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Abstract

Because local field potentials (LFPs) arise from multiple sources in different spatial loca-

tions, they do not easily reveal coordinated activity across neural populations on a trial-to-

trial basis. As we show here, however, once disparate source signals are decoupled, their

trial-to-trial fluctuations become more accessible, and cross-population correlations become

more apparent. To decouple sources we introduce a general framework for estimation of

current source densities (CSDs). In this framework, the set of LFPs result from noise being

added to the transform of the CSD by a biophysical forward model, while the CSD is consid-

ered to be the sum of a zero-mean, stationary, spatiotemporal Gaussian process, having

fast and slow components, and a mean function, which is the sum of multiple time-varying

functions distributed across space, each varying across trials. We derived biophysical for-

ward models relevant to the data we analyzed. In simulation studies this approach improved

identification of source signals compared to existing CSD estimation methods. Using data

recorded from primate auditory cortex, we analyzed trial-to-trial fluctuations in both steady-

state and task-evoked signals. We found cortical layer-specific phase coupling between two

probes and showed that the same analysis applied directly to LFPs did not recover these

patterns. We also found task-evoked CSDs to be correlated across probes, at specific corti-

cal depths. Using data from Neuropixels probes in mouse visual areas, we again found evi-

dence for depth-specific phase coupling of primary visual cortex and lateromedial area

based on the CSDs.

Author summary

To better understand information processing in the brain, it is important to identify situa-

tions in which neural activity is coordinated across populations of neurons, including

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009601 November 17, 2021 1 / 24

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Klein N, Siegle JH, Teichert T, Kass RE

(2021) Cross-population coupling of neural activity

based on Gaussian process current source

densities. PLoS Comput Biol 17(11): e1009601.

https://doi.org/10.1371/journal.pcbi.1009601

Editor: Emma Claire Robinson, Kings College

London, UNITED KINGDOM

Received: April 19, 2021

Accepted: October 29, 2021

Published: November 17, 2021

Copyright: © 2021 Klein et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All datasets and code

are publicly available at the following links. Auditory

cortex dataset DOI: https://doi.org/10.5281/

zenodo.4701238. Neuropixels dataset DOI: https://

doi.org/10.5281/zenodo.5150707. Python code

implementing the methodology with scripts to

reproduce all paper results: Github https://www.

github.com/natalieklein/gpcsd, DOI https://doi.org/

10.5281/zenodo.4698745. The Python package

may also be installed via PyPI under package name

‘gpcsd’.

https://orcid.org/0000-0002-7532-4013
https://orcid.org/0000-0002-7736-4844
https://doi.org/10.1371/journal.pcbi.1009601
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009601&domain=pdf&date_stamp=2021-12-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009601&domain=pdf&date_stamp=2021-12-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009601&domain=pdf&date_stamp=2021-12-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009601&domain=pdf&date_stamp=2021-12-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009601&domain=pdf&date_stamp=2021-12-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009601&domain=pdf&date_stamp=2021-12-01
https://doi.org/10.1371/journal.pcbi.1009601
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5281/zenodo.4701238
https://doi.org/10.5281/zenodo.4701238
https://doi.org/10.5281/zenodo.5150707
https://doi.org/10.5281/zenodo.5150707
https://www.github.com/natalieklein/gpcsd
https://www.github.com/natalieklein/gpcsd
https://doi.org/10.5281/zenodo.4698745
https://doi.org/10.5281/zenodo.4698745


those in distinct layers of the cortex. Bulk population activity results in voltage changes

across extracellular electrodes, but in raw form such voltage recordings can be hard to

analyze and interpret. In this paper, we develop a novel framework for locating the sources

of currents that produce the measured voltages, and decomposing those currents into

interpretable components. We use this flexible framework to develop statistical methods

of analysis, and we show that our methodology can be more effective than existing tech-

niques for current source localization. We apply the method to extracellular recordings in

two contexts: primate auditory cortex in response to tone stimuli, and mouse visual cortex

in response to visual stimuli. In both cases, we get results that are useful for understanding

cross-population activity while being difficult or impossible to obtain using the raw volt-

age signals. We thereby demonstrate the broad utility of our approach for identifying

coordinated neural activity based on extracellular voltage recordings.

This is a PLOS Computational Biology Methods paper.

Introduction

Local field potentials (LFPs) recorded from multiple electrodes are influenced in part by inter-

actions among populations of neurons. However, because they involve a variety of post-synap-

tic potentials near the recording electrode [1, 2], and may also be affected by more distant

sources [3–6], using LFPs to identify cross-population co-activity is difficult: it can be hard to

disentangle the many signals mixed together in LFPs, which may have multiple timescales and

likely arise from distributed current sources contaminated by noise. We have developed and

investigated a statistical modeling approach that incorporates the biophysical relationship

between cellular current flow and measured voltages, and assumes the current source densities

are stochastic, driven by several distinct processes, each operating at a different timescale. The

goal of our work is to identify trial-to-trial covariation among features of the current source

densities, using such covariation as an indicator of coordinated activity across neural popula-

tions. As we show, relationships across populations can become apparent when analyzing cur-

rent source densities even though they are invisible among LFPs.

Traditional current source density (CSD) estimation is based on a particular forward

model, and it applies second derivatives along a discrete grid of locations [7, 8]. This not only

restricts its application to LFPs from evenly-spaced recording electrodes, but it also makes tra-

ditional CSD estimation sensitive to noise because second derivatives of noisy functions are

unstable [9]. Our approach is closer, in spirit, to a pair of more recent suggestions, termed

inverse CSD [10] and kernel CSD [11], but includes important additional structure. We apply

a forward model while assuming there are both steady (spontaneous) and transient (evoked)

currents, with the steady currents having fast and slow components; these currents are then

mapped to the voltage detected at each electrode using a forward model, and we assume noise

is added to produce the LFP. In schematic form, our modeling approach can be written,

CSD ¼ transient þ slow þ fast

LFP ¼ forwardðCSDÞ þ noise

where the slow and fast terms on the right of the CSD equation are spatiotemporal Gaussian
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processes with different timescales. From this intuitive conception we have constructed a

framework for finding trial-to-trial correlation, across populations, both in transient current

increases and in steady but rapidly changing currents (oscillations). This framework, spelled

out in Eqs (1)–(4) in the next section, is able to improve identification of currents substantially

while also offering flexibility: it can be used to analyze data from electrodes spaced unevenly in

1, 2, or 3 spatial dimensions, and it allows parameter-tuning in conjunction with model fitting.

Furthermore, even though the non-evoked activity is assumed to have only two components,

the model is able to reproduce the spectra of measured LFPs. Because the framework is built

around Gaussian process current source densities, we use the acronym GPCSD to refer to the

methodology and resulting CSD estimates.

The forward model maps the source space into a lower-dimensional observation space.

Estimation of sources from data therefore creates an ill-posed inverse problem. GPCSD effec-

tively regularizes by using a flexible Gaussian process structure with a relatively low-dimen-

sional parameter space. We confirm here, using simulated data, that our approach can

outperform existing methods in recovering ground truth CSDs, even when the modeling

assumptions are incorrect. We then illustrate potential findings by analyzing two data sets:

LFPs from a pair of laminar probes in primate auditory cortex, in response to auditory cues,

and LFPs from Neuropixels [12] in distinct visual areas of the mouse, in response to visual sti-

muli [13]. In the case of the auditory data, we extracted dense spatial profiles of CSD activity

operating at different time scales, and identified 10Hz phase coupling across populations at

similar cortical depths, and also across different depths; these relationships were not recovered

by applying phase coupling methods directly to the recorded LFPs. Previous work suggests

that current sources are useful for understanding trial-to-trial variation [14], so we also used

CSDs to identify trial-to-trial correlation in evoked responses to an auditory stimulus [15].

Using the LFPs from Neuropixels we found depth-specific phase coupling of primary visual

cortex (V1) and lateromedial area (LM) in both theta and beta bands. Together, the simulation

and real data results demonstrate the possibility of inferring cooperative population activity

from LFPs.

In the following sections, we first describe the general statistical formulation of our

approach, including details about our forward modeling. This framework is general. To apply

it in a given problem, choices must be made. We specify these particulars in the context of

both simulated and real data. We then present our data-analytic results.

Results

Statistical formulation of CSD estimation

In this section, we describe our conception of the CSD as a spatiotemporal stochastic process,

we outline the general form of the forward model, and we show how we adapt it to our one-

dimensional and two-dimensional data applications.

CSD as a spatiotemporal process. Biophysical forward models describe the transforma-

tion from currents to recorded voltages at any instant in time. In this work, we use the term

“biophysical forward model” to refer to a simplified forward model based on simplifying

assumptions; in particular, we do not include details such as properties of specific neurons in

the forward models. Current flow across a cell membrane creates a current source or sink, and

the resulting three-dimensional field potential can be derived using volume conductor theory.

Because it is not possible to determine all the contributions of individual transmembrane cur-

rents from measured LFPs, the CSD at time t and spatial point s may be conceptualized as the

average transmembrane current within a small area around s [2]. We let c(s, t) denote the

CSD, taking it to be a continuous function, which we will estimate from the LFP data. The
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biophysical model maps the CSD c to the field potential, which we write as ϕ, through a spatial

linear operator As, so that � ¼ As½c�. We use the subscript s to emphasize the spatial operation.

The operator takes the form of an integral, so that the field potential at (s, t) is given by

�ðs; tÞ ¼ As½c�ðs; tÞ ¼
R
aðs; s0Þcðs0; tÞds0 ð1Þ

for a suitable function a(s, s0) (the form of which will become clear). We write the measured

LFP as ~� and assume it is equal to ϕ plus independent noise:

~�ðs; tÞ ¼ �ðs; tÞ þ �ðs; tÞ: ð2Þ

Across repeated trials, in response to the same stimulus or producing the same behavior, the

CSD will vary [15]. We use a superscript r to identify relevant quantities on trial r, for r = 1,

. . ., Nr, and we assume the CSD functions c(r)(s, t) are independent realizations of a stochastic

process. Finally, we assume the CSD c(s0, t) is the sum of three components operating at dis-

tinct timescales, an evoked transient mean μ(s0, t), a slowly varying stationary process η1(s0, t),
and a more rapidly varying stationary process η2(s0, t). This last process η2 could be oscillatory.

Thus, on trial r we have

cðrÞðs0; tÞ ¼ mðrÞðs0; tÞ þ ZðrÞ1 ðs0; tÞ þ Z
ðrÞ
2 ðs0; tÞ; ð3Þ

so that c(r)(s0, t) becomes a realization of a stochastic process, the realizations being indepen-

dent across trials. Because As is linear, on trial r we get

~�ðrÞðs; tÞ ¼ As½m
ðrÞ�ðs; tÞ þAs½Z

ðrÞ
1 �ðs; tÞ þAs½Z

ðrÞ
2 �ðs; tÞ þ �ðrÞðs; tÞ: ð4Þ

Eqs (1)–(4), together with estimation of the current source density from the LFP data,

define the fundamental components of the framework we have developed. By taking η1 and η2

to be Gaussian processes, the functions c(r)(s0, t) in Eq (3) become Gaussian process current

source densities, and we are able to infer features of them, on a trial-by-trial basis. More specif-

ically, the free parameters in Eq (3), together with a free parameter in our forward model,

make up a parameter vector θ for a log likelihood function (see Eq (15)), and the current

source density on trial r is estimated using the collection of ~�ðrÞðs; tÞ observations across the

relevant grid of (s, t) values (Eq (17)). As we will show, this model can generate multiple time

series similar to those observed in LFPs [1]. The specifications of the forward model in Eq (1)

and the three terms on the right of Eq (3) are application-dependent. We discuss them below

in the context of our two data sets.

Forward model details. We first give an overview of a commonly-used three-dimensional

forward model, which is relevant when three-dimensional LFP recordings are available. In the

following section we describe additional a priori physical models that are required to adapt the

generative model and forward model to LFP measurements from one-dimensional and two-

dimensional electrode arrays.

Previous work on CSD estimation has established that an assumption of an isotropic,

homogeneous medium with scalar conductivity B is a reasonable approximation for cortical

signals in primates [16]; see also the discussion of forward modeling assumptions in [17], Sec-

tion 4.2.1. Using the quasi-static assumption, the relationship between the CSD c and the LFP

ϕ at a single time point (time index suppressed for clarity of notation) is governed by the Pois-

son equation [7]:

Br � ðr�ðx; y; zÞÞ ¼ B
@

2
�ðx; y; zÞ
@x2

þ
@

2
�ðx; y; zÞ
@y2

þ
@

2
�ðx; y; zÞ
@z2

� �

¼ � cðx; y; zÞ; ð5Þ
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where the spatial location s is described in terms of coordinates (x, y, z). While this appears to

give a formula for computing the CSD from the LFP, it requires detailed, accurate knowledge

of the LFP in three dimensions, without which it fails to accurately recover the CSD [18]. In

addition, estimated second derivatives are highly influenced by noise. However, assuming an

infinite volume conductor with negligible boundary conditions, the differential equation may

be inverted to an integral equation which instead gives ϕ in terms of a linear integral operator

As on c [8]:

�ðx; y; zÞ ¼ As½c�ðsÞ � �
1

4pB

Z Z Z
cðx0; y0; z0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx � x0Þ2 þ ðy � y0Þ2 þ ðz � z0Þ2
q dx0 dy0 dz0: ð6Þ

Adapting the model. Though our generative model and forward model have thus far

been discussed in terms of general processes over three dimensions, it is common for elec-

trodes to be arrayed along only one or two dimensions, which leaves unmeasured the effects in

other dimensions. One advantage of the formulation we have described is that it can be

adapted to these situations by introducing a priori assumptions about the CSD in the unmea-

sured directions.

One-dimensional recordings are typically taken along a linear probe inserted perpendicular

to the surface of the cortex, so we will index the one-dimensional spatial locations by a single

coordinate z representing depth along the probe. We use an a priori physical model in which

the CSD is assumed constant in the dimensions perpendicular to the linear probe on a cylinder

of radius R around the probe and zero elsewhere [10]; previous work has shown deviations

from this shape do not have a large impact on the results [11, 19]. Additionally, as linear probes

are typically inserted to penetrate the thickness of the cortex, we assume the CSD is nonzero

only on an interval a� z� b representing the thickness of the cortex. These assumptions lead

to the following a priori physical model that describes the variation of the CSD in the z direc-

tion through a function g(z, t) that varies over time and a single spatial dimension:

cðx; y; z; tÞ ¼ gðz; tÞ1ðx2 þ y2 � RÞ1ða � z � bÞ: ð7Þ

In Eq (7), 1ð�Þ is an indicator function that evaluates to 1 if the argument is true and 0 other-

wise, and we have used the convention that x = y = 0 corresponds to the probe location. Under

this a priori physical model, as shown in S1 Text and previously derived in [10], the three-

dimensional forward model of Eq (6) reduces to

�ðz; tÞ ¼ Az½g�ðz; tÞ � �
R
2B

Z b

a
gðz0; tÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z � z0

R

� �2

þ 1

s

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z � z0

R

� �2
s2

4

3

5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
aðz;z0;RÞ

dz0: ð8Þ

Thus, under this a priori physical model, the one-dimensional LFP is the result of applying a

linear operator Az to g, where the weighting function a(z, z0; R) (see Eq (1)) decreases with dis-

tance z − z0 but also depends on the cylinder radius R. In this case, our prior model on the CSD

specifies the space of functions g(z, t) with one spatial and one temporal dimension.

Two-dimensional LFP measurements are commonly collected using microelectrode arrays

such as a Utah array or Neuropixels probe [12, 20]. In the Neuropixels data we will analyze,

the two-dimensional spatial locations represent depth and width along the probe, so we index

the spatial location s by coordinates y for width and z for depth. Unlike with Utah arrays, for

Neuropixels, sources behind the face housing the electrode contacts are unlikely to make con-

tributions to the measured LFPs [21], so we assume they don’t. We also assume zero charge in
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a small area in front of the probe face, which avoids singularities in the forward model. There-

fore, the a priori physical model will assume that the CSD is constant in front of the face of the

probe in the unmeasured x direction for some distance R after a space of τ; that is, using the

convention that x = 0 is the face of the probe and positive x are in front of the probe, we

assume

cðx; y; z; tÞ ¼ gðy; z; tÞ1ðt � x � Rþ tÞ1ðaz � z � bzÞ1ðay � y � byÞ: ð9Þ

We note that this forward model is similar to previously derived models for multielectrode

arrays [22, 23]. In this case, the three-dimensional forward model of Eq (6) reduces to (see S1

Text for derivation)

�ðy; z; tÞ ¼ Ay;z½g�ðy; z; tÞ

� �
1

4pB

Z bz

az

Z by

ay

gðy0; z0; tÞ log
Rþ tþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðRþ tÞ2 þ r2
y þ r2

z

q

tþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ r2

y þ r2
z

q
Þ

0

B
@

1

C
A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
aðy;y0;z;z0;R;tÞ where ry¼y� y0 ; rz¼z� z0

dy0 dz0: ð10Þ

The prior in this case specifies the space of functions g(y, z, t) with two spatial dimensions and

one temporal dimension. We note that the form of the forward model is similar to existing

two-dimensional forward models for slightly different measuring devices such as Utah arrays

[11], but with some differences due to the a priori physical model we have assumed for the

Neuropixels probe.

Modeling and implementation details

The framework in Eqs (1)–(4) is very flexible and must be adapted to the particulars of each

situation. In this section, we discuss specific distributional modeling choices for the two data

sets we analyze here. We also provide implementation details for model estimation and infer-

ence. The Python code implementing the methodology presented in this paper is available at

Zenodo [24] and as a Python package on pyPI https://pypi.org/project/gpcsd/, with full source

code at https://github.com/natalieklein/gpcsd.

CSD prior model. In Eq (4), the noise � is modeled as zero-mean Gaussian, independent

over space and time, with variance σ2 (though extensions to spatially or temporally varying

noise variances are easily included without complicating the computational framework).

Details of the transient mean μ(r) = μ(r)(s0, t) differ depending on the application, so specific

choices will be discussed in context; in the remainder of this section, we will assume μ(r) is

known and that it absorbs the non-stationary activity. The η processes are then modeled as

independent zero-mean Gaussian processes that are stationary in time and space, with realiza-

tions being independent across trials. To complete the model specification, we assume the spa-

tiotemporal covariance for the sum of the slow and fast processes is separable in space and

time. That is, the covariance at (s, t) and (s0, t0) decomposes as

kðs; t; s0; t0Þ ¼ ksðs; s0Þ½kt
ð1Þ
ðt; t0Þ þ kt

ð2Þ
ðt; t0Þ�: ð11Þ

Compared with a non-separable covariance structure, separability greatly reduces the number

of free parameters in the model and yields large savings in computation time. As we show in

our simulation and real-data results, it remains possible to fit spatially distinct sources that

have different profiles in time. While in principle, processes at multiple time scales may not be

identifiable, we distinguish between the slow and fast processes using priors on the lengthscale

parameters.
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One of the advantages of our generative model framework is that various spatial and tem-

poral covariance functions can be used to include different prior beliefs about the underlying

process, including its smoothness in space and time or periodicity; an overview of commonly-

used covariance functions is given in [25], Ch. 4. In our simulations and data analysis, we use

the following covariance function structure. The spatial covariance function is a unit variance

squared exponential, or SE, with one lengthscale for each of the D spatial dimensions:

ksðs; s0Þ ¼ exp �
XD

d¼1

ðsd � s0dÞ
2

2‘
2

s;d

 !

:

The SE covariance function reflects the prior belief that the CSD is smooth over space with the

lengthscale ℓs,d governing the frequency of variation along spatial dimension d. The slow-time-

scale temporal covariance function is also SE,

kt
ð2Þ
ðt; t0Þ ¼ s2

2
exp �

ðt � t0Þ2

2‘
2

t;2

 !

;

with s2
2

representing the marginal variance of the slow-timescale process and ℓt,2 representing

the frequency of variation. The fast-timescale exponential covariance function can capture

rougher, faster variations,

kt
ð1Þ
ðt; t0Þ ¼ s2

1
exp �

jt � t0j
‘t;1

 !

;

and has marginal variance s2
1

and lengthscale ℓt,1. Note that the spatial covariance function has

unit variance to avoid identifiability issues with the marginal temporal variances.

Denoting by Ks,t;s0,t0 the spatiotemporal covariance matrix of the combined fast and slow

CSD processes evaluated for vectors of spatial and temporal locations s, s0, t, and t0, the covari-

ance matrix has the following structure:

Ks;t;s0 ;t0 ¼ Ks
s;s0 � ðK

t
ð1Þt;t0 þ Kt

ð2Þt;t0 Þ:

Exploiting the covariance matrix structure allows faster matrix inversion that would be possi-

ble on a general spatiotemporal covariance matrix [26].

Joint distribution of CSD and LFP. We have now specified the generative model frame-

work for the CSD in addition to forward models relating the CSD to the LFP for one-, two-,

and three-dimensional recordings. Before discussing how the CSD can be predicted using this

model or how to fit the model, we give an overview of what the generative model and forward

model imply about the joint distribution of the latent CSD and the observed LFPs.

Assuming we are working with LFPs measured in one or two spatial dimensions, our gener-

ative model provides the form of g(s, t) describing the spatial and temporal variation of the

CSD in the measured dimensions. The generative CSD model gives g as a Gaussian process

with mean function μ and covariance function ks½kt
ð1Þ
þ kt

ð2Þ
�, which we denote as

g � GPðm; ks½kt
ð1Þ
þ kt

ð2Þ
�Þ:

Much as in the finite-dimensional case, the application of a linear operator to a Gaussian pro-

cess results in another process that is jointly Gaussian with the original process. We write the

bilinear operator corresponding to As, when applied to ks, as As½ks�AT
s , so that the marginal
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noiseless LFP process is given by

� � GPðAs½m�; As½ks�AT
s ½k

t
ð1Þ
þ kt

ð2Þ
�Þ:

See Eq (S.7) in S1 Text

The joint Gaussian process governing the CSD and LFP processes implies that if we have

noisy observations of ~� at a discrete set of spatial locations s and temporal locations t, then the

joint distribution of the vectorized observations, denoted ~ϕs;t, and the vectorized CSD process

observed at an arbitrary set of locations s0 and t0, denoted gs0,t0, is multivariate Gaussian:

gs0;t0

~�s;t

2

4

3

5 � N
μs0;t0

Asμs;t

2

4

3

5;

Ks
s0 ;s0 � Kt

t0;t0 Ks
s0 ;sA

T
s � Kt

t0 ;t

AsK
s
s;s0 � Kt

t;t0 AsK
s
s;sA

T
s � Kt

t;t þ s
2I

2

4

3

5

0

@

1

A; ð12Þ

where Kt
t0 ;t0 ¼ Kt

ð1Þ;t0 ;t0 þ Kt
ð2Þ;t0 ;t0 . Note that Eq (12) refers to the joint distribution of CSD and

LFP processes on a single trial, for notational clarity; to complete the model across trials, we

assume the trials are independently and identically distributed. The linear operator notation

AsK
s
s;sA

T
s indicates application of the linear operator jointly to both inputs of the covariance

function used to compute Ks,s, while AsK
s
s;s0 and Ks

s0 ;sA
T
s indicate application of the linear oper-

ator to only the first or second inputs, respectively. Details of these calculations are given in S1

Text. The joint distribution over discretely observed LFPs and the latent CSD process at any

spatial and temporal coordinates of interest is used for tuning model parameters and for pre-

diction of the CSD.

Estimation of model parameters. Using properties of multivariate Gaussian distribu-

tions, Eq (12) implies that the marginal density of the observations for trial r, defined as

pð~�ðrÞs;t Þ ¼
R
pð~�ðrÞs;t jgs0;t0 Þ pðgs0 ;t0 Þ dgs0 ;t0 ; ð13Þ

is available in closed form:

~�
ðrÞ
s;t � N ðAsμs;t; AsK

s
sA

T
s � Kt

t þ s
2IÞ: ð14Þ

Taking all Nr trials to be independent and identically distributed, we obtain the following log

marginal likelihood function for the model parameters θ ¼ ½R; f‘s;dg
D
d¼1
; ‘t;1; ‘t;2; s

2
1
; s2

2
; s2�:

logLðθÞ ¼ �
Nr

2
log jΣjð Þ �

1

2

XNr

r¼1

ð~�ðrÞs;t Þ
T Σ� 1 ~�ðrÞs;t ; ð15Þ

where Σ � Ks
s;s � Kt

t;t þ s
2I depends implicitly on the covariance hyperparameters

½f‘s;dg
D
d¼1
; ‘t;1; ‘t;2; s

2
1
; s2

2
� and on the forward model hyperparameter R. Note that direct inver-

sion of S is costly and potentially unstable, but can be improved by exploiting the Kronecker

product structure (S1 Text).

To estimate the model parameters, we use the log marginal posterior, which combines the

log marginal likelihood with prior information about the model parameters:

pðθj~�sÞ / pð~�sÞpðθÞ: ð16Þ

While a fully Bayesian approach such as MCMC could be used to approximate the full poste-

rior, we instead use maximum a posteriori (MAP) estimation by maximizing the logarithm of

Eq (16) with respect to θ; in this case, the use of priors can be seen as a form of regularization

on the log marginal likelihood that discourages unrealistic or unidentifiable parameter values.
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In our implementation, we use inverse Gamma priors for the lengthscales in which the prior

hyperparameters are chosen so that the 1% and 99% quantiles will fall at specific values, typi-

cally corresponding to the minimum and maximum observed distances in space or time [27].

We also use a similar inverse Gamma prior for the forward model parameter R, and use broad

half-Normal priors for the marginal variances and the noise variance [27].

Predicting the CSD. Given a fixed mean function and fixed values for model parameters

for the covariance functions and forward model, predictions conditional on the observed val-

ues of ~� can be made for any s0, t0 for either ϕ or g; typically, we will be mostly interested in pre-

dicting the latent CSD described by g. Using properties of multivariate Gaussians, Eq (12)

yields the following distribution for the CSD conditioned on the observed LFPs:

gs0 ;t0 j~ϕs;t � N ðμ�;K�Þ:

The conditional mean, which we use to predict gs0,t0 given ~ϕs;t, is

μ� ¼ μs0 ;t0 þ ðAsK
s
s0 ;s � Kt

t0 ;tÞ½AsK
s
s;sA

T
s � Kt

t;t þ s
2I�� 1
ð~ϕs;t � Asμs;tÞ: ð17Þ

We will use the acronym GPCSD to refer to the process of using the Gaussian process condi-

tional mean to predict the CSD at some set of spatial locations after tuning model parameters.

The structure of the covariance function also permits separate prediction of the fast- and

slow-timescale components. Let a ¼ ½AsK
s
s;sA

T
s � Kt

t;t þ s
2I�� 1
ð~ϕs;t � Asμs;tÞ. Then the condi-

tional mean decomposes as

μ� ¼ μs0;t0 þ ðAsK
s
s0;s � ½K

t
ð1Þt0 ;t þ Kt

ð2Þt0 ;t�Þ a

¼ μs0;t0 þ ðAsK
s
s0;s � Kt

ð1Þt0 ;tÞ aþ ðAsK
s
s0 ;s � Kt

ð2Þt0;tÞ a;

where the second term corresponds to the fast-timescale prediction and the third term corre-

sponds to the slow-timescale prediction.

Performance assessment

We used simulated data both to validate the GPCSD method and to compare it against two

existing CSD methods: traditional CSD (tCSD) and kernel CSD (kCSD). The general idea for

the simulations was to generate ground-truth CSDs, then apply the forward model to obtain

LFPs; as in real data, the LFPs were observed at a discrete set of spatial locations. The perfor-

mance of each method in recovering the CSD from the generated LFPs was assessed by com-

paring the predicted CSD to the ground truth CSD. First, we used a simple dipole-like CSD

configuration to visualize the performance of GPCSD compared to previous CSD methods.

Then, we simulated larger training and test sets from a Gaussian process model to quantify the

relative performance of GPCSD to the other methods. Brief descriptions are given here, but

full details of data generation, parameter estimates, and other settings are described in Meth-

ods and materials.

Performance on simple CSD dipole configuration. The first set of simulation results

demonstrates the ability of the GPCSD method to recover simple dipole-like CSD patterns

even in the presence of noise, and shows qualitative differences between GPCSD, tCSD, and

kCSD. We generated a simple CSD template comprised of two positive and two negative

Gaussian-shaped bumps across one spatial and one temporal dimension, then passed it

through the forward model to obtain a noiseless LFP profile; noisy versions of the LFPs were

also generated by adding white noise. The GPCSD method was applied with the mean function

μ assumed to be zero and standard priors used for all estimated parameters, which included

the forward model parameter R. We note that only a single realization of the spatiotemporal
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LFP was used for estimation, demonstrating that GPCSD can be applied to single-trial data

without repetitions. Traditional CSD was applied directly to the observed LFPs at each time

point, while kCSD was applied with the forward model parameter R set to the ground-truth

value and the other tuning parameters (basis width and noise variance) chosen by cross-valida-

tion over a two-dimensional grid of values using the Python toolbox kCSD for 1D CSD estima-

tion [10, 11]. Because different CSD methods recover the CSD pattern up to some

multiplicative constant, the true CSD and the CSD predictions were rescaled to have maxi-

mum absolute value equal to 1, similar to [28].

Fig 1A and 1B show the ground-truth CSD, noiseless LFP, and CSD predictions for tCSD,

GPCSD, and kCSD, with the CSD predicted from the noiseless LFP in the top row (A) and

from the noisy LFP in the bottom row (B). In both cases, GPCSD reconstructed the ground

truth accurately, though there were some small-amplitude artifacts due to the use of a station-

ary covariance function on a nonstationary ground-truth pattern. Much more severe artifacts

were present in the tCSD predictions, even in the noiseless case, and the performance of both

tCSD and kCSD clearly degraded when white noise was added to the LFP while GPCSD recov-

ered the pattern free of noise.

Quantifying performance on repeated trials. To quantify the accuracy of GPCSD rela-

tive to the other methods, we generated multiple realizations of spatially one-dimensional

CSDs from zero-mean spatiotemporal Gaussian process models, then passed these CSDs

through the forward model to obtain LFPs. The generated LFP trials were split into training

and testing sets, each of size 50; the training set was used for selecting GPCSD and kCSD

model parameters and the test set was used to evaluate the performance of each method in

reconstructing the true CSD. We again used the Python toolbox kCSD for 1D CSD estimation

[10, 11]. Selected kCSD and GPCSD parameters are listed in Methods and materials. Because

tCSD can only estimate the CSD at the interior electrode positions, we compared methods

based on CSD predictions at these locations only. For each test set trial, we computed the

mean squared error (MSE) across all predicted space-time points for each trial. The MSEs

averaged across trials were 7.38 × 10−5, 4.64 × 10−5, and 0.046 for GPCSD, kCSD, and tCSD,

respectively. Paired t-tests indicated that GPCSD performed significantly better than tCSD

Fig 1. Comparing GPCSD to other methods on simulated CSD dipole. (A) From left to right, ground-truth

noiseless LFP, ground-truth CSD pattern, traditional CSD (tCSD) prediction, GPCSD prediction, and kernel CSD

(kCSD) prediction. (B) Same as top row, but with noise added to the ground-truth LFP before CSD prediction.

GPCSD accurately recovers the pattern compared to tCSD, and appears more robust to LFP noise than either tCSD or

kCSD.

https://doi.org/10.1371/journal.pcbi.1009601.g001
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(p<< 0.0001) but there was weaker evidence that kCSD outperformed GPCSD (p = 0.0003).

We note that if the GPCSD hyperparameters were fixed to their true values, the paired t-test

for the difference in mean MSE between kCSD and GPCSD failed to detect a difference

(t = 0.071, p = 0.94), suggesting that in this simulation, kCSD and GPCSD performed very sim-

ilarly, but that results may depend on GPCSD hyperparameter optimization. In S1 Fig, we also

show that the spatial distribution of error was different for kCSD and GPCSD, with kCSD

tending to have higher errors at the edge relative to GPCSD and GPCSD tending to have

higher errors in the center of the array than kCSD. Future work could explore this issue fur-

ther, similar to [29]. Additionally, we show in S1 Text section “Additional simulation results”

that GPCSD performed well in a similar simulation study but with the Gaussian process

model mis-specified relative to the generating model.

Application to real data

We analyzed LFP recordings from linear probes in primate auditory cortex and Neuropixels

probes in the mouse visual system. In both sets of data we show how oscillatory activity within

cortical layers can be coupled across populations of neurons. For these analyses we used phase

locking value (PLV) to assess coupling of two phase angles and, following the development

and methods in [30], what we call partial PLV to assess the coupling of two angles after condi-

tioning on all other phase angles. As described in [30], Sections 4.1 and 4.4, PLV is an angular

analogue of correlation and partial PLV is an analogue of partial correlation. Torus graphs

describe connectivity patterns across multiple angular random variables analogously to the

way Gaussian graphical models describe connectivity among real-valued random variables.

We also used the auditory data to illustrate the way GPCSDs can reveal coupling of transient

activity across populations.

Application to auditory LFPs from laminar probes. The auditory LFP data was collected

from two simultaneously recording laminar probes inserted 3mm apart in primate primary

auditory cortex (A1). The first probe was located centrally in A1 and the second probe was

located more medially and closer to the boundary of A1 with the medio-lateral belt, so we will

refer to the probes as the lateral and medial probes, respectively. The medial probe had lower

response threshold, shorter multi-unit activity (MUA) latencies, and overall stronger current

sinks and sources than the lateral probe. The recordings contained 2,509 trials in response to a

collection of 11 pure tones with varying inter-stimulus intervals (ISIs) and fundamental fre-

quencies on each trial; see Methods and materials for a full description of the data. For each

probe, we estimated putative cortical depth based on examination of the LFP and spiking activ-

ity. For interpretation of the results, each electrode contact was assigned to one of three depth

levels (superficial, medium, or deep). First, we investigated post-stimulus spectral power and

phase coupling based on GPCSD predictions, assuming a zero-mean Gaussian process, from

the steady LFP activity (activity during each trial but with the average evoked LFP response

subtracted out prior to GPCSD modeling). Second, to study correlations in transient activity,

we estimated the CSD evoked response by first predicting the CSD during the trial using a

fixed GPCSD model with hyperparameters estimated using the baseline pre-trial data, then

taking the average across trials to obtain an evoked CSD pattern. We used spatially and tempo-

rally localized CSD components of the evoked response to detect correlated trial-to-trial varia-

tion in evoked response timing.

Auditory steady activity. To analyze steady activity, we first subtracted the LFP average

evoked response (mean across trials) from each trial, then used the baseline period (100 ms

before tone onset until tone onset) to estimate GPCSD model parameters for a zero-mean
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process separately for each probe. We then predicted both the CSD and noiseless LFP at the

original electrode positions and at time points from tone onset to 500ms after tone onset.

We computed a periodogram for each trial separately for the fast and slow timescales, then

averaged the resulting periodograms across trials. Fig 2A shows the trial-averaged periodo-

grams for each timescale (solid: fast timescale, dashed: slow timescale) for both the CSD and

LFP at six different depths along the lateral probe (results were similar for the medial probe).

Dotted horizontal lines indicate boundaries between superficial, medium, and deep layers. For

the fast timescale processes, the CSD and LFP periodograms were similar, but there were dis-

cernible differences, with the CSD periodograms exhibiting greater variation across depths.

There were clear peaks around 10 Hz at several depths, with CSD seeming to be relatively

stronger in the middle depth, around 1300 microns, and again in a deeper layer, around 1900

microns. Fig 2B displays power (relative to maximum) for the 10Hz frequency band for CSD

(red) and LFP (blue). Again, while the CSD and LFP 10 Hz power plots remain similar, the dis-

tinctions across depths are more clearly visible in the CSD plot. Fig 2C shows example time

courses for a single trial and a single electrode in the middle cortical layers for both CSD and

LFP, decomposed into slow and fast components. While the temporal properties of the slow

Fig 2. Spatial, spectral, and temporal properties of LFP and GPCSD. (A) Periodograms (averaged across trials)

showing power spectra at six cortical depths along the lateral probe for CSD (left) and LFP (right), computed for

estimated fast-timescale processes (solid) and slow-timescale processes (dashed). Horizontal grey dotted lines indicate

approximate boundaries between superficial, medium, and deep cortical layers. (B) Relative 10Hz power for CSD (red)

and LFP (blue) as a function of cortical depth. (C) Time courses for a single trial for an electrode in the middle cortical

layers, broken into slow, fast, and total, for CSD (left) and LFP (right). While the temporal components were similar in

LFP and CSD, they did exhibit differences due to the different spatial properties of the CSD.

https://doi.org/10.1371/journal.pcbi.1009601.g002
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and fast components appear similar in both CSD and LFP, there are some differences in the

values due to the spatial deconvolution of the CSD.

Next, we assessed phase coupling for oscillations centered at 10 Hz by using a bandpass fil-

ter centered at 10 Hz along with the Hilbert transform to extract instantaneous phases. In both

the CSD and LFP, the mean pairwise PLV across all electrode locations (both within-probes

and between-probes) appeared to increase monotonically from before the stimulus until 100

ms after stimulus, then remained high and nearly constant until about 300 ms after stimulus,

so we selected a time point during the later period (250 ms after stimulus) to investigate phase

coupling. We used torus graphs to construct a multivariate phase coupling graph describing

connectivity among all 48 nodes (24 from each probe). The overall test of the null hypothesis

of no edges between the two probes was significant for both the LFP and CSD phases

(p< 0.0001). Fig 3A shows connectivity matrices for within- and between-probe connections,

with edges colored by edgewise log10 p-value. Horizontal dashed lines indicate the separation

between superficial, medium, and deep cortical layers. Within-probe, most connections

tended to be the near the diagonal, particularly for the LFP, where there was strong evidence

for edges mostly along the diagonal. By inspection of the lower right quadrant of Fig 3A, we

also note that the medial probe CSD indicates a large number of strong connections from its

deep to its superficial layers. Across-probes, the torus graph based on LFP had very few edges,

while CSD torus graph had many edges, with a noticeable spatial structure to the edge pattern.

Fig 3B shows the between-probe connectivity matrix in graphical form, with edges shown for

edgewise p< 0.01 (Bonferroni corrected for the number of edges tested). Most connections

between probes occurred between the same depths on each probe, but there was also very

strong evidence for phase locking between the lateral probe deep layers and the medial probe

superficial layers. While this result, taken in the context of deep-to-superficial edges within the

medial probe, may suggest cross-layer connections between the medial and lateral areas, we

note that the underdetermined nature of CSD estimation implies that the activity assigned to

the deepest layers could potentially be coming from a deeper brain structure. Fig 3C shows a

simplified version of the graph, taking only the center electrode in each depth range as the

Fig 3. Phase coupling graphs in auditory CSD and LFP. (A) Results of edgewise torus graph phase coupling

inference both within- and across-probe for CSD (left) and LFP (right); depth along each probe is increasing left to

right and top to bottom, and dashed lines indicate approximate boundaries between superficial, medium, and deep

cortical layers. Colored entries correspond to edges, with color representing the log10 of the p-value. Within-probe, the

LFP had edges primarily along the diagonal, while the CSD contained more edges, including some connections across

superficial, medium, and deep layers. Between probes, the CSD torus graph contained a noticeable set of edges,

primarily along the diagonal, while the LFP torus graph had very few edges between probes. (B) Graph showing

significant between-probe CSD torus graph edges, with lateral probe nodes ordered by depth in the left column and

medial probe nodes ordered by depth in the right column; dashed lines indicate approximate boundaries between

superficial, medium, and deep cortical layers. Many of the cross-probe connections occurred near the same depth on

both probes, though there appear to be some edges connecting lateral probe deep layers to medial probe superficial

layers. (C) Simplified graph between superficial (S), medium (M), and deep (D) cortical layers. Edge color corresponds

to a 95% bootstrap confidence interval lower bound for the partial PLV value (reflecting coupling strength, which falls

between 0 and 1). The strongest cross-probe connection was between the deep layers of the lateral probe and the

superficial layers of the medial probe.

https://doi.org/10.1371/journal.pcbi.1009601.g003
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superficial (S), medium (M), and deep (D) nodes. In this graph, the edges are colored by the

lower bound of a 95% bootstrap confidence interval on the partial PLV value, a statistic that

falls between 0 and 1 and, much like PLV, quantifies the strength of the phase coupling. The

strongest edge connected lateral probe deep layers to medial probe superficial layers.

Auditory transient activity. In the steady activity analysis, we assumed that a single evoked

response (estimated by the mean across trials) was shared across all trials and that any residual

variation was not part of an evoked response. However, it is more likely that the transient

evoked response varies from trial to trial, and this variation could indicate a different type of

neural communication than the steady activity. While previous work has demonstrated that

trial-to-trial time lags in LFPs can be recovered on a coarse spatial scale based on steady state

recordings [31], here we investigate trial-to-trial time lag variation in transient, nonstationary

activity resolved to a fine spatial scale through the estimated CSD. With the steady activity

GPCSD model parameters fixed to the values estimated from the pre-stimulus baseline data,

we first estimated a CSD evoked response function shared across all trials, then separated it

into multiple CSD evoked components to investigate trial-to-trial timing and variation of spe-

cific evoked components localized in space and time.

To estimate the latent CSD mean function shared across all trials, we first estimated the

CSD timecourses on each trial using the GPCSD model with parameters estimated from the

baseline period, then took the mean across trials to obtain an evoked CSD. To assess trial-to-

trial variation, we separated the fitted CSD mean function into multiple CSD components,

non-overlapping in space and time, by applying image segmentation techniques (see Methods

and materials). The center of mass of the absolute value of each component was used as a

marker of the peak time and spatial location of the component. Fig 4 shows the estimated

Fig 4. Estimated CSD evoked response components. Left to right: Trial-averaged multi-unit activity (MUA) relative

to baseline, estimated CSD evoked response, components returned by the image segmentation (colors correspond to

arbitrary cluster number). Top row corresponds to the lateral probe and bottom row to the medial probe. The evoked

responses for both probes have similar features but slightly different spatial and temporal properties. In particular, both

the MUA and CSD evoked responses indicate that the evoked response begins earlier in the medial probe than the

lateral probe.

https://doi.org/10.1371/journal.pcbi.1009601.g004
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evoked response function for each probe along with the components identified by the segmen-

tation algorithm. The evoked responses and components were similar in time and space

between the two probes, but there were some differences in the spatial and temporal profiles. It

appears that the medial probe evoked responses started slightly earlier than the lateral probe

responses, which is also consistent with the trial-averaged multi-unit spiking activity. Both

probes exhibited a current inversion near a depth of 1000 microns that appeared to persist

even as the activity fluctuated between positive and negative current over time.

Given the CSD evoked components, we then estimated a per-trial time shift for each com-

ponent by maximizing the marginal likelihood of the data for each trial conditional on the esti-

mated component shapes and estimated ongoing activity Gaussian process covariance

function. The estimated per-trial shifts for all components in both probes had across-trial

means at 0 ms and across-trial standard deviations between 1ms and 3ms, depending on the

component. To determine components for which the shifts were related across trials, we com-

puted correlations (across trials) between the point estimates of the shifts of each component

from both of the probes. Fig 5A shows the components for the lateral and medial probes, with

edges connecting the centers of mass of two components when there was significant correla-

tion in the per-component shifts (p< 0.001, corrected; based on Fisher z-transform on the

correlation coefficient). Within-probe, it appears that many of the early evoked components

(occurring before 60 ms) had correlated time shifts, indicating that time variation in early

evoked components was related across trials. Across probes, the component time shifts for

most of the early evoked components were related to components near the same depth along

the probe, though there were some connections from early lateral probe components to later

medial probe components. To quantify lagged relationships between probes in the earliest

evoked responses (occurring before 40ms), we display kernel density estimates of the across-

trial peak times for the responses in each probe in Fig 5B along with dashed horizontal lines

indicating depth boundaries (separating superficial, medium, and deep layers). This figure

Fig 5. Per-trial shifts and correlations in CSD evoked response components. (A) Spatiotemporal plot of evoked

response components for the lateral probe (left) and the medial probe (right), colored to show separate components.

Black circles represent centers of mass of each component, and an edge between two black circles indicates significant

correlation in the per-trial shifts of the two components (darker, thicker edges indicate larger correlation values).

Within each probe, the pattern of connections suggests that many components of the early evoked response (occurring

before 60 ms) have related time shifts on a trial-to-trial basis; the lateral probe also has correlated time shifts in the later

evoked components. Between probes, there are connections between early evoked components at similar depths, with

some evidence of shift correlations between lateral probe early components and medial probe later components. (B)

Kernel density estimates of the peak times, across trials, of the evoked components in each probe with dashed lines

marking putative cortical depth boundaries (separating superficial, medium, and deep layers). The medial probe

responses generally precede the lateral probe responses across depths (confirmed by pairwise testing on the difference

in means, p< 0.001 corrected). In addition, the ordering of responses across depths appears similar in each probe,

with the earliest responses occurring in the superficial and deep layers, followed by the medium depth layers.

https://doi.org/10.1371/journal.pcbi.1009601.g005
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indicates that across depth, medial probe evoked responses tended to precede lateral probe

evoked responses; the differences in the mean peak times for evoked components at similar

depths were also significantly different from zero (p< 0.001 corrected). In addition, it appears

that in both probes the superficial and deep layers had earlier peak times than the medium lay-

ers. The earliest responses in A1 are typically observed in thalamo-recipient layers 4 and deep

3. It appears these responses are somewhat identified in the earliest responses occurring just

above the dashed line separating superficial and medium layers.

Application to visual LFPs from Neuropixels probes. The visual cortex data set was

obtained from an experiment in which six Neuropixels probes were simultaneously inserted

into the left hemisphere of a mouse brain [13]. The probes were targeted to the retinotopic

centers of primary visual cortex (V1) and five higher-order visual areas (AM, PM, LM, AL,

and RL), and extended down into portions of the hippocampus, thalamus, and midbrain. For

each probe, the lower boundary of cortex was identified based on a decrease in the density of

detected units approximately 800 μm below the brain surface. We analyzed the LFP data from

150 trials in which a 250 ms flash stimulus was presented to the right visual hemifield. In this

data set, we were interested in investigating relationships between V1 and higher-order visual

regions [32]; as an example, we analyze phase connectivity between V1 and LM. We first

applied the GPCSD method (assuming a zero-mean Gaussian process) to the cortical elec-

trodes from each of the probes to infer the latent CSDs corresponding to steady activity (with

the average evoked response subtracted from the LFPs), then used torus graphs [30] to deter-

mine phase connectivity. We chose to predict the CSD at locations along the center of the

probe that would correspond to the center of each putative cortical layer, depthwise. The Neu-

ropixels probe recording locations, putative cortical visual layer boundaries, and CSD predic-

tion locations are shown in Fig 6A.

For phase coupling analysis, we selected two frequency bands of interest, theta band (cen-

tered at 5 Hz) and beta band (centered at 22 Hz). Similar to the torus graph analysis of steady

auditory potentials and CSDs, the predicted CSDs were filtered using Butterworth bandpass

filters with plus or minus 2 Hz width and the instantaneous phases were extracted for each

trial using the Hilbert transform. We chose two time points of interest, 0 ms (stimulus onset)

Fig 6. Phase coupling in Neuropixels data. (A) Neuropixels probe LFP electrode locations (circles) for V1 (left) and

LM (right), colored by putative region (VIS: visual cortex, CA: Cornu Ammonis, DG: dentate gyrus, TH: thalamus,

N-L: no label). Putative cortical layer boundaries are overlaid on the red visual area electrodes with layer numbers

indicated along the right side. Along the center of the probe are the locations we chose for CSD estimation (yellow

diamonds), with one location centered in each cortical layer. (B) Torus graph phase coupling graphs based on theta

oscillations at two time points relative to the stimulus. Edges shown for torus graph p< 0.0001. Edge color indicates

the lower bound of a 95% bootstrap confidence interval on the partial PLV value. It appears the strongest edges were

between V1 and LM at similar cortical depths, with some evidence that edges were stronger at 70ms than at 0ms. (C)

Similar to B, but for beta oscillations; dashed edges indicate edges with weaker evidence (torus graph p< 0.001).

Similar to theta band, the connection patterns were mostly across similar layers but appeared slightly stronger at 70ms

compared to 0ms.

https://doi.org/10.1371/journal.pcbi.1009601.g006
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and 70 ms (during the stimulus) to estimate torus graphs. Fig 6B and 6C show the torus graph

results, with edges shown for edgewise p< 0.0001 (solid) and p< 0.001 (dashed). To quantify

edge strength, we computed the partial PLV statistic, which depends on the torus graph

parameters and, like PLV, falls in the range [0, 1]. Furthermore, we recomputed the partial

PLV statistic based on fitted torus graphs across 1,000 bootstrap resamplings of the trials to

measure uncertainty in the partial PLV statistic. The edges in Fig 6B and 6C are colored by the

lower bound of the 95% bootstrap confidence interval. In both frequency bands, the primary

connectivity between V1 and LM was between layers at similar depths (e.g., layer 5 to layer 5).

For both the theta band (Fig 6B) and beta band (Fig 6C), the connections were similar across

time points but appeared stronger after stimulus compared to stimulus onset [33].

Discussion

We developed the GPCSD framework to improve not only spatial localization of currents, but

also assessments of cross-population coupling on a trial-by-trial basis. LFPs result from the

mixing of signals propagated from many current sources. Estimation with GPCSDs decon-

volves these current source signals, rendering spatiotemporal processes that are more sensitive

to analysis than the original LFPs. This is apparent in Figs 2B and 3A, where analysis of CSD,

but not LFP, reveals fluctuations in alpha power across cortical layers and, then, layer-to-layer

phase coupling across populations recorded by the two probes. In addition, Fig 5 displays

highly statistically significant correlations, across particular sources, in their trial-specific tim-

ing of transient evoked responses, with consistent lead-lag relationships. It is not possible to

see this kind of trial-by-trial evoked-response connectivity using LFPs directly.

In several places we have compared and contrasted the GPCSD framework with that of

kCSD. In statistical parlance the kernel approach, in this setting, amounts to regularized non-

parametric regression, which is well-established and reasonable. We find GPCSD to be simple

and powerful, but we do not mean to imply that it is uniquely compelling. Rather, in the set-

tings we have described, it can capture important features of the data and, because it is both

intuitive and flexible, others could develop it further, or tailor it to their own specific contexts,

in fairly obvious ways. Computation time would be greatly reduced, and occasional difficulties

in optimization may be mostly eliminated, if the Gaussian process parameters and spatial

extent radius R were pre-specified. This could be based on other, related data, or it could be

based on improved methods for initialization. The benefit comes from computing the integrals

in Eq (15) only once (as in kCSD) rather than iteratively, when predicting steady state activity.

We have also modeled spontaneous activity as the sum of two processes labeled “slow” and

“fast.” This came from our observation that a sum of two such processes could often reproduce

the spectra of spontaneous LFPs. The decomposition into slow and fast is, of course, supposed

to be easy to comprehend, and it turns out to be adequate for many purposes. It does provide a

nice interpretation, but, like so many other data analytic procedures, the two-process decom-

position contains some arbitrariness and we do not mean to reify it. The extent to which it cor-

responds to reality is an empirical question that will rarely be settled by data of this type. We

have found cases where local maxima of the likelihood function do not nicely separate slow

and fast components. In our implementation, we sought to address this problem with the stan-

dard solution of using multiple random initial values and retaining only the solution with the

highest likelihood. Better methods of initialization could, again, help. In addition, future work

could examine specific biophysical models that generate LFPs, thereby establishing ground

truth, and the ability of GPCSD to correctly identify biologically meaningful characteristics of

current sources. Finally, future implementations might also enforce charge conservation (a

balance of current sources and sinks) or allow spatially-specific temporal covariance structure
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to replace the separable spatiotemporal kernel we have used here. We hope to investigate these

ideas.

Eqs (1) and (2) take the form of a standard “signal plus noise” statistical model: CSD is the

unobserved signal to which noise is added in producing observed LFPs. Eq (2) models the

CSD in a familiar additive form, while Eq (4) takes advantage of the linearity of the forward

operator. This linearity, together with the Gaussian process assumptions, make GPCSD both

flexible and tractable. Our analysis of simulated and real data was intended to display the kinds

of results the framework can enable. It is possible that alternative formulations, with variations

on this theme, could do even better. We hope the research reported here will lead to better

CSD evaluations and new findings involving cross-population functional connectivity.

Methods and materials

Ethics statement

The treatment of the monkeys was in accordance with the guidelines set by the U.S. Depart-

ment of Health and Human Services (NIH) for the care and use of laboratory animals, and all

methods were approved by the Institutional Animal Care and Use Committee at the Univer-

sity of Pittsburgh.

Default GPCSD priors and optimization

In this section, we briefly describe how the default GPCSD priors are set up; unless specified

otherwise below, the default priors and model settings were used for all applications to real

and simulated data.

The default prior for the one-dimensional forward model parameter R is inverse Gamma

with 1% and 99% quantiles set to the minimum distance between electrodes and half the maxi-

mum distance between electrodes, respectively. The parameter is also by default bounded to

fall between half the minimum distance between electrodes and 0.8 times the maximum dis-

tance between electrodes, as we found extremely small or large R could cause numerical issues

and are unlikely to be correspond to reasonable descriptions of the data.

The default spatial covariance is squared exponential (SE) with lengthscale prior set as

inverse Gamma with 1% and 99% quantiles set to 1.2 times the minimum difference between

electrode locations and 0.8 the maximum difference between electrode locations, respectively.

During optimization, the lengthscale is bounded to fall between half the minimum distance

between electrodes and the maximal distance between electrodes, to avoid lengthscales outside

the range that the data can meaningfully inform. The spatial integrals needed for the spatial

covariance functions are by default calculated using Gauss-Legendre quadrature with bounds

equal to the edges of the electrode spatial location(s) and a default of 100 integration points in

each dimension.

The default temporal covariance is a sum of SE and exponential terms. The SE lengthscale

is given an inverse Gamma prior with 1% and 99% quantiles set to 1.2 times the minimum dif-

ference between time points and 0.8 times the maximum difference between time points,

respectively; the variable is bounded during optimization similarly to the spatial lengthscale (to

prevent values smaller than the data spacing or larger than the entire span of time points). The

exponential lengthscale is by default given the same prior as the squared exponential, but more

informative priors can be used to encourage each process toward a particular lengthscale. The

default prior for the variances is half-Normal with standard deviation equal to 2, which is

intended to be highly uninformative as long as the LFP data is scaled to approximately unit

variance before estimation. Similarly, the LFP white noise variance is given a half-Normal

prior with standard deviation 0.5.
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Optimization of hyperparameters is accomplished using the L-BFGS-B algorithm as imple-

mented in scipy [34] with default optimizer settings as suggested in [35]. To obtain the Jaco-

bian of the objective function, we used automatic differentiation via the HIPS/autograd

Python package https://github.com/HIPS/autograd. For robust optimization, the code by

default repeats each optimization multiple times with different starting values for the hyper-

parameters randomly sampled from their prior distributions, and the set of hyperparameters

resulting in the largest marginal log likelihood is retained. Numerical results shown in the

paper were produced on a Macintosh personal computer with 2.4 GHz 8-core Intel Core i9

processors and 32 GB RAM.

kCSD settings

In our comparisons of GPCSD to 1D kCSD, we used the kCSD-python package https://github.

com/Neuroinflab/kCSD-python/releases/tag/v2.0 [10, 11]. We used the cross-validation capa-

bility to tune the hyperparameters, and when possible, provided either the ground truth R cyl-

inder radius value or used the R estimated by GPCSD (as kCSD does not provide an avenue

for estimating this value). For the 1D simulation studies, we used the default number (1000)

and spacing of Gaussian basis functions, allowing the basis function width to vary from 100 to

800 (15 total values) and the noise/regularization lambda value was varied between 10−15 and

1, with 25 total values (logarithmically spaced). In each application, we verified that the

selected parameters were not on the boundary of the parameter grid.

Simulation details

The simple CSD template was set up on a spatial grid spanning a spatial dimension with mini-

mum value 0 microns and maximum value 2400 microns and a temporal dimension with 50

integer-valued time points. The CSD template was made up of two positive-valued unit magni-

tude Gaussian-shaped bumps (means: 200 and 1600 in spatial dimension, 25 and 30 in tempo-

ral dimension; SDs: 150 in spatial dimension, 3 and 4 in temporal dimension) and two

negative-valued unit magnitude Gaussian-shaped bumps (means: 800 and 2200 in spatial

dimension, 25 and 30 in temporal dimension; SDs: 150 in spatial dimension, 3 and 4 in tempo-

ral dimension). The CSD template, evaluated at 50 time points and 2400 spatial locations, was

passed through the one-dimensional forward model with parameter R = 150 (using the trape-

zoid rule to compute the integral) to generate a noiseless LFP observed at 24 spatial locations

between 0 and 2400 microns across the 50 time points. The white noise variance was σ2 =

7 × 10−5. To fit GPCSD to the simple template, the default priors were used with 10 random

starting values drawn from the prior (where the model with the best log likelihood was

retained). We found that in both the noiseless and white noise cases, the GPCSD models

selected similar cylinder radius values (R = 166, R = 160), and similar spatial covariance

lengthscales (219 and 220), temporal lengthscales (SE: 4.4 and 4.5; exponential: 17.5 and 17.5),

and temporal variances (SE: 1.6 × 10−6 and 1.8 × 10−6; exponential near zero in both cases). In

the noiseless case, the white noise variance was near zero, while in the noisy case it was esti-

mated as 6.7 × 10−5, which was very close to the true value. The kCSD selected basis widths

were 550 in both the noiseless and noisy cases; the corresponding lambdas were 0.0002 and

0.004, respectively.

For the multi-trial simulation, kCSD used cross-validation in the same manner as the sim-

ple template simulation (with R set to the ground truth value), and because the kCSD method

applies independently to each time step and does not explicitly make use of multiple trials as

independent realizations, trials were concatenated before performing cross-validation. For

computational reasons, only the first five trials were used for kCSD estimation, as computation
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time increased greatly if all trials were used. The selected basis width was 164.3 and the selected

lambda was 3 × 10−15.

GPCSD used MAP estimation with the default prior settings and ten restarts to the optimi-

zation. The estimated parameter values did not exactly match the generating parameters, so

that GPCSD exhibited predictive performance indistinguishable from kCSD when the true

parameters were used but was slightly worse when the estimated parameters were used. The

null hypothesis that the mean MSEs across trials were the same for each pair of methods

(GPCSD and tCSD, GPCSD and kCSD) were tested using paired t-tests.

Auditory LFP data details

The auditory LFP recordings consist of LFPs from two 24-electrode linear probes (V-Probes

from Plexon) inserted in primary auditory cortex of a macaque monkey. The probes were

arranged parallel to the iso-frequency bands in primary auditory cortex (A1), and had similar

tonal response fields with preferred frequencies close to 1000 Hz. The first probe (which we

call the lateral probe) was located centrally in A1, while the second probe (which we call the

medial probe) was located more medially and closer to the boundary of A1 with the medio-lat-

eral belt. The medial probe had lower response threshold, shorter MUA latencies, and overall

stronger current sinks and sources than the lateral probe. The spacing between electrodes on

each probe was 100 microns so that the probe spanned 2,300 microns. The sampling rate of

the LFPs was 1000 Hz and there were at least 2000 trials (stimulus presentations) per session.

Stimuli consisted of short tones at different frequencies and with different latencies between

tones across the session. The tones were 80 dB and lasted 55ms, with 11 different frequencies

spaced linearly in log2 space (starting at 257 Hz and increasing by 0.32740 octaves each step).

The times since the last tone onset (the inter-stimulus intervals, or ISIs) ranged between 0.2

and 18.0 seconds and followed a box-car distribution in log2 space. The particular neural pop-

ulations being recorded in each session will be tuned to respond to particular preferred fre-

quencies, and trials with longer ISIs tend to elicit larger responses [36, 37], though the

mechanisms underlying this well-known variation in response amplitude with ISI are cur-

rently still being debated.

The auditory paradigm was designed to test whether neural responses in auditory cortex

are modulated by whether or not the time or identity of a tone can be anticipated. To that aim,

the paradigm alternated between blocks of trials in which the identity and ISIs between tones

was fixed for long sequences, and blocks of trials in which they were not. Detailed analyses that

are not presented here have revealed subtle effects of predictability on neural responses in

auditory cortex. However, because the effect of predictability is small, this analysis includes all

trials from the predictable as well as the unpredictable blocks. We focused on a single session

in a single animal in which simultaneous recordings were made using two probes, spaced

3mm apart and with similar frequency tuning, so that relationships between the probes could

be studied. Trials containing large artifacts were not used in the analysis; in particular, trials in

which the difference between the voltage at channels 1 and 24 exceeded 500 microvolts in

absolute value in either probe were removed, resulting in 2,509 trials for the two-probe simul-

taneous recording. The auditory data analyzed in this paper is available [38]. While in principle

the conductivity scalar B of Eq (5) should be measured experimentally, in this work, we focused

on recovering the spatiotemporal pattern of the CSDs, so we used B = 1 and treated all CSD

estimates as having arbitrary units. Multi-unit activity was estimated as the envelope of power

in the frequency range between 500 and 3000 Hz. To that aim, the data was first band-pass fil-

tered in this frequency range, rectified, and then filtered with a 100 Hz low-pass.
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Auditory analysis details

The spatial covariance hyperparameters used the default GPCSD priors, but the extent of the

integral was extended outside the electrode array by 200 microns in each direction to account

for the fact that the LFPs may contain contributions from outside the electrodes; we found this

to perform better in practice on real data though it was not necessary in simulations. The tem-

poral SE lengthscale prior had quantiles at 30ms and 100ms and the temporal exponential

lengthscale prior had quantiles at 1ms and 20ms, to encourage the SE component to extract

slow-timescale variation and the exponential component to extract fast-timescale variation.

The forward model parameter R and the signal and noise variances had the default GPCSD

priors.

Based on the periodograms, we selected a frequency range with a dominant oscillation,

then filtered each channel and trial using a fourth-order Butterworth bandpass filter centered

at the frequency of interest plus or minus 2 Hz; the filter was applied forward and backward to

prevent phase distortion, then the Hilbert transform of the filtered signals was used to extract

instantaneous phases at each time point. Based on timecourses of Phase Locking Value [39]

aggregated across all possible between- and within-probe electrode pairs, we selected a time

point of interest to further investigate phase coupling. Phase coupling at this time point was

assessed using torus graphs [30] on all between- and within-probe electrode pairs. We first

performed model selection to determine whether a torus graph submodel would be preferable

to the full torus graph model, then tested whether there appeared to be any across-probe con-

nections (null hypothesis of no connections) using a stringent alpha level of 0.0001. We fol-

lowed this test with edgewise tests for all within- and between- connections (edgewise alpha

level of 0.01 with Bonferroni correction for all edges tested).

To segment the CSD evoked response, local maxima were detected in the absolute value of

the CSD evoked response, then an image segmentation watershed algorithm [40] was applied

to find clusters around each maxima; maxima that were above or below the range of electrode

locations were excluded. Space-time points not belonging to any component were kept the

same for each trial and had no amplitude or shift variation.

To discourage physiologically implausible shift values, per-component shift values were

restricted to no more than 20 ms in magnitude. Observed correlations between the point esti-

mates of the shifts of different components, computed across trials, were transformed using

Fisher’s z transform, then p-values were obtained using Normal quantiles; significant correla-

tions were determined using an alpha level of 0.001 with Bonferroni correction for all pairs

tested. Lagged relationships between the seven earliest evoked components in each probe were

established using paired t-tests using an alpha level of 0.001 with Bonferroni correction for all

pairs tested.

Neuropixels LFP data details

The data were collected using Neuropixels probes, following the procedures described in [13].

The data is part of the Allen Brain Observatory Neuropixels dataset (copyright 2019 Allen

Institute for Brain Science, available from https://portal.brain-map.org/explore/circuits/visual-

coding-neuropixels). We analyzed one experiment in which six Neuropixels probes were

simultaneously inserted through visual cortex, hippocampus, thalamus, and midbrain. On

each probe, LFP data was recorded from up to 374 electrode locations in a checkerboard layout

spanning two spatial dimensions: four columns spaced 16 microns apart, with 20 micron spac-

ing between rows. LFP data was acquired at 2500 Hz after applying a 1000 Hz low-pass filter.

Boundaries between regions were manually identified based on decreases in unit density as

well as physiological signatures (such as elevated theta-band activity in the hippocampus). LFP
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electrodes without region labels were not included in the analysis. The visual stimulus con-

sisted of 150 trials of simple black or white full-field flashes on a mean-luminance gray back-

ground. Spike trains and LFP data for this mouse (subject ID: 730760270; session ID:

755434585) can be accessed on Zenodo [41] or as part of the Allen Brain Observatory AWS

Public Data Set (https://registry.opendata.aws/allen-brain-observatory/).
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