of BLCA cases, affecting genes BRCA2,
FANCM, FANCE, REV3L, and SLX4. Germline nonsense variants were
predicted in 5% of BLCA cases, affecting BRCA2, FANCM, and
FANCD?2. Several of these germline variants showed potential loss
of heterozygosity based on increased VAF in tumor DNA
compared to germline DNA (Fig. 5b: FANCM R1931* BRCA2
Y3308*). Of note, BRCA2 variant Y3308* has been associated with
hereditary colorectal and breast cancer.** Mice ES cells with BRCA2
Y3308* mutations showed hypersensitivity to ionizing radiation
and crosslinking agents, as well as decreased homologous
recombination efficiency.*® Additionally, FANCM R1931* was
associated with increased breast cancer risk and deficient DNA
repair.*’ Fig. 5¢ and Supplementary Table 11 describe published
somatic copy number alterations and predicted nonsynonymous
variants within the FA pathway for this BLCA cohort.
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Finally, we assessed whether BLCA cases with predicted FA
pathway nonsense mutations had significantly different muta-
tional signatures compared to wildtype cases. Using all somatic
mutations published for 130 TCGA BLCA cases® including our 100
test cases, we generated trinucleotide mutational spectra that
decomposed into four somatic signatures (Supplementary Fig.
12a,b). Cases with FA nonsense mutations were only enriched in
the fourth signature (Fig. 4c), a somatic signature similar to the
BRCA1/2-deficiency signature from a pan-cancer analysis (signa-
ture 3 in the referenced publication).*® Enrichment of this somatic
mutation signature in bladder cancer cases with nonsense FA
variants suggests that these FA nonsense variants, whether
somatic or germline, affect the bladder cancer somatic mutation
landscape.

DISCUSSION

In this report, we present TOBI, a new unifying framework that
uses the gradient boosting machine learning algorithm to identify
somatic variants from tumor-only data or identify somatic-like
germline variants in patients with tumor-normal DNA available.
Our framework is available online for non-commercial use (https://
github.com/RabadanLab/TOBI).

In tumor-only analysis, TOBI successfully identified 87% of
nonsynonymous somatic variants. Higher true positive rates in
driver genes suggest that TOBI enriches for cancer-causing
variants. TOBI's similar performance on frozen and FFPE samples
suggests that TOBI filters certain FFPE artifacts. A TOBI modifica-
tion trained on FFPE artifacts could potentially remove more FFPE
sequencing artifacts, although this modification would need
testing. TOBI also outperforms other methods designed for
somatic variant identification from tumor-only samples. This
higher performance likely reflects two fundamental differences
between alternative methods and TOBI. First, alternative techni-
ques use a single information source, but TOBI integrates
biological features from individual variants, patient cohorts, and
curated databases. Second, TOBI uses the powerful gradient
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Mu mutant, WT wildtype

boosting algorithm to classify variants, allowing TOBI to learn
features important to specific tumor types (Fig. 1c).

When germline VAF information is available, TOBI can identify
“somatic-like” germline variants. These SLG variants include
oncogenic germline variants validated by outside groups, such
as the TP53 R248Q alteration confirmed as germline by tumor-
normal analysis of a pediatric glioma case.' SLG variants in cancer
genes also associated with earlier age of diagnosis in patients with
low-grade glioma (Fig. 4a), suggesting that TOBI's SLG variants are
enriched for cancer-associated variants.

Analysis of bladder carcinoma cases using TOBI revealed largely
unreported germline inactivating mutations in the FA pathway,
suggesting a potential genetic predisposition in 5% of patients.
Outside analysis of a 14-patient bladder tumor cohort*® found a
germline nonsense variant in BRCA2, but did not assess FA
mutations. Germline BRCA2 nonsense mutations in bladder
carcinoma may reflect the pan-cancer susceptibility attributed to
germline BRCA2 mutations in analysis of other adult cancers.*'
Future assessment of a larger BLCA cohort may reveal associations
between germline FA mutations and clinical outcomes, similar to
how an expanded cohort of prostate cancer patients revealed
significantly more deleterious germline mutations in DNA repair
genes in patients with metastatic vs. localized prostate cancer.>®

Published in partnership with the Center of Excellence in Genomic Medicine Research

Our integrated somatic and germline analysis identified
nonsense FA pathway mutations in 11% of BLCA cases, suggesting
a role for aberrant interstrand crosslink repair in bladder tumor
development. Enrichment for a BRCA-deficiency somatic signature
in these patients indicates similarity between FA mutant bladder
cancers and BRCA-mutant breast cancers. However, further
biological experiments would clarify the role of the FA mutations
in bladder cancer. Treating BRCA-mutant breast cancers with PARP
inhibitors improved patient outcome,’’ so PARP inhibitors may
also show increased effectiveness in bladder tumors with BRCA2 or
other FA mutations. Additionally, recent research found that the
presence of tumor DNA alterations in FANCC (a member of the FA
pathway), ATM, and RB1 predicted beneficial response to cisplatin
neoadjuvant chemotherapy.>® Future research could determine
whether FA nonsense mutations also predict beneficial response
to Cisplatin, particularly given the beneficial response to cisplatin
in patients with BRCAT mutant breast cancers.>®

We recognize several limitations for the TOBI framework. First,
TOBI's biological features include some that depend on outside
databases (COSMIC variants), and future versions of these
databases could affect TOBI predictions. Moreover, we only
assessed a subset of biological features; alternative features could
lead to improved TOBI performance. Second, FFPE status, patient
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ancestry, and sequencing institution do affect TOBI's performance,
suggesting that TOBI will perform best on relatively homogeneous
cancer cohorts. Third, TOBI's sensitivity positively correlates with
the median somatic SNV rate per cancers, possibly due to the
increased fraction of somatic mutations in the training set of
melanoma and other cancers with high mutation rates. This
suggests that TOBI will be most sensitive in cancers with high
somatic mutation rates. Fourth, for germline variant analysis,
TOBI's designation of SLG variants denotes “somatic-like” status,
but does not differentiate oncogenic and benign germline
variants. Finally, fully understanding the role of FA variants in
bladder cancer requires experimental validation.

In sum, we propose a framework that analyzes either tumor-
only samples or samples with matched tumor-normal DNA for
variants with somatic features. In tumor-only samples, the
framework (1) promotes the study of previously collected tumor
samples without matched normal DNA, unlocking a vast
repository of tumor-only samples without sequencing of matched
normal DNA, and (2) prioritizes exome alterations in a particular
patient by focusing on variants with somatic characteristics. In
cases with matched normal DNA, this framework identifies
germline variants that present somatic-like features and may
inform tumor developments. Integrated analysis of germline and
somatic variants remains uncommon, making TOBI's identification
of both somatic-like germline variants and somatic variants a
unique strength. Applying the TOBI framework to seven cancer
types illustrated that TOBI recovers known oncogenic variants of
somatic and germline origin, and suggests a previously unre-
ported role for inactivating mutations in the FA pathway in
bladder cancer.

METHODS

Sequence access and retrieval of clinical and somatic data

We obtained approval from the database of Genotypes and Phenotypes
(dbGaP) to access exome sequences and germline variant calls from TCGA
(accession number phs000178.v9.p8). We downloaded WES files (.bam
files) for 104 randomly selected tumor-normal GBM cases from TCGA. For
the remaining five TCGA cancers (BLCA, LGG, LUAD, SKCM, STAD), we
downloaded Protected Mutation vcf files with somatic and germline
variants for entry into the TOBlLvcf pathway indicated in Fig. 1b. We
downloaded and analyzed all TCGA Data Matrix cases with Broad Institute-
generated Protected Mutation vcf files between July 28, 2015 and
September 1, 2015, as well as 226 additional LGG cases downloaded
between September 1, 2016 and September 4, 2016. For STAD, 282 cases
had available vcf files; 63 cases classified as “hyper-mutated” in TCGA
clinical data were excluded from the main analysis. For all six TCGA
cancers, clinical data was retrieved from cBioPortal®* and publication MAFs
from the TCGA Data Matrix provided true somatic variant calls.

We analyzed the WES files (bam files) for the 92 GBM cases analyzed in
Wang et al. 2016. Published somatic calls were used to label true somatic
variants.

For pediatric glioma WES sequence files, we obtained approval from the
appropriate Data Access Committees (DAC) and downloaded all available
sequence files from EGA. Bam files were available for datasets
EGAD00001000807°% (St. Jude Children’s Research Hospital—Washington
University Pediatric Cancer Genome Project Steering Committee) and
EGAD00001000706 (ICR DIPG Data Access Committee). Fastq files were
available for EGAD00001000792%" and EGAD00001000791%* (McGill-DKFZ
Pediatric Brain Tumour Consortium); samples were mapped to GRCh37.71
using BWA 0.7.12%° before variant calling. Clinical data was retrieved from
supplementary tables. Published somatic variant calls were used to label
true somatic variants for the 74 paired samples; only experimentally
validated somatic mutations from Wu et al. 2014'° were included.

For 1000 Genomes Project®® samples, phase 3 bam files were down-
loaded from the public FTP site for the first 99 “mapped” samples listed in
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/alignment_indices/20130502.
exome.alignment.index, as well as sample NA11994, which was previously
reported to have a germline variant in TP53 (R273H).24

All GBM, pediatric glioma, and 1000 Genomes Project bam files went
through the TOBl.bam pathway indicated in Fig. 1b.
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Variant calling and annotation

Bam files were analyzed with Samtools and Bcftools®® to call variants,
excluding variants with mapping quality lower than 10.

Variants were annotated using SnpEff°” and SnpSift with dbSNP build
144, Cosmic v74, and dbNSFP v2.4 databases.® We also annotated the
variants with an in-house database of common mutations in 219 normal
WES cases (“Meganormal” database).

Filtering
Filters thresholds were selected based on preliminary analysis of GBM
samples. We applied two main filters on the variants: (1) Technical filter
and (2) Biological filter. The technical filter retained all variants with either a
quality score from Bcftools>® greater than 60 or variant depth higher than
10 on both strands. These filters retained a high fraction of true somatic
mutations in known driver genes (e.g. EGFR, which had good depth but a
QUAL score <60) while removing many low quality variants. Variants with
sample VAF (the number of sequencing reads supporting a variant
nucleotide divided by the total number of sequencing reads at that
genomic position) less than 1% were removed. We also removed the
variants that had low mapping quality (mq < 40), and had strand bias, map
quality bias, and tail distance bias with the p-values below 0.01. In the
biological filter, we removed common SNPs (population allele frequency
greater than 1% in the 1000 Genome Project populations), as well as
variants that were present in our Meganormal database. We also removed
the SNPs that were in the dbSNP database, but were not in COSMIC.
Variants in intragenic, non-coding exon, and splice-site regions were also
filtered. We applied these filters to GBM and pediatric glioma variants.
The TCGA variants in the TOBl.vcf pathway did not have reported per
strand depth, mapping quality, and technical biases; thus, we used a
modified Technical filter to remove variants with total depth <10 and
QUAL score < =60. Biological filters were the same across all samples.

Machine learning

We selected the gradient-boosting algorithm for machine learning given
its excellent performance on diverse binary classification problems
compared to other supervised learning methods.?® This algorithm
generates a classification model using an ensemble of decision trees that
iteratively learn from the previously misclassified training set observations.
Gradient boosting returns a probability that a variant is somatic, which
TOBI converts into a binary decision using an optimized probability
threshold. TOBI does not use the default threshold probability of 0.5
because that would favor the majority class (in our case, non-somatic
mutations), resulting in low sensitivity.59 Instead, TOBI selects a probability
threshold that maximizes classification performance; the threshold’s
potential range is 0.05-0.95 in increments of 0.0375.

For each cancer, TOBI generates an optimum classification model by
running a systematic grid search through gradient boosting’s three
parameters: number of trees (100, 150, 200), interaction depth (3-7 splits),
and shrinkage (constant at 0.1). For each possible combination of these
three parameters, TOBI performs five repeats of 5-fold cross-validation on
the training set in order to avoid over-fitting to the training set. The large
number of training set variants compared to features also avoids
overfitting. TOBI finally selects the parameter combination that maximizes
average performance across the five repeats as the final classification
model.

To select the best model despite the class imbalance, we used the F-
score as the model performance metric:

__, Precisionx Recall 2TP

F1= =
Precision + Recall  2TP + FP +FN

(M

where TP, FP, and FN stand for true positive, false positive, and false
negative. Maximizing F-score results in maximizing TP while minimizing FP
and FN. We also assessed performance by calculating sensitivity, specificity,
positive predictive value, negative predictive value, prevalence, accuracy,
FPR, false discovery rate (FDR), and AUC. For these calculations, true
negatives were those variants that passed all TOBI quality filters, were not
published as somatic in source publications, and were not predicted as
somatic by TOBI.

Here, we describe the software implementation of gradient boosting.
For each cancer, cases were randomly assigned to the training or test set
using the sample() function without replacement in R. TOBI then calculated
cohort-specific annotations separately for the training and test set (see
Supplementary Text for features). Somatic status of training set variants
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was annotated using a user-supplied list of somatic variants, defined by
affected case, genomic position, and variant nucleotide. Next, TOBI used
the Caret and gbm packages in R*° to perform gradient boosting and
generate a classification model. To assess feature importance, relative
influence of features was automatically calculated during model genera-
tion. Relative influence is a measure of how many times a feature is
selected for splitting in all trees in the gradient boosting model, weighted
and scaled so that the sum of relative influence of all features equals one
hundred.

We defined drivers in Fig. 2 using the list of driver genes provided by the
Intogen group.

The rate of somatic SNVs per Mb for each case was calculated using the
number of published somatic SNVs, after converting di-nucleotide
mutations into single nucleotide components and removing indels. This
number was divided by the total Mbs covered in Agilent SureSelect Human
All Exon 50 Mb regions.bed file.

Germline variant analysis and clinical data associations

Germline VAFs were available in Protected Mutation vcf files for five TCGA
cancers (BLCA, LGG, LUAD, SKCM, STAD). For tumor-normal pediatric
glioma cases, germline VAFs were determined using the SAVI variant
caller.?® For enrichment of gene sets in FP variants, the Poisson cumulative
distribution was calculated for each gene set, with g total genes and n FP
variants in those genes from a cancer dataset with N variants found in G
genes, as the probability of a value greater than (n — 1) with lambda = %
using the R ppois function: ppois(n—1, g*N/G, lower.tail = FALSE). Protein
domain names and coordinates from PFAM.%°

Clinical data was retrieved from supplementary tables for Ped.Glioma
patients and using the R cgdsr package for TCGA. To standardize
nomenclature for reported race across studies, we removed samples with
missing or mixed classification (“Asian & White”, “Multiple (NOS)”, “Mixed”,
“,n", “N/A”, “Other”, “[Not Evaluated]”, “[Unknown]”), and standardized
“BLACK OR AFRICAN AMERICAN” to “black”. Patient counts after
standardizing nomenclature are in Supplementary Table 1b. We compared
the distribution of diagnosis age for cases with or without SLG variants
using the Wilcoxon-Mann-Whitney test in R, wilcox.test().

g:Profiler” analysis of BLCA nonsense SLG variants was run using
defaults (Significant only; Hierarchical sorting; Numeric IDs treated as:
WIKIGENE_ACG; Significance threshold: g:SCS threshold; Statistical domain
size: Only annotated genes.) Multiple testing correction for p-values
calculated using the ontology-focused correction method g:SCS as
previously described.”® FA pathway in Fig. 5c modified from KEGG FA
pathway and Ceccaldi et al. 2016.°" CNV data was retrieved from
cBioPortal.

Mutation spectra and signatures

Non-negative matrix factorization approach developed by Alexandrov
et al. was applied to infer the mutational signatures of Bladder cancer. The
software package was downloaded from http://www.mathworks.com/
matlabcentral/fileexchange/38724.

Comparison to other techniques

In order to compare results from TOBI to other techniques, we ran six GBM
samples and six Pediatric Glioma samples through SomVarlUS (Smith et al.,,
2015) and VNC (Hiltemann et al. 2015) and compared their results to TOBI.

Code for SomVarlUS was obtained through their github page (https://
github.com/kylessmith/SomVarlUS). To build the reference database, we
supplied an hg19 dbSNP bed to generate the required pickle file. The
call_mutations command was then run with the following options:

germ_pos Allfilt.pickle --dbsnp_bed Allfilt.bed --min_reads 10 --min_-
support 4 --min_af 0.05 --min_pvalue 0.0001 --min_fr 0.8 --min_qual 25
-min_se 0.999 --min_hetero 0.95 --min_mapq 55 --ref_filter True
--dbsnp_bed Allfiltbed --min_baseq 13 --binom False --hapmap Allfilt.
pickle.

Code VNC was obtained through their github page (https://github.com/
shiltemann/Virtual-Normal-Correction). To build the reference virtual
normal, 433 CG-sequenced normal exomes were downloaded from
1000Genomes(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/historical_data/
former_toplevel/complete_genomics_indices/20130725.cg_data.untar.
index). The virtual-normal-correction-smallvariants.sh script was run using
the following commands:

--threshold 1 --threshold_highconf 3
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Data availability statement

All genomic datasets used for analysis come from publically accessible
repositories after approval for controlled data access:

The database of Genotypes and Phenotypes (dbGaP: https://www.ncbi.
nim.nih.gov/gap): TCGA (accession number phs000178.v9.p8); Clinical
information for TCGA from cBioPortal (http://www.cbioportal.org/);

The Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra): non-
TCGA GBM cases analyzed in Wang et al. 2016 (SRP074425);

The European Genome-phenome Archive (https://www.ebi.ac.uk/ega/): St.
Jude Children’s Research Hospital—Washington University Pediatric Cancer
Genome Project Steering Committee (EGAD0000100080732), ICR DIPG Data
Access Committee (EGAD0000100070645), McGill-DKFZ Pediatric Brain
Tumour Consortium (EGAD0000100079231, EGAD0000100079122).

The 1000 Genomes Project phase 3 (ftp:/ftp.1000genomes.ebi.ac.uk/
vol1/ftp/phase3/).

Publication MAFs for TCGA samples from the TCGA Data Matrix (now the
Genomic Data Commons https://gdc.cancer.gov/). Publication MAFs from
all other publications acquired from supplemental tables of publications.

Code availability

The TOBI framework is fully available for academic use on Github (https://
github.com/RabadanLab/TOBI). This Github page describes all dependen-
cies and versions. We also have a public Amazon Machine Image (AMI) on
Amazon Web Services, that contains all the software, dependencies and
reference databases used in this article, and it can be shared upon request.
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