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Abstract

Artificial Intelligence has the potential to reshape the landscape of clinical trials

through innovative applications, with a notable advancement being the emergence

of synthetic patient generation. This process involves simulating cohorts of virtual

patients that can either replace or supplement real individuals within trial settings. By

leveraging synthetic patients, it becomes possible to eliminate the need for obtaining

patient consent and creating control groups that mimic patients in active treat-

ment arms. This method not only streamlines trial processes, reducing time and

costs but also fortifies the protection of sensitive participant data. Furthermore, inte-

grating synthetic patients amplifies trial efficiency by expanding the sample size.

These straightforward and cost-effective methods also enable the development of

personalized subject-specific models, enabling predictions of patient responses to

interventions. Synthetic data holds great promise for generating real-world evidence

in clinical trials while upholding rigorous confidentiality standards throughout the pro-

cess. Therefore, this study aims to demonstrate the applicability and performance

of these methods in the context of onco-hematological research, breaking through

the theoretical and practical barriers associated with the implementation of artificial

intelligence inmedical trials.
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1 INTRODUCTION

Artificial Intelligence (AI) is revolutionizing numerous medical fields,

ranging from image analysis and multi-omics data integration to drug

discovery and precision medicine, with some notable applications

already explored [1, 2]. Among these, clinical trial design emerges as a

promising yet relatively unexplored frontier. While synthetic data has

been originally designed to furnish publicly accessible alternatives to

datasets, it holds substantial potential in clinical trial applications, pro-

viding a virtual patient group that closely emulates real-world datasets

while safeguarding individual patient privacy. However, it is crucial

to recognize that attaining these benefits demands a meticulous and

resource-intensive process rather than inheriting them by default.

This involves substituting observed values with sampled values from

appropriate probability distributions, thereby preserving the statisti-

cal characteristics of the original data. By adopting this approach, the

need for patient consent is alleviated, and limitations associated with

common anonymization practices are overcome. Notably, ensuring the

efficacy of anonymization has become increasingly challenging in the

face of ongoing technological advancements [3].

In this context, our project was conceived to explore the feasibility

and utility of synthetic data as a viable substitute for actual clinical trial

data. One immediate application of synthetic datasets in clinical trials

is the generation of control patient groups that faithfully mirror the

characteristics of the original dataset. Generating synthetic patients

for clinical trials canbe accomplished throughdifferentmethodologies,

including Generative Adversarial Networks (GANs) [4], decision tree

methods [5], and parametric methods. Decision tree methods, func-

tioning as machine learning algorithms, sequentially classify or predict

outcomes by partitioning data into subsets based on feature values.

Parametric methods involve fitting a specific statistical distribution to

observed data and then generating synthetic patients based on the

estimated parameters of that distribution. In this work, we focus on

decision tree and parametric methods, while an in-depth review and

comparison with the GANs approach can be found in Little et al. [6].

Leveraging synthetic data enables the execution of virtual ran-

domized trials, comparing the responses of patients receiving active

therapy with those in a synthetic control group. However, the suc-

cess of this approach requires empirical validation. Such an approach

holds the promise of allowing investigators to strategically allocate

resources by enrolling more patients in the active therapy arms,

thereby optimizing trial efficiency and resource utilization.

2 METHODS

2.1 Study population

In the present study, we generated an in-silico [7] cohort using a siz-

able dataset of patients enrolled in the GIMEMA AML1310 study

(NCT01452646), currently closed [8]. AML1310 was a trial for newly

diagnosed AML patients which included a ‘‘3+7″-like induction and

a risk-based MRD-directed post-remission transplant allocation. The

study enrolled 500 patients across 55 Italian hematology institutions.

Patients had amedian ageof 49years, all ofwhomunderwent anexten-

sive biological characterization, including morphological, cytogenetic,

molecular genetics, and multiparametric flow cytometry analyses. In

particular, the individual-level data of the subset of 445 patients with

ELN2017 risk classification available [9] was used to generate the

synthetic cohort as described below.

2.2 Statistical methods

2.2.1 Model description

The model we used was designed to capture the pattern and statisti-

cal properties of the original data. Ideally, if the models truly represent

the process that generated the original observed data, an analysis

based on the synthesized data should lead to the same statistical infer-

ences as an analysis based on the actual data. More in detail, in most

implementations of synthetic data generation, the generative model

uses a joint distribution made up of conditional distributions to pro-

duce synthetic data. Each column of the synthetic dataset is selected,

with the distribution of that variable being estimated conditional on

observed variables and all previous columns synthesized. This process

is repeated for each subsequent column. The ‘synthpop’ R package

[10] was utilized for this purpose, and Elliot [11] stated his agreement

with the low disclosure risk associated with synthetic data produced

using this package. The ‘synthpop’ package incorporates precautionary

features, including a function that allows for top and bottom coding

and the addition of labels to synthetic datasets to indicate their syn-

thetic nature. Furthermore, this function excludes any unique cases

with variable sequences identical to those of unique individuals in the

real dataset from the synthetic dataset. In our specific case, it is worth

noting that utilizing this functionobviated theneed to removeanyunits

from our dataset. Thus, synthetic data derivatives are quantitatively

the same as patient-derived datasets, but the former cannot be traced

back to the individuals fromwhom they were derived.

2.2.2 Choice of model parameters

The choice of synthesizing models typically involves a decision

between parametric and non-parametric methods, with the latter

being based on classification and regression trees (CART), which can

accommodate any data type. In our study, we employed the paramet-

ric method for all variables except time-to-event variables, where the

CART method by Breiman et al. [5] was used. Namely, the algorithm

assigns default parametric methods to variables to be synthesized

based on their types: for binary data type the logistic regression, for

a factor with > 2 levels the polytomous logistic regression, for an

ordered factor with > 2 levels the ordered polytomous logistic regres-

sion. For continuous variables, we employed a linear regression model

that preserves themarginal distribution. Regression is conductedonan

inverse normal-rank-based transformation of the covariate of interest
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to approximate continuous covariates with non-normal distributions.

Additionally, given thealgorithmstructure, it is crucial todetermine the

order in which variables should be synthesized.

The use of the CART method for time-to-event variables and the

parametric method for all other variables was motivated by the com-

plex relationships often present in time-to-event data, often not easily

captured by parametric models. The CART method, being a non-

parametric technique, provides greater flexibility in modeling such

intricate relationships, making it a suitable choice for these spe-

cific variables. Conversely, for the other variables in our study, the

parametric method was chosen due to its simplicity and interpretabil-

ity. Parametric models are often more straightforward to implement

and understand, making them a practical choice when the relation-

ships in the data are reasonably well-understood and conform to the

assumptions of the chosen parametric model.

The variables synthesized included age, sex, height, weight, WHO

performance status, neutrophil count, lymphocytes, hemoglobin, white

blood cells (WBC), FLT3-ITD, NPM1, CBF, ELN2017 risk category,

complete response (CR) rate, MRD-negativity, transplant rate, overall

survival (OS), and disease-free survival (DFS).

2.2.3 Data consistency and missing data

Before generating synthetic data, rules were implemented to ensure

data consistency. Specifically, we identified restricted values, which

are situations where certain values are explicitly determined by other

variables. During the data synthesis process, restricted values are

assigned first, followed by the generation of records with unrestricted

values. According to the AML1310 study protocol, the rules applied

include scenarioswhere patients not in complete remission do not pro-

vide measurements for MRD or DFS, and they have not undergone

transplantation.

Missing data were handled differently for categorical and continu-

ous variables. When dealing with missing data in categorical variables,

the employed algorithm treats the missing values as additional cate-

gories, and replicating them is a straightforward process. For contin-

uous variables that have missing data, a two-step modeling approach

is employed. In the first step, an auxiliary binary variable is created

to indicate whether a value is missing or not. In the second step, a

synthesizing model is fitted to the non-missing values in the original

variable. This model is then used to generate synthetic values for the

non-missing category records in the auxiliary variable. Instead of using

the original variable, the auxiliary variable along with a variable con-

taining non-missing values and zeros is used for the remaining records

when predicting other variables.

2.2.4 Comparison between original and synthetic
cohort

Weused rigorous statisticalmethods to examine the faithfulness of the

synthetic cohort to the original one.

To identify disparities in the distributions of the original and

synthetic data and subsequently refine our synthesis methods for

enhanced utility, we adopted an approach to general utility measures

that involves combining the original and synthetic records. This

method measures how well the data values predict the source of

the records, distinguishing between real and synthetic, utilizing the

propensity score—the predicted probability that a record originates

from the synthetic data. Following the recommendation of Snoke et al.

[12], the most commonly suggested utility measure in this context is

the propensity score mean squared error (pMSE) or its standardized

ratio (S_pMSE).

Drawing upon the works of Raab et al. [13], we propose a prac-

tical threshold for assessing utility: if all standardized pMSE ratios

fall below 10, and preferably below 3, further adjustments may be

deemed unnecessary, indicating the satisfactory utility of the synthetic

data.

Alternatively, an additional approach to utility measures involves

grouping the original and synthetic data by constructing tables based

on their values and computing measures of difference between

these tables. In our evaluation of adherence across both contin-

uous and categorical variables, we employed the Wilcoxon rank

sum test and Pearson’s Chi-squared test. The survival outcomes of

the virtual and actual cohorts were evaluated using the Log-rank

test.

Recognizing that a high degree of statistical similarity may not

necessarily imply true similarity, especially when considering the

intricate interplay between variables, and appreciating the critical

importance of these interrelationships—particularly in contexts like

randomized controlled trials (RCTs), where subgroup analyses are

essential—we conducted a thorough stratified survival analysis. This

enabled us to delve into the influence of factors on distinct patient

subgroups.

3 RESULTS

3.1 Virtual cohort characteristics

Implementing the described synthetic data generation approach

yielded a virtual cohort comprising 890 patients, effectively doubling

the size of the original sample. The covariate distributions found in

the original data were replicated with a high degree of accuracy in the

synthetic data, ensuring that survival predictions being made condi-

tional on unique covariate patterns are appropriately reflected. Table 1

summarizes the features of the synthetic cohort and compares them

to the original population. Notably, the clinic-biological characteristics

of the two cohorts did not differ significantly, as all adjusted p-values

exceeded 0.99.

To underscore these findings, Table S1 presents the obtained pMSE

and standardized pMSE, along with their respective degrees of free-

dom. Remarkably, for every synthesized variable, the associated utility

measure falls below the suggested threshold of 3 for the standardized

pMSE.
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TABLE 1 Comparison between the original and synthetic AML1310 cohorts in terms of demographic, clinic-biologic characteristics, and
response.

Characteristic

Original AML1310

N= 445

Synthetic AML1310

N= 890 p-Valuea q-Valueb

Age, median (range) 49 (18, 61) 49 (18, 61) >0.99 >0.99

Sex, n (%) 0.97 >0.99

Male 232 (52%) 465 (52%)

Female 213 (48%) 425 (48%)

Height, median (range) 170 (80, 196) 169 (80, 196) 0.64 >0.99

Weight, median (range) 72 (43, 192) 71 (43, 192) 0.97 >0.99

WHOPerformance Status, n (%) 0.51 >0.99

0 259 (60%) 535 (62%)

1 120 (28%) 225 (26%)

2 52 (12%) 88 (10%)

3 2 (0.5%) 9 (1.1%)

Neutrophils, median (range) 1.4 (0, 30) 1.3 (0, 30) 0.87 >0.99

Lymphocytes, median (range) 2.8 (0, 20) 3.0 (0, 20) 0.61 >0.99

Haemoglobin, median (range) 8.90 (3.30, 15.20) 8.90 (3.30, 15.20) 0.64 >0.99

WBCx 109, median (range) 14 (0, 341) 13 (0, 341) 0.69 >0.99

RUNX1, n (%) 0.69 >0.99

Negative 417 (94%) 835 (94%)

Positive 27 (6.1%) 49 (5.5%)

CBF, n (%) 0.25 >0.99

Negative 405 (92%) 791 (90%)

Positive 36 (8.2%) 89 (10%)

FLT3-ITD, n (%) 0.73 >0.99

Negative 334 (76%) 671 (76%)

Positive 108 (24%) 207 (24%)

NPM1, n (%) 0.62 >0.99

Negative 274 (62%) 558 (63%)

Positive 170 (38%) 326 (37%)

ELN2017 Risk category, n (%) 0.58 >0.99

Adverse 80 (18%) 174 (20%)

Favorable 186 (42%) 383 (43%)

Intermediate 179 (40%) 333 (37%)

CR, n (%) 322 (73%) 645 (73%) 0.96 >0.99

MRD, n (%) 0.58 >0.99

Neg 125 (52%) 234 (49%)

Pos 117 (48%) 239 (51%)

Transplant received, n (%) 217 (49%) 432 (49%) 0.94 >0.99

aWilcoxon rank sum test; Pearson’s Chi-squared test.
bFalse discovery rate correction for multiple testing using the Bonferroni method.

Moreover, the synthpop package provides visualization methods for

these results, including histograms comparing the original and syn-

thetic distributions side by side (Figures S1–S17). This feature offers

immediate feedback, enabling the data synthesizer to enhance the

quality of the synthetic data.

3.2 Virtual cohort outcomes

In terms of response evaluations, the synthetic cohort exhibited an

aligned CR rate of 73%, perfectly consistent (q-value > 0.99) with

the original cohort’s CR rate. Furthermore, an exact concordance



PICIOCCHI ET AL. 357

F IGURE 1 Survival outcomes of the original and synthetic AML1310 cohorts. Dashed lines refer to the original cohort and continuous lines to
the synthetic patients.

(q-value > 0.99) was observed in MRD-negativity rates, with both

cohorts recording a rate of 52%.

Furthermore, the effectiveness of these methods in replicating

survival patterns found in the original data is demonstrated by com-

paring various survival estimates for the original and synthetic data.

The marginal OS and DFS curves (Figure 1A,B) demonstrated striking

similarity, with Log-rank test p-values of 0.78 and 0.79, respectively.

Indeed, at 2 years OS was 57% (95% CI: 52.5%−61.9%) in the original

cohort and 55.9% (95% CI: 52.7%−59.3%) in the synthetic AML1310

cohort. Similarly, two-year DFS was 55.1% (95% CI: 49.8%−60.9%)

in the original and 55.9% (95% CI: 52.1%−60%) in the synthetic

cohort. Remarkably, the synthetic curves for both OS and DFS

managed to precisely reproduce the censoring distribution of the

original population. This result allows us to avoid the imposition of

assumption on the censoring independence from the time-to-event

distribution.

Stratified survival estimates by population subgroups, presented

in Figure 1 (plots C–F), further underscored the agreement in sur-

vival estimates over time. OS curves were stratified by risk categories

(Figure 1C) and age class (Figure 1E), and equivalentlyDFS curveswere

stratified by risk categories (Figure 1D) and age class (Figure 1F).

4 DISCUSSION

In this work, we demonstrated the feasibility of generating a virtual

cohort of patients from real patients’ data in the setting of AML. This

study represents a concrete example of the implementation of AI in

clinical trial design. Some experiences in the same or other settings

have been recently published. Though employing different methods to

generate synthetic patients, they witness the increasing interest and

potential of synthetic data [14, 15].

In the present work, by employing innovative computational mod-

eling techniques, we were able to develop an in-silico AML population

whose main features are very similar to the real population. Mirror-

ing an AML population treated with a conventional chemotherapeutic

approach, the synthetic AML1310 cohort is suitable to represent the

control group when testing novel innovative treatments, most likely



358 PICIOCCHI ET AL.

in an in-silico randomized trial, performed in the same framework (i.e.,

the Italian Hematology Centres to ensure the usability of the synthetic

population).

Indeed, while randomized controlled trials remain the gold stan-

dard for evaluating the safety and efficacy of new treatments, there

is a mounting recognition of the need for alternative approaches to

expedite the trial process.

Besides the abovementioned potential, we can also count some

benefits for patients. Using a synthetic cohort generated from a

conventionally treated population as the control group, the patients

enrolled in the virtual randomized trial would receive only the exper-

imental treatment without being exposed to the “less active” therapy,

thus limiting treatment failures and toxicity.

Shifting to an in-silico trial would also be advantageous for all

the clinical trial stakeholders: indeed, by reducing the need to enroll

additional physical patients, enrolment and the attainment of final

results would be faster, and investigation-related expenses would be

optimized.

Another advantage is the privacy safeguard: indeed, completely

synthesized data does not include identifiable real units, hence, the

probability of disclosing a person’s identity is considered to be unlikely.

Despite Rajotte et al. [16] consideration of the trade-off between

‘high-quality’ synthetic data creation and privacy issues, the synthpop

R method—used in the present study—is designed to enhance data

security and further minimize the potential risk of disclosure [10, 11].

In addition, the “burden” of collecting data subject’s consent as

well as the shortcomings of common anonymization techniques are

reduced.

Furthermore, by generating synthetic patients, one can address

the limitations of small sample sizes or imbalances in covariates. This

is particularly beneficial in propensity score matching, as having a

more balanced set of covariates enhances the accuracy and reliabil-

ity of treatment effect estimates. Especially in cases where certain

events or conditions are rare in real-world data, synthetic patient

generation can help create instances of these rare events, making it

easier to match treated and control groups on such variables. More-

over, synthetic patient generation is a valuable tool for upsampling

minority classes in imbalanced healthcare datasets. By creating syn-

thetic instances that represent underrepresented characteristics or

conditions, this approach contributes to the development of more

accurate and unbiased predictive models in medical research and

decision-making.

However, despite the high potential of in-silico trials, we foresee

some limitations both upstream and downstream of their activation.

From a legal perspective, as of the latest European Union regulation,

the use of synthetic data is addressed in the recently enacted AI Act

(December 9, 2023), but specific national legislation is yet to be estab-

lished. Consequently, the practical application of a synthetic cohort in

a virtual trial could face resistance fromnational regulatory authorities

unaccustomed to dealing with this matter.

From a patient perspective, potential reluctance to share

anonymized data or skepticism toward participating in in-silico

trials [17] is an important consideration.

Additionally, inherent limitations arise from synthetic data. When

employing synthetic patients as a control cohort, we encounter similar

challenges as those in non-RCT studies, particularly concerning con-

founders. Synthetic patient cohorts may not comprehensively account

for unknown confounding variables, which are variables not measured

or considered during the cohort creation process.

Moreover, as previously mentioned, when utilizing a synthetic

cohort derived froma specific country, its applicability should generally

be restricted to an in-silico trial conducted within the same context.

In conclusion, we provided evidence of the feasibility of creating

a virtual cohort of patients that faithfully replicates the original

population, offering numerous advantages for trial development.

Although our focus has been on constructing data that are typical

in population-based leukemia survival research, this approach can

readily be extended to other time-to-event settings, requiring only

a set of covariates and a preliminary understanding of prognostic

covariates.

We strongly believe that the simplicity of these methods offers a

straightforward and easily implementable technique for generating

synthetic data that maintains high data utility standards without

compromising the validity of results. This strategy first applied to

AML, could be extended to other diseases to improve the prognosis

and the management of clinical trials in other settings. Synthetic

patient generation may ultimately simplify and accelerate the eval-

uation of new therapies and enable faster access to innovative

treatments.
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