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Abstract

Background

Over the last decade, an increasing number of integrative studies on cancer-related genes

have been published. Integrative analyses aim to overcome the limitation of a single data

type, and provide a more complete view of carcinogenesis. The vast majority of these stud-

ies used sample-matched data of gene expression and copy number to investigate the im-

pact of copy number alteration on gene expression, and to predict and prioritize candidate

oncogenes and tumor suppressor genes. However, correlations between genes were ne-

glected in these studies. Our work aimed to evaluate the co-alteration of copy number,

methylation and expression, allowing us to identify cancer-related genes and essential func-

tional modules in cancer.

Results

We built the Integrated Co-alteration network (ICan) based on multi-omics data, and ana-

lyzed the network to uncover cancer-related genes. After comparison with random net-

works, we identified 155 ovarian cancer-related genes, including well-known (TP53,
BRCA1, RB1 and PTEN) and also novel cancer-related genes, such as PDPN and EphA2.
We compared the results with a conventional method: CNAmet, and obtained a significantly

better area under the curve value (ICan: 0.8179, CNAmet: 0.5183).

Conclusion

In this paper, we describe a framework to find cancer-related genes based on an Integrated

Co-alteration network. Our results proved that ICan could precisely identify candidate can-

cer genes and provide increased mechanistic understanding of carcinogenesis. This work

suggested a new research direction for biological network analyses involving multi-

omics data.
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Introduction
With the rapid development of high-throughput technologies, databases like The Cancer Ge-
nome Atlas project (TCGA)[1] and the Cancer Cell Line Encyclopedia (CCLE)[2] have provid-
ed many high-resolution molecular profiles of the same cancer samples, involving gene
expression, copy number, methylation and miRNA expression data. These datasets enabled in-
tegrative analyses focusing on the identification of cancer related genes. Human tumorigenesis
and progression are driven by the aberrant function of genes that regulate aspects of cell prolif-
eration, apoptosis, genome stability, angiogenesis, invasion and metastasis[3]. A major chal-
lenge is to identify the cancer-related genes, especially those that play an important role in the
initiation and development of cancer. Identifying such genes will contribute to the further de-
velopment of personalized medicine[4].

Over the last decade, several methodologies have been proposed for the integration of gene
expression and copy number data. These methods can be roughly divided into two categories:
stepwise integration and joint methodologies[3]. For example, Akavia et al.[5] developed the
"genomic footprint" theory, where they extracted driver genes by a method based on a Bayesian
network; however, they neglected the correlation between the genes that are simultaneously al-
tered at multiple levels. Bicciato et al.[6] developed a stepwise method called The Significant
Overlap of Differentially Expressed and Genomic Imbalanced Regions (SODEGIR) to identify
discrete genomic regions with coordinated copy number alterations and changes at transcrip-
tional levels. Salari et al.[7] developed an R package called DRI to identify mRNAs with concor-
dant copy number to expression relationship. There have also been integrative approaches
based on canonical correlation analysis that aimed to quantify the association between copy
number and expression[8, 9]. On the whole, such methods represents a bioinformatics proce-
dure for the integrative, gene-position based analysis of CN and GE data that allows the identi-
fication of discrete chromosomal regions or genes of coordinated copy number alterations and
changes in transcriptional levels. In addition to these methods, Louhimo et al.[10] performed
an integrative analysis of copy number, DNAmethylation and gene expression data, using
CNAmet, to identify genes that are coordinately amplified, hypomethylated and upregulated,
or coordinately deleted, hypermethylated and downregulated. Although their work integrated
multiple data types, we found that they were just focused on the regions or genes with concom-
itant CN/GE alteration. and don't investigate the direct or indirect relationship between
altered genes.

However, cellular functions are rarely determined by a single gene, but rather by many
genes combined in the form of networks or clusters. More than one gene is altered in the pro-
gression of cancer, they followed distinct patterns of disruption, and cooperated to contribute
to tumor phenotype[11]. For instance, a recent study showed that RSF1 regulates genes in-
volved in the evasion of apoptosis (CFLAR, XIAP, BCL2 and BCL2L1) and regulates an inflam-
matory gene (PTGS2)[12]. Also, studies have observed that the alterations in cancer tend to
occur in closely related modules and communities[13]. Therefore, correlations across multiple
levels should be taken into consideration seriously. The studies mentioned above did not attach
importance to gene-gene correlations. Some other studies have considered these correlations at
different levels; however, the tumor activation/suppression mechanisms they revealed were
limited to a single level. They did not consider comprehensively the contribution to cancer de-
velopment by genomic and epigenomic features. They only investigated a driving force of a
gene on a single level for cancer progression. For example, coexpression is the most common
type of correlation. In 2005, Sean et al.[14] discovered the relation between the high level coex-
pression of JAG1 and NOTCH1 and the poor prognosis of breast cancer. Moreover, the influ-
ence of co-mutations between genes was also studied in relation to disease. In 2010, Yunyan
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et al.[15] examined the functional association between co-mutated genes; their results provided
new insights into the complicated coordinating mechanisms of molecular processes. Recently,
to increase the accuracy of candidate gene screening, some researchers also included data of
mRNA expression and protein interactions. Bashashati et al.[16] developed the
DriverNet algorithm, which is based on gene interaction, and identified rare candidate driver
mutations that may disrupt transcriptional networks. Despite these efforts, there is still room
for improvement. Integrating multi-omics data will help us to develop in silico models that are
closer to reality, improving the accuracy of cancer-related gene identification, and providing a
more comprehensive understanding of the molecular pathology of cancer.

In this study, we proposed a framework for constructing an Integrated Co-alteration net-
work (ICan). We integrated protein-protein interaction information and the paired data of
copy number, DNAmethylation and gene expression in 574 ovarian samples. Canonical corre-
lation analysis (CCA) was used to analyze the correlations across genomic, transcriptomic and
epigenetic levels, which is the basis of our network. Notably, our approach can not only identify
gene pairs that are co-altered at a single level, but also gene pairs with multi-level co-alteration.
We found that CHEK1, IGF1R, ISG15,MSH3 and PODXL were co-altered at the copy number,
expression and methylation levels at the same time. A co-alteration network of genes can effec-
tively evaluate the strength of an association between genes at multiple levels. The hub genes in
this network suggest intracellular interactions and complex functions. We then performed
functional analysis and survival analysis to validate candidate cancer-related genes identified
by random walking. After multiple testing correlations, we finally obtained 17 gene alterations
with prognostic value.

The canonical correlation analysis method is usually used to analyze the degree of correla-
tion between two groups of variables. Unlike the Pearson correlation coefficient, CCA can ef-
fectively reveal the linear dependence of two groups of variables so that we could measure
genes' correlation using multiple features. We compared the co-alteration network with the
single-factor correlation network (co-expression network, co-CNA network, co-methylation
network) from the perspective of modules, and found the modules from the integrative method
were more compact and more significant (p-value = 2.2e-16). Functional enrichment analysis
of genes in the modules showed that they were enriched for certain functions, including cell ap-
optosis, cell cycle and cancer pathways.

By researching the cancer-related genes and their interrelations, our work will provide a
valuable system-level theoretical basis for diagnosis, treatment and drug design in the field of
bioinformatics. Our work highlights the importance of systematic integration, and provides
clinic researchers with a new insight into the molecular mechanisms of tumorigenesis
and progression.

Materials and Methods

Data
The Level 3 dataset of gene expression, copy number and DNA methylation for the same set of
ovarian cancer samples (Table 1) were obtained from the publicly available TCGA website
(https://tcga-data.nci.nih.gov/tcga/). Gistic2.0 was used to analyze the copy number dataset
(Level 3) for the identification of recurrent regions of copy number alteration and the copy
number of genes. The beta values of DNA methylation are continuous, ranging from 0
(unmethylated) to 1 (completely methylated). The probe IDs were mapped to Gene symbols
with the annotation table for Illumina Human-Methylation27 platform, which detected the
methylation level of 27,578 CpG loci located within the proximal promoter regions of tran-
scription start sites of 14,495 genes. If there were multiple probes corresponding to the same
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gene, we adopted the averaged intensity of these probes as the beta value of the gene and re-
moved the probes with no value or corresponding gene. We selected a K-nearest neighbor-
based method that imputes missing values in gene expression profiles, which was implemented
by an R package (impute). In addition, we have added a list of the samples into supplementary
material (see S1 Table).

To integrate HPRD[17], Reactome[18], MSKCC Cancer Cell Map, and the NCI/Nature
Pathway Interaction Database[19], Pathway interaction data and protein-protein interaction
data were used to establish the initial network. Pathway data sets for Reactome, the NCI/Nature
Pathway Interaction Database, and the MSKCC Cancer Cell Map were downloaded in the Sim-
ple Interaction Format (SIF) format from Pathway Commons, protein-protein interaction data
was downloaded from HPRD. The Human Background Network (HBN) was the unified set of
the four dataset. Simultaneously, redundant edges and self-connected edge were removed
(Table 2).

The HBN we built consists of genes and interactions in the forms of nodes and edges. The
interaction reflect the functional associations between two genes, such as a physical interaction,
or an indirect interaction via the common pathway.

We acquired 973 seed genes (S2 Table) from four well-established cancer- and disease-relat-
ed gene databases: Cosmic[20], GAD[21], OMIM[22] and phenopedia[23]. Ovarian cancer
seed genes were defined as known oncogenes or tumor suppressor genes associated with cancer
in the well-known databases. The workflow of our approach is depicted in Fig. 1 and further
details are provided in the next section.

Difference analysis of genes in a single level
Gistic2.0[24] was used to analyze the copy number dataset to identify recurrent regions of copy
number alteration and the copy number of genes. We identified a number of recurrent focal so-
matic copy number alteration (SCNA) events, including 55 significant amplifications and 48
deletion peaks. The SAM[25] algorithm was applied to two sets of ovarian samples (tumor/

Table 1. Data sets of ovarian carcinoma from TCGA.

Data type Platform Samples

gene expression UNC_AgilentG4502A 574 (8 normal)

copy number BI_Genome_Wide_SNP_6 574 (8 normal)

DNA methylation JHU_USC_HumanMethylation27 574 (8 normal)

Clinical data - 506

doi:10.1371/journal.pone.0116095.t001

Table 2. Four curated datasets for constructing Human Background Network (HBN).

Database The No. of Nodes The No. of edges

HPRD 9,617 39,184

Reactome 1,999 15,421

MSKCC Cancer Cell Map 583 1,978

NCI/Nature Pathway Interaction Database 2,233 18,702

ALL 9,195 65,720

We acquired HPRD interactions from the HPRD website (http://www.hprd.org/). Pathway data sets were

obtained from Pathway Commons(http://www.pathwaycommons.org/about/)

doi:10.1371/journal.pone.0116095.t002
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normal) to identify differentially expressed genes: we identified 549 highly expressed genes and
805 low-expressed genes that were differentially expressed in cancer (fold change> = 2 and
false discovery rate (FDR)<0.05). For DNAmethylation data, we identified highly significant
(FDR<0.005) differentially methylated genes in tumor samples compared to normal samples
using the Mann-Whitney-Wilcoxon test, including 1445 hypermethylated genes and 1219
hypomethylated genes.

The construction of the integrated co-alteration network and
performance comparison
To simultaneously use multiple features of genes and establish the correlation between genes at
the genome, epigenome and transcriptome level, we designed a framework based on CCA, a
statistical method used to analyze the degree of correlation between two sets of random

Fig 1. Workflow of the proposed method to identify cancer related genes and functional modules.

doi:10.1371/journal.pone.0116095.g001
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variables. CCA can turn the ordinary correlation between two variables into the canonical cor-
relation between two sets of variables. The purpose of CCA is to seek maximization of the cor-
relation between two linear combinations of the variables[26, 27].

In this work, the features of genes were seen as random variables; the possibility of two
genes being co-altered on all levels was then measured by the following procedure.

We defined two genes: g1, g2. Suppose that G1 = [g1
(1), g1

(2) . . .,g1
(p)]T, G2 = [g2

(1), g2
(2). . .,

g2
(p)]T, and the two vectors consist of p types of information of g1 and g2. In this study, we set

p = 3.Take G1 for example: g(1) denoted the expression values of g1 in samples, g1
(2) denoted

the copy number values of g1 in samples, and g1
(3) denoted the methylation values of g1 in

samples. Similarly, we can define G2.

LetG ¼ ½G1G2�,

Then the covariance matrix is defined as:
X

¼ covðG;GÞ ¼
X

11

X
12X

21

X
22

0
@

1
A, in which

each element is calculated by formula (1).

X
ij ¼ covðGi;GjÞ ¼ E½ðGi � miÞðGj � mjÞ� ð1Þ

We use the correlation of linear combination of vectors (namely aTG1, b
TG2) to measure the

linear relationship between G1 and G2.
The construction of ICan was implemented by seeking the maximum correlation coefficient

between U = aTG1 and V = bTG2

max
a;b

corr U ;Vð Þ ¼ aT
P

12bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aT
P

11a
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bT
P

22b
p ð2Þ

Solutions to the optimization problem (2) satisfied the conditions: Var(aTG1) = 1, Var
(bTG2) = 1.

Our purpose was to seek the most suitable a and b such that corr(U,V) was the largest. The
first pair of linear combinations was called the first pair of canonical variables; their largest cor-
relation ρ(U1,V1) was called the first canonical correlation. Next, if there exists ak and bk such
that the following conditions were satisfied:

1. aTk G1; bTk G2was uncorrelated with initially K-1 pair canonical variables;

2. VarðaTk G1Þ ¼ 1;VarðbTk G2Þ ¼ 1;

3. The correlation coefficient between aTk G1andbTk G2 is the largest.

Uk ¼ aTk G1;Vk ¼ bTk G2were called the first K pair of canonical variables and ρ(Uk,Vk)was called
the first K canonical correlation. In this study, we set K = 3. The Rayleigh quotient

matrix:R ¼ P�1=2

11

P
12

P�1

22

P
21

P�1=2

11 .
The first correlation coefficient is equal to the square root of the largest eigenvalue λ1 of the

matrix R. Similarly, the first K correlation coefficient is equal to the square root of the largest ei-
genvalue λk of the matrix R. After that, the linear correlation coefficient (ρ1,ρ2,ρ3) was calculat-
ed between every gene pair in the data set.

Canonical correlation is an extension of ordinary correlation; it can measure the correlation
between two sets of variables[28]. Compared with using a single data type, it showed more ac-
curacy in the quantification of the linear relationships between genes using their different fea-
tures[29]. Next, similar to previous works[29], we used the chi-squared test to measure
whether the canonical correlation coefficient (ρ1,ρ2,ρ3)[30] was significant.

The null hypothesis is H0: λk = . . . = λp = 0
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Let Pk be the p-value of the K-th test statistic Tk,

with:Tk ¼ � n� 1
2
pþ pþ 3ð Þ� � Pp

i¼kþ1

logð1� l̂2
i Þ, and Tk ~ w2ðp�kÞðp�kÞ[29], where n is the num-

ber of samples. Finally, we used a combination of weights (3) to assign a weight to the edges
connecting two genes,

o ¼

Xp

k¼1

lkIðlogpkÞ
Xp

k¼1

IðlogpkÞ
ð3Þ

Where I ðlogpkÞ ¼ f�logPk pk�0:05
0 pk>0:05

The final weight, ω, represents the correlation between genes more precisely. ωmeasures
the possibility of two genes being co-altered on the level of copy number, DNAmethylation
and gene expression. We then assigned the weight to the HBN and constructed the integrated
co-alteration network referred to as ICan. The method can measure the strength of association
between genes on multiple levels. In this work we implemented the CCA method and chi-
square-based statistical significance test by the library "CCA" and “Chi-square test” in the R
statistical software.

Meanwhile, we computed the Pearson correlation coefficient of the expression profiles
(copy number profiles and methylation profiles) between every pair of genes and established a
co-expression network(GCE), a co-copy number network(GCC) and a co-methylation net-
work(GCM). This process was also implemented in the R statistical software. To better reflect
the performance of our network, we compared ICan and CNAmet, and between three single
data networks.

Identifying candidate ovarian cancer-related genes
RandomWalk with Restarts[31] is a sorting algorithm. It simulates the process of walking step
by step from seed nodes to direct neighbor nodes; nodes in the network are ranked by the prob-
abilities of reaching the node. AssumingW is the adjacency matrix of the ICan and Pt is a vec-
tor whose i-th element holds the probability of arriving at node i at step t, the random walk was
computed by

Ptþ1 ¼ ð1� rÞWPt þ rP0 ð4Þ

The distribution of values of seed nodes in the initial probability vector P0 was set as uni-
form, with the sum of the probabilities equal to 1; r represents the probability to restart at seed
nodes, which was set to 0.7. After N steps, this probability will reach a steady state, which was
determined by the difference between Pt and Pt+1. We performed the iteration until the L1
norm between them fell below 1E-10. The RandomWalk with Restarts probability for all the
genes in the network was calculated. We then analyzed the differential alteration of the top
20% genes in the various levels.

Kaplan-Meier survival analysis for candidate cancer-related genes
A non-parametric Kaplan-Meier estimator was applied to estimate the influence of different
factors on survival time. In this work, to explore the possible prognostic value of identified can-
didate genes, we used the “survival” package in the R statistics software. A p-value<0.05 and
an FDR< 0.25 were used as a cutoffs for statistical significance by the log-rank test.
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We investigated the alteration of each gene in the samples, and discretized the three datasets
according to the features of oncogenes and tumor suppressor genes, i.e., amplification, overex-
pression, hypomethylation; and the reverse: deletion, low expression and hypermethylation, re-
spectively. For copy number data, we adopted the results of GISTIC2.0 discrete copy number
calls. The samples were classified as gene homozygous deletion (-2) or amplification (1/2). For
the gene expression data, we calculated the mean value and standard deviation (SD) for each
gene: the values that were higher than mean + SD were considered overexpression. Conversely,
the values that were lower than the mean—SD were considered low expression. For the DNA
methylation data, we set the threshold based on empirical analysis of the beta value distribu-
tions: a beta value less than 0.2 was regarded as hypomethylation; a value more than 0.8 was re-
garded as hypermethylation.

Identifying functional modules for ICan
We identified functional modules from ICan and constructed three single-level networks using
MCODE[32]. The use of MCODE was preferred for an easier comparison of ICan and the three
single-factor networks, as the same modules were identified from the unweighted network. The
edge-weighting procedure was performed separately for each network, and the M scores of each
module were calculated according to a scoring formula (see Additional file S4 Table for details).
A functional enrichment analysis was performed on the candidate cancer-related gene set and
the genes inside the module using the DAVID tool[33] (http://david.abcc.ncifcrf.gov/).

Results

ICan has the properties of complex networks
The integrated co-alteration network is represented as an undirected weighted graph, where
nodes represent genes and edges connecting the nodes represent the correlations of co-alter-
ation between genes. First, making use of human interaction data and pathway knowledge, we
established an HBN that comprised 9,195 nodes and 65,720 edges.

In 574 ovarian cancer tumor samples, there are 11,384 genes that are present in all three
profiles of copy number, promoter methylation and gene expression. According to CCA, we
then calculated the weight between every two genes to measure their linear correlation by the
three features. Next, the edges in the network were assigned weights and the genes not con-
tained in molecular profiles were removed. Eventually, we constructed ICan, which comprised
6,345 nodes and 40,125 edges. The closer ω is to 1, the higher the correlation between the two
genes. In addition, we used the Pearson correlation coefficient for the levels of gene expression,
copy number, and DNAmethylation to construct three same sized networks.

Network topology plays an important role in the biological functions and information
transmission in the network. After analyzing the properties of the network topology, we found
that ICan showed a scale-free structure, with a power-law distribution of node degrees. This
means that ICan includes only a small number of nodes whose degree is high, suggesting the
importance of the hub nodes. We then applied the weighted random walking method to identi-
fy hub nodes. This method can effectively optimize candidate disease genes and accurately pre-
dict candidate key genes of cancer.

ICan improves the accuracy of prioritizing candidate cancer-related
genes
ICan contains 604 known ovarian cancer-related genes, which were used as the gold standard
to plot receiver operator characteristic curves, and to calculate the area under the curve (AUC).
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Based on five-fold cross validation, we selected 80% of the genes as seed genes; the remaining
20% were reserved for final validation. To prove the accuracy of our method, using the same
data set, we applied the CNAmet method to predict oncogenes and tumor suppressor genes,
and compared the outcomes with the ICan outcome. As a result, the AUC value of CNAmet
was significantly less than the AUC value of ICan (ICan: the Max AUC = 0.8179; CNAmet:
AUC = 0.5183, p-value = 3.158e-14, the first two sheets in S5 Table) (Fig. 2). The significance
of the difference of the AUC for two ROC curves was determined by DeLong's test in “pROC
package”[34].

To more accurately predict the cancer-related genes in ovarian cancer, we used a weighted
random walking method to calculate the proximity between other nodes and seed genes to de-
termine correlations with oncogenes. This method is often referred to as the “guilt-by-direct-
association” principle, by which the genes that are associated with disease genes tend to have
similar functions. We randomly chose genes in ICan as seed genes, and compared them with
the original results. This process was repeated 1000 times; an adjusted p-value below 0.05 was
considered significant for cancer-related genes. On the other hand, we compared the difference
in the degree[35] and gene length between candidate genes and the other genes. Recent research
has shown that a greater gene length often results in more domains in the translated proteins,
thus leading to greater interactivity, which means a greater possibility of the gene being cancer
gene[36]. The results showed that not only were there significant differences in the gene length
of candidate cancer-related genes compared with the other genes (p-value = 2.64E-02, Fig. 3, S6
Table), but also the results were similar in terms of gene degree (p-value = 6.176E-07).

Finally, we identified 155 candidate cancer-related genes (S7 Table), and analyzed the co-
alteration events of these genes in detail. CHEK1, IGF1R and MSH3 were co-altered in com-
mon at all three levels; CHEK1, IGF1R, MSH3 and FANCA were co-altered at the copy num-
ber and expression levels; and CHEK1, FGF18, IGF1R, IGFBP1, IGFBP2, MSH3, PLAU,
RAD51 and EIF2AK2 were co-altered at the level of DNA methylation and expression.

CHEK1, FANCA and RAD51 are involved in the inspection of breakpoints in the cell cycle
regulation and repair process, and play important roles either in the p53 signaling pathway or
the MAPK signaling pathway. The MAPK signaling pathway is an important cancer pathway;

Fig 2. Receiver Operator Characteristic (ROC) Curve for ICan and CNAmet. Black line represents ICan,
red dotted line represents CNAmet. Horizontal axis is the false positive rate, the vertical axis is the true
positive rate.

doi:10.1371/journal.pone.0116095.g002
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activation of this pathway can promote endothelial cell proliferation and angiogenesis. The
newly generated blood vessels could provide more nutrients to tumor cells, accelerating tumor
growth and promoting proliferation of cancer cells[37]. MSH3 and IGF1R have important
roles in DNA replication, recombination, and repair. Deficiency of mismatch repair, especially
loss of expression of the seven main genes (MSH2, MSH3, MSH6, MLH1, MLH3, PMS1 and
PMS2), can increase the risk of ovarian cancer[38].

In addition, we analyzed the differential proportion of the top 20% genes in ICan by random
walking. Fig. 4 shows that the proportion of differential methylation was the highest in each
bar among the top 100; however, only two genes have simultaneous differential changes on all
three levels. The numbers of genes with only one type of alteration (CNA, differential methyla-
tion or differential expression) were 13, 19 and 18, respectively. We found that the number of
genes that were differentially altered on multiple levels tended to stabilize after the top 600,
which indicated that the probability of these genes is much higher, suggesting a closer relation-
ship with known seed genes.

Fig 3. The difference of the node degrees and gene lengths between candidate genes and other genes. In the Fig. 3(a), light green represents
candidate genes, gray represents the other genes in ICan, and the vertical axis represents the degree of genes. In the Fig. 3(b), light green represents
candidate genes, gray represents the other genes in ICan, and the vertical axis represents the length of genes.

doi:10.1371/journal.pone.0116095.g003
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The alteration of a gene on a single level represented a copy number abnormality, differen-
tial expression or differential methylation, respectively (S3 Table, sheet 1–3).

Novel cancer-related genes of ovarian cancer may affect survival
To estimate the impact of candidate genes on patient survival, and look for genomic and epige-
netic genomic features related to patients’ prognosis, we applied survival analysis to estimate
the contribution of 6 features for each of the 155 genes (930 total features) on survival time.
We identified six significant oncogenic risk factors and 11 significant tumor suppressor factors
(S8 Table).

Interestingly, the impact of homozygous deletions of candidate genes on survival was not
significant. We speculated that it might result from heterogeneity of the tumor samples. Al-
though the high expression of PDPN did not have a particularly significant impact on poor
prognosis (p-value = 7.80E-04, FDR = 0.12, Fig. 5). Cancer cells with high PDPN expression
have higher malignant potential because of enhanced platelet aggregation, which promotes al-
teration of cell motility, metastasis and epithelial-mesenchymal transition[39]. Previous studies
have shown that overexpression of PDPN in fibroblasts is significantly correlated with a poor
prognosis in ovarian carcinoma[40].

We also noted that the overexpression of EphA2 was associated with a shorter patient sur-
vival time (Fig. 5). Increased expressions of Eph receptor tyrosine kinases have been implicated
in tumor progression in a number of malignancies[41, 42]. It was also observed that abnormal
expression of EphA2 could lead to survival of patients with ovarian cancer[43].

ICan achieved a better modularity
The cutoff is the key parameter of MCODE that influences the size of the module. To select a
more appropriate cutoff, we chose 0.01, 0.02, 0.03, 0.04, and 0.05, respectively, for parameter
optimization. We found that when the cutoff was 0.02 (Fig. 6), the number of nodes in each

Fig 4. The number of altered genes at each level in TOP100~ALL.We selected TOP 20% gene in ICan by
RandomWalk, each bar represents the number of differential alteration genes. GE represents the genes that
were only were differentially expressed in tumor samples, similarly, CN represents alteration of gene copy
number; DM represents DNAmethylation; GD represents gene expression and DNAmethylation; GC
represents gene expression and copy number; CD represents copy number and DNAmethylation; GCD
represents the genes altered in three features.

doi:10.1371/journal.pone.0116095.g004
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Fig 5. Survival analysis of PDPN and EphA2. In the left panel, the red line represents the samples with
PDPN high-expression and the green line represents the sample slack of PDPN high-expression. In the right
panel, the red line represents the samples with EPHA2 high-expression and the green line represents the
samples lack of EPHA2 high-expression.

doi:10.1371/journal.pone.0116095.g005

Fig 6. Parameter fitting. The horizontal axis represents the ID of module, the vertical axis represents the deviation of cluster size. It shows the status of
cluster sizes as the cutoff changes.

doi:10.1371/journal.pone.0116095.g006
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module tended to stabilize. Eventually, 133 modules were identified. MCODE does not consid-
er the weight of edges; therefore, we calculated the scoreM for each module using formula (4),
and ranked the modules by the scores.

MðaÞ ¼

XN�1

i¼1

XN
j¼iþ1

oij

EðaÞ ð5Þ

where a represents the ID of the module, E(a) represents the number of edges in module a,
and N represents the number of nodes in module a.

To further explore the biological functions of ICan, we also compared ICan with the Pear-
son correlation coefficient method with only a single data type (copy number, methylation or
gene expression). The results showed that the weights in the same module were significantly
lower than that of the CCA method (p-value = 2.2e-16, Fig. 7, S4 Table). The modules of ICan
were tighter in structure.

More precisely, the average weight of M7 (Fig. 8) was 0.7210 (CCA), 0.1176 (gene expres-
sion), 0.1113 (copy number) and 0.2305 (DNA methylation). We noted that the average weight
of ICan was the highest, achieving more than three times the weight of the single-level net-
works. For instance, CTNNB1 and RPA2 were not only co-altered at the level of the copy num-
ber, but also at the level of DNA methylation. With respect to a single data type, we uncovered
fine correlations between genes. Recent research has also shown that alterations in the genome
region of CTNNB1 and RPA2 were closely related to the occurrence of ovarian cancer[44, 45].
The M7 module involved 20 genes (NIPSNAP1, ACTN4, ACTB, PIPOX, ACTG2, ACADVL,
KRT8, LMNA, KRT1, KRT18,HSPA9,HSPD1, SET,HSPA5, XRCC5, CTNNB1, GBAS, C1QBP,
CDH1 and ANP32B) that were significantly enriched to GO terms, including regulation of pro-
grammed cell death (2.2E-4), negative regulation of apoptosis (6.5E-4) and adherens junction
(6.7E-4) (S9 Table). Among these, CTNNB1, CDH1, XRCC5 are important ovarian cancer
genes. They are mainly involved in tissue invasion, metastasis and proliferation of cancer.

Fig 7. The average weight of modules. The horizontal axis represents the modules of four networks, the
vertical axis represents the average weight of modules. ICan represents the integrated co-alteration network;
GCE represents gene co-expression network, similarly, GCC represents gene co-CNA network; GCM
represents gene co-methylation network.

doi:10.1371/journal.pone.0116095.g007
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Fig 8. Module 7 andModule 21.

doi:10.1371/journal.pone.0116095.g008
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Discussion
To compensate for the limitations of former studies, we developed ICan, an integrative method
to unearth the cancer related genes. ICan integrates copy number, gene expression and DNA
methylation data. This study not only measured differences among genes by a single feature,
but also uncovered some critical oncogenes and tumor suppressor genes, such as CCNE1,
MYCL1, PIK3R1, FGF2 and other genes (see S4 Table). More importantly, we identified can-
cer-related genes in human ovarian cancer using the genes' co-alteration characteristics. The
co-alteration network built through CCA not only minimized the limitation of a single data
type, but also highlighted correlations between simultaneously altered genes, revealing more
comprehensive information of disease states. Therefore, ICan improved the accuracy of driver
gene prediction.

Compared with previous methods[8, 9], the major improvement in ICan is the integration
of a larger panel of driving alterations, including both genetic and epigenetic, such as somatic
copy number alteration (SCNA) and methylation. Thus, ICan is valuable for finding closely re-
lated patterns between genes in the data sets by three features. By comparison, previous meth-
ods studied the correlation between the expression of a single gene and its copy number.

In comparison with the existing method CNAmet, our co-alteration network based on CCA
is more effective in the performance of gene-pair scoring. In addition, we also compared ICan
with three single networks, In predicting cancer altered genes, the results showed that ICan
had a higher accuracy rate (0.8179(ICan), 0.7756(GCM), 0.7779(GCE), 0.7621(GCC)). The
network set up linear relationships between genes and the three features, and the weighted ran-
dom walk algorithm brought in prior cancer gene information. This enabled the evaluation of
correlations between nodes and known cancer-related genes. We also compared our network
with single-level networks (a co-expression network, a co-CNA network and a co-methylation
network). We concluded that multi-layered data integration could systematically enhance our
understanding of gene action, and the recognized modules were identified with greater signifi-
cance. As an example, module M21 (Fig. 8, S4 Table) contained common cancer-related genes
such as BRCA2, ATM, MDM2, MSH5, MSH4, RAD51, CDK4, and AKT1, among which
BRCA2, ATM and AKT1 directly interact with BRCA1. These genes are all involved
in apoptosis.

Our research method depended on prior biological network knowledge, which is used to
connect gene pairs. The network integrated the pathways and protein-protein interactions that
could link those genes that had no direct interactions but were functionally correlated in the bi-
ological network, which is the most important reason for choosing this method. Furthermore,
we modified traditional methods of multi-omics data analysis, included the information on
gene interactions and capitalized on the correlations between genes to suggest a new research
direction of bioinformatics by integrating multi-omics data. However, with the intrinsic limita-
tion of the size of the HBN, some genes participating in the cancer process were filtered out. To
make up this efficiency, we could enrich the network information.

Our research is significant for revealing the mechanisms of cancer development and its
prognostic impact. We believe that multi-omics data integration will lead to a more systematic
understanding of oncobiology. In addition, the variant signatures provide experimental and
clinical researchers with an informative resource. Our method can be expanded to other can-
cers, and new data types may be added in the near future. For example, imbalances of miRNAs
also play an important role in cancer development; thus, we could add miRNAs’ regulatory in-
formation to the HBN, such that not only could the genes' regulatory information be enriched,
but also candidate target genes could be predicted.
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Conclusions
By integrating copy number, methylation, gene expression and protein-protein interaction
data of ovarian cancer, we built an integrated co-alteration network (ICan) based on CCA, and
identified 155 cancer-related genes, including TP53, BRCA1, RB1 and PTEN; and novel can-
cer-related genes, such as PDPN and EphA2. Functional annotation and survival analysis sug-
gested the significance of these genes in ovarian cancer. In addition, our method achieved an
AUC of 0.8179 in predicting cancer altered genes, which was a better performance than that
achieved by CNAmet. The results also indicated that ICan yields better modularity than single-
level networks. The genes in the same module participate in proliferation and metastasis of
cancer cells.

Our results showed that ICan, built by multi-omics data integration, could aid the precise
identification of cancer related genes of ovarian cancer. This study provided a theoretical basis
for understanding the mechanism of carcinogenesis and permits searching for new drug tar-
gets. The results provided valuable insights into the identification of potential
prognostic biomarkers.
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