
1Scientific Reports | 5:12866 | DOI: 10.1038/srep12866

www.nature.com/scientificreports

The Use of Hebbian Cell
Assemblies for Nonlinear
Computation
Christian Tetzlaff1,2,*, Sakyasingha Dasgupta1,2,†, Tomas Kulvicius1,2,‡ & Florentin Wörgötter1,2

When learning a complex task our nervous system self-organizes large groups of neurons into
coherent dynamic activity patterns. During this, a network with multiple, simultaneously active, and
computationally powerful cell assemblies is created. How such ordered structures are formed while
preserving a rich diversity of neural dynamics needed for computation is still unknown. Here we
show that the combination of synaptic plasticity with the slower process of synaptic scaling achieves
(i) the formation of cell assemblies and (ii) enhances the diversity of neural dynamics facilitating the
learning of complex calculations. Due to synaptic scaling the dynamics of different cell assemblies
do not interfere with each other. As a consequence, this type of self-organization allows executing
a difficult, six degrees of freedom, manipulation task with a robot where assemblies need to learn
computing complex non-linear transforms and – for execution – must cooperate with each other
without interference. This mechanism, thus, permits the self-organization of computationally
powerful sub-structures in dynamic networks for behavior control.

When we are performing a complex skill, like neatly stacking two blocks, our motor system needs to
accurately control position and orientation of the hand, which took us quite some time to learn when
we were children. During this process, we had learned different movements and how to combine them
to more complex ones and we had formed memory representations for these movements, too. These rep-
resentations are considered to be expressed by structure and activity of cell assemblies1, which are created
by interactions of several plasticity mechanisms2–4 during learning. Several studies support this idea and
suggest that the coordinated activity of cell assemblies results in motor fine-control5–7. During any motor
task several thousands of neurons in many cell assemblies are active and perform complex non-linear
calculations to control the different degrees of freedom of the involved limbs. Adults master a large num-
ber of motor skills requiring a multitude of different cell assemblies most – if not all – of which have been
formed by learning. To achieve such mastery, our brain has to solve a very complex problem. It needs to
create a large number of assemblies, which are computationally powerful, by using only a relatively small
quantity of neurons for any of them. Furthermore, assemblies have to coexist without catastrophically
interfering with each other. How this can be done based on unsupervised plasticity mechanisms is still
widely unknown. Understanding this would, thus, carry substantial promise for our comprehension of
how the brain can self-organize and provide the required requisite variety for complex motor control8.

It is known, on the one hand, that networks can be trained to perform complex non-linear calcula-
tions9–11, which could be used for motor control. This requires that those networks produce a reservoir
of rich, transient dynamics from which the desired outputs can be siphoned off. This paradigm is known
as Reservoir Network or Liquid State Machine Network computation9,10. For instance, proofs exist that

1Institute for Physics – Biophysics, Georg-August-University, Friedrich-Hund Platz 1, 37077, Göttingen, Germany.
2Bernstein Center for Computational Neuroscience, Georg-August-University, Friedrich-Hund Platz 1, 37077,
Göttingen, Germany. *Current address: Max Planck Institute for Dynamics and Self-Organization, Am Faßberg
17, 37077, Göttingen, Germany. †Current address: RIKEN Brain Science Institute, Lab for Neural Computation
and Adaptation, Wako, Saitama, Japan. ‡Current address: Center for BioRobotics, The Maersk Mc-Kinney Moller
Institute, University of Southern Denmark, Campusevej 55 DK-5230 Odense M, Denmark. Correspondence and
requests for materials should be addressed to C.T. (email: tetzlaff@phys.uni-goettingen.de)

received: 19 February 2015

accepted: 10 July 2015

Published: 07 August 2015

OPEN

mailto:tetzlaff@phys.uni-goettingen.de

www.nature.com/scientificreports/

2Scientific Reports | 5:12866 | DOI: 10.1038/srep12866

a rich-enough dynamic network of this kind can emulate a Turing machine and, thus, provides general
computational power12. Recent experimental evidence supports links between these complex transient
dynamics and the dynamics of neuronal networks13–15.

On the other hand, based on the well-known synaptic-plasticity-and-memory hypothesis16–18, neu-
rons can be linked together by strengthening their synapses depending on their neuronal activities,
thereby, forming co-called Hebbian cell assemblies1. These cell assemblies are considered to be the basis
of long-term memories7,19–21.

It appears, thus, straight-forward to combine these two concepts to arrive at the required computa-
tionally powerful cell assemblies. Alas, two effects can destroy such an approach. Self-organization of
neurons into cell assemblies by the processes of synaptic plasticity induces ordered or even synchro-
nized neuronal dynamics1,6,22,23. This will reduce the dynamics of the network often to a degree that the
required requisite variety for complex calculations cannot be provided by it any longer15,24. In addition,
trying to simultaneously create multiple assemblies will lead indeed to the aforementioned catastrophic
interference if one cannot prevent them from growing into each other.

In this study, we exploit for the first time the interaction between neuronal and synaptic processes
acting on different time scales to enable, on a long time scale, the self-organized formation of cell assem-
blies, while on a shorter time scale, to perform non-linear calculations. Note, our intention is to provide
a rather general and mathematically sound mechanism that achieves stimulus driven self-organization of
computational powerful entities (cell assemblies), but we do not attempt to model biological structures
in any greater detail.

In this study, we first show how cell assemblies are formed by unsupervised plasticity processes and
then we demonstrate that cell assembly growth will lead to improved computational power. For this,
we use an example where a growing assembly is required to calculate some freely chosen non-linear
transforms (e.g., power of seven of the input). Specifically we demonstrate that such a self-organized
network is more efficient as compared to random networks. Furthermore, we show that under certain
circumstances the outgrowth process guarantees that independently learned assemblies do not interfere
with each other. This allows creating cooperative assemblies for the control of six degrees of freedom of
an advanced robot for execution of a complex motor task.

Results
An external signal repeatedly stimulates several randomly chosen rate-coded input units in a randomly
and very weakly excitatorily connected network with dominating inhibition (Fig. 1A and Methods sec-
tion). The network units are defined in a way that they can serve as a model of single neurons or groups
of neurons (see Methods). The goal is to set up such a system that repeated stimulation should – by
synaptic plasticity – trigger (i) the formation and outgrowth of cell assemblies (group of strongly inter-
connected units) while (ii) still keeping them functionally separate. In other words, the excitatory syn-
aptic efficacy Wij between two units i and j has to be strong within an assembly and weak between them.
These two requirements restrict the set of activity-dependent synaptic plasticity mechanisms
(= , ,W F F W[]ij i j ijG with pre- and post-synaptic activities Fj and Fi and weights Wij) as they have to
fulfill the following fixed-point condition of the synaptic dynamics:

η

κ
=





⋅

(− Γ)




 ()

α
⁎W

F F

F 1
ij

i j

i

with offset Γ  and parameters κ, η, and α (see Supplementary Text 1 for details on the derivation of this
fixed point and parameter definitions).

To achieve this, a rule is needed where outgrowth by hebbian plasticity is compensated by a stabiliza-
tion mechanism. Several such rules have been devised (Supplementary Text 1 and, e.g.,3,25–27), but there
is an additional important constraint, that the known rules do not fulfill: It is also of central importance
that outgrowth and assembly stabilization happen with appropriate timing. On the one hand, if stabiliza-
tion is too fast it dampens synaptic development and leads to too small and computationally insignificant
assemblies. On the other hand, if stabilization is too slow, synaptic assemblies are growing into each
other as they are growing too large. In both cases the fixed point will be reached at non-optimal times.

Physiological data constrains the time scale of plasticity, which determines the outgrowth, and this is
on the order of minutes to a few hours (LTP time scale28,29). Hence stabilization needs to be slower than
that. For this reason here we are using synaptic scaling for stabilization, which acts on the scale of hours
to days30–32 and – as shown next – arrives with nearly optimal duration at the above defined fixed point.
Thus, for changing the connection weights in our network we define the following rule (see Methods
and Supplementary Text 1):

τ τ
= ⋅ + (−) ⋅

()
W F F F F W1 1

2ij
H

i j
SS

T
i ij

2

which combines (first term) hebbian synaptic plasticity28,29,33 with (second term) synaptic scaling30–32.
Scaling acts stabilizing by trying to keep the system close to a desired firing rate FT 30,34. Analytical results

www.nature.com/scientificreports/

3Scientific Reports | 5:12866 | DOI: 10.1038/srep12866

show (see Supplementary Text 1 for more details) that this rule leads to a system where stimulus-driven
assemblies are formed by an outgrowth process such that a repeated stimulus will capture more and more
units. Also the outgrowth speed can be estimated as:

τ
τ

∼
−

⋅




⋅ + (−) ⋅





.

()
, ,

W
F

F F
F F F F W1

3
os ca ratio

max

max
T os max

ratio

T
ca os ca

2
2

Figure 1.  Cell assembly size and computational performance are correlated. (A) An input is delivered to
several units (red disks) in a random neuronal network with very weak but plastic excitatory (black lines)
and constant inhibitory connections (green dashed lines). The interaction of long-term potentiation (LTP)
and synaptic scaling (Syn. Sca.) enables the formation of an Hebbian cell assembly (red and orange disks) by
increasing synaptic efficacies (thicker lines) when repeating the input several times. Note this network is not
topographically organized. The here shown neighborhood ordering is for graphical reasons only. Read-out
units (blue disk) are connected (blue dashed) to the full network and trained in a conventional way to create
the desired output (by FORCE35 or ordinary least squares (OLS)9). Here we used a single read-out unit, but
several can be connected without additional constraints (see also Fig. 3). (B) With more learning trials the
assembly grows and integrates more units. To measure this, we arbitrarily define assembly size by that set of
units connected with efficacies larger than θ  =  0.5·Wmax. (C) Parallel to the outgrowth of the cell assembly
the error of the system to perform several linear and non-linear calculations decreases. linear: O(t) =  I(t),
r =  − 0.81; nonlinear 1: O(t) =  I(t)3, r =  − 0.77; nonlinear 2: O(t) =  I(t)7, r =  − 0.73; O(t): output; I(t): input;
r: Pearson correlation coefficient between assembly size and error; please see Methods section for protocol
details.

www.nature.com/scientificreports/

4Scientific Reports | 5:12866 | DOI: 10.1038/srep12866

(τ = τ
τratio

SS

H
: ratio of time scales of synaptic plasticity and scaling; os: outside assembly; ca: inside assem-

bly; Fmax: maximum firing rate). From this equation the duration for reaching the fixed point can be
derived as a function of the ratio of time scales of synaptic plasticity and scaling. Our model predicts
that this curve has one minimum (Supplementary Text 1), where the fixed point is reached fastest, at a
time-scale ratio of about 50–100, thus, if plasticity is about 50–100 times faster than scaling. Given the
physiological time scales for synaptic plasticity, this leads to a prediction of a time scale of several hours
for scaling, which is very much in line with the actually found slow characteristics of this process. Hence,
the here chosen value for τss of about 60·τH (time scale of hours30) seems a natural choice for the required
stabilization mechanism, which leads to the speediest arrival at the required fixed point in such
systems.

These results show that the here chosen rule can bring together two important and not necessarily
compatible aspects for stable cell assembly formation, outgrowth and boundedness. Every stimulation
induces weight strengthening and thereby the formation and outgrowth of a cell assembly starting from
the input units (Fig. 1B). At the same time, due to the fixed point characteristics of this process, connec-
tion weights and – as a consequence – neural activities remain limited. Both are due to the interaction
of hebbian synaptic plasticity with the slower mechanism of synaptic scaling34. This aspect will be of
direct relevance when later on considering several assemblies in parallel. Importantly, due to the dom-
inating inhibition, the here formed cell assembly does not serve as an attractor of the activity dynam-
ics and it does not produce persistent activities6, which would be detrimental to computation24. Thus,
with this type of repeated stimulation we obtain a growing assembly with transient activities (see also
Supplementary Text 1).

Now we can analyse the computational power of such a structure during the growth process. To this
end we interrupted assembly growth after each stimulus presentation and trained a read-out unit con-
nected to the whole network to test the network’s ability to perform one of several linear or non-linear
calculations9,10,35 and measured the error. Note, by using a linear read-out unit we ensure that the calcu-
lations are really only accomplished within the network. Interestingly, we observed that the performance
of the network strongly correlates with the size of the cell assembly (compare Fig. 1B,C; average Pearson
correlation coefficient from about 3000 data points: r =  − 0.77 ±  0.04; Supplementary Text 1, Fig. 1).

Comparing the self-organized assembly network to networks with unchanging connections (“static”
networks) shows that it is indeed the embedding of a strongly connected cell assembly that creates the
computational power (see also Supplementary Text 1). Computational reservoirs are commonly gen-
erated using random connectivity of variable strength between many units9,10 and, as a result, weak
and strong connections are randomly distributed therein. Inputs are also provided to randomly chosen
units9,10. Consequentially, an input will lead to a spatially extended activity trace including many units
if and only if one makes sure that there is a large-enough number of strong connections existing in
the network to begin with. In these cases the error, when testing a computation, is indeed low. The
data highlighted by a light blue box in Fig. 2A shows that randomly connected static networks with
few strong connections (Fig. 2B) will perform poorly as compared to networks with many strong con-
nections (dark blue box Fig. 2A and Fig. 2C), where the error is essentially zero. Remarkably, the same
small error is obtained with an assembly network after some growth (Fig. 2D) with only a small fraction
of strong connections, which can be seen when comparing the yellow (early learning) with the orange
box (late learning) in Fig. 2A. The inputs provided to the network penetrate deep because strong con-
nections exist mainly within the assembly which receives the input. Randomly shuffling the connections
dissolves this effect (green dots) showing that really the creation of an assembly will lead to powerful
computation. This is beneficial for several reasons. Limiting the number of randomly distributed strong
connections mitigates the problem of persistent or synchronous activity36, which would entirely destroy
computation9,15,24. In addition, possibly the most interesting property of such assemblies is that, due to
the limited number of strong connections per assembly, several assemblies can coexist and/or compete
in a realistic way with each other. As shown above and in previous studies34, synaptic scaling counter-
balances the unrestricted growth processes of hebbian learning (LTP) guaranteeing that the system stays
in the non-persistent activity regime6,36. But, in addition, scaling also implies competition between dif-
ferent presynaptic sites37,38. This leads to competition and/or coexistence between cell assemblies at the
network scale. Hence, with an alternating but balanced presentation of two stimuli (“A”,“B”) two assem-
blies embedded in the same network grow in the same way (Fig. 2F before trial 50), but with dominant
presentation of stimulus “A” the corresponding assembly will take over (Fig. 2F after trial 50) without
interference between input traces. This is difficult to achieve in a random network as one has no con-
trol over the actual input trace configurations, which might easily randomly interfere and perturb each
other24,39,40. Thus, the formation and outgrowth of cell assemblies by the interaction of synaptic plasticity
and scaling enables an adequate, non-merging and self-organized allocation of computational resources
(units and connections) to different inputs.

Motor control requires coordinated activation of many motor units. Evidence exists that this happens
by subsequent triggering of muscle-synergies41,42, which control a subset of motor units into performing
certain contraction patterns. Thus, multiple cell assemblies, embedded into the topography of the motor
cortex, are involved in generating the correct activation sequence for the execution of a skill. Accordingly,
when learning a new task, neural self-organization structures the network into the required assemblies.

www.nature.com/scientificreports/

5Scientific Reports | 5:12866 | DOI: 10.1038/srep12866

When practicing we check how far we have deviated from the desired goal and our nervous system
derives from this an error signal used as feedback to guide the learning.

A similar motor learning process can be shown in our network using a difficult task with a robot. Here
we do not attempt to provide a detailed model of the human motor system. Rather we are concerned
with the challenging problem to self-organize a network into functional assemblies under feedback error
control. The error-signal determines the adaptation speed of the synaptic efficacies similar to three-factor
learning rules (for a review see43). We were choosing an accurate pick&place problem, which is very
difficult to learn for small children as well as machines. The task was to insert a block into a very tightly
fitting box (Fig. 3A). To make this harder, we provide as reference signals for the learning only one single
example action of putting the block into the box without having to rotate it and one other example of
just rotating the block in right way and dropping it in the box without position change (Supplementary
Videos 1–4). Creating a conjoint trajectory, thus, requires combining both these components. However,
it can be observed that the robot fails by a substantial margin when it tries to do this prior to assembly
growth (left panel in Fig. 3C). Will training assemblies lead to success? After all, it remains to be shown
that there is no destructive cross interference occurring when several assemblies are active for generating
a conjoint trajectory.

Figure 2.  Comparison of the computational power of different networks relative to their synaptic
structure. (A) The error in performing non-linear calculations (here nonlinear 1) decreases with the number
of strong connection having a weight of W >  0.5·Wmax in the network. We created 10 different network
topologies and for each 300 randomly connected but unchanging networks (“static”) with 100 units each;
plotting the error they produce against their number of strong connections (blue, black dots). Red dots
show the error from networks that are obtained during the temporal development of assembly formation
(temporal progress indicated by the arrow). The assembly network (red) needs far fewer strong connections
as compared to the randomly connected static structures to achieve small errors (black: all units receive
input; blue: same units as in the assembly network receive input). Shuffling the weights in the assembly
network (green dots) leads to the same low performance as for the static networks demonstrating that
random arrangements of the same strong connections does not suffice. Solid line indicates the development
of one example of an adaptive network. (B–E) Schematic illustration of the underlying topology for different
networks (red dots: stimulated units; orange dots: non-stimulated units driven by the input due to strong
enough connections; black lines: strong connections; colored shadings: regions driven by the input).
(B) static network with few strong connections, (C) static network with many strong connections,
(D) plastic network after few learning trials (yellow shading) and after many learning trials (yellow and
orange shading; dashed lines: strong connections obtained by longer learning). The color coded boxes in
panel (A) show the errors for cases (B–D). (E) Schematic of a plastic network with two cell assemblies
competing for units (striped areas). (F) Competitive development of the two competing cell assemblies “A”
and “B” as a function of the input protocol (top).

www.nature.com/scientificreports/

6Scientific Reports | 5:12866 | DOI: 10.1038/srep12866

Figure 3.  Highly accurate control of position and orientation in a robotic pick&place action is achieved
by learning in coexistent, non-interfering assemblies. (A) For each trajectory for position task x and
orientation task φ, three degrees of freedom need to be adjusted to an accuracy of about 1 mm on each side
to make the white block fit into the brown box by the robot. A human has provided two example trajectories
by guiding the robot arm; one for position-only and one for orientation-only, which are used for reference.
Their trajectories are encoded by dynamic movement primitives (DMPs44,45, see Methods), which use
Gaussian kernels for every DMP equally spaced along the trajectory. (B) Learning needs to adjust the
amplitude of the kernels until success. For this we grow and train two assemblies using average and detailed
trajectory error (()error Trial , ()error t), respectively. Learning of position (input: Taskx) and orientation
(Taskφ) is done independently and alternatingly. (C) Robot performance and trajectories before and after
learning. (D) Both errors (for x and φ) drop into the success range with only eight learning trials. (E) The
network is also able to generalize movements with shared task space (the same 6 DoF of each single
movement). Single movements are first demonstrated by a human (first and second row) and then the
system combines both (last row). Please see Methods section for protocol details and Supplementary Videos.

www.nature.com/scientificreports/

7Scientific Reports | 5:12866 | DOI: 10.1038/srep12866

In order to solve this problem, we form and use two assemblies (Fig. 3B), one for the translation- and
one for the rotation-movement and each computes one motor control function per degree of freedom
(DoF) used for trajectory generation (in total 6 DoFs). Note, many more functions could be trained by
using a larger network. This way a more direct match to the framework of muscle synergies could be
enforced, which is not of relevance here, though.

Two learning modes are possible. It is possible to learn both task components (position and orien-
tation) simultaneously (not shown), or one can let the network learn alternatingly to put or rotate the
object without performing both components together. We are here showing the second variant, because
it demonstrates more clearly how the system behaves and how coexistent assemblies are formed. Note,
the here-used trajectory generation framework (dynamic movement primitives44,45) allows re-scaling and
reshaping the learned trajectories for different configurations without having to re-learn from scratch.
This is a long-known and important generalization property of such systems45 and not in the core of
our discussions. Other trajectory control methods can be used to the same ends, for example also with
Gaussian Mixture Models46.

Figure 3D shows that the error signal drives the outgrowth of the assemblies, which gets slower as
the error decreases until the system reaches the minimal cell assembly sizes required to successfully
complete the task. Thus, such adaptive networks, in contrast to static structures, generate an optimal
trade-off between performance and resources used. Remarkably, these cell assemblies are formed to
coexist without leading to interfering activities and the final, total error is similar to the error of the
two independent components (green shaded box in Fig. 3D). This way, without learning this explicitly, a
conjoint and accurate trajectory is being executed by the robot on co-activation of both assemblies after
only 8 learning blocks (right panel in Fig. 3C).

Note, the joint spaces of both movements are in this case clearly seperated (rotation φ or translation
x) and, therefore, each cell assembly can target different non-interfering read-out neurons. A possi-
bly more interesting case is where learned actions happen in a shared joint space. For this the human
demonstrated a mostly vertical placement movement of putting a bottle from the table on top of a box
(Fig. 3E first row, Supplementary Video 5). In addition, he showed a left-right movement for replacing
the bottle horizontally on the table (Fig. 3E second row, Supplementary Video 6). These two movements
both use the same set of robotic joints. They are coupled in joint space. The question we asked was
whether the system could learn to combine the two movements into a diagonal put-on-top motion. The
network succeeds essentially in learning this after 8 learning blocks (Fig. 3E last row, Supplementary
Video 7), but – when viewing the video – one sees that the resulting motion is not optimal. It starts a bit
jerky and the box had been hit when trying to put down the bottle. Note the resulting motion had been
obtained by directly combining the activity of both cell assemblies without further learning and this leads
to not-fully complete generalization. This is very similar to humans trying to generalize a prior-learned
action to a different situation. Commonly this leads to near-success and requires recalibration learning
and/or feedback-loop correction (e.g. using vision). We did this with our system, too, and the final
motion pattern after relearning is now accurate (Supplementary Video 8). Thus, these results show that
the self-organized formation of non-merging powerful cell assemblies enables the independent learning
of several complex tasks and, in addition, the parallel, non-interfering execution of them.

Discussion
Previous works indicate that adaptation of synaptic efficacies influences computational performance
in neural networks24,35,39,40,47, but the self-organization of a network into computationally powerful
sub-structures poses a difficult and as yet unresolved problem.

In the current study efficient learning of a difficult motor skill was obtained by the combination of
slow self-organization of the network into non-interfering cell assemblies with faster, error-driven acqui-
sition of computational properties within these assemblies. As shown above, such systems are capable
of combining substantial computational power with an economical use of network resources accommo-
dating competition and/or coexistence of assemblies as determined by the inputs. In this study inputs
are non-overlapping, thus, different inputs project to different disjunct groups of neurons. Overlapping
inputs are beyond the scope of this study as they lead to very complicated neuronal and synaptic dynam-
ics inducing possibly the destabilization of cell assemblies6. We expect that such disruptive effects could
be eliminated by introducing plastic input synapses, which would sort assemblies according to their input
features similar to (for example) self-organizing maps3,48–50. Such additional mechanisms could be used
to reduce or eliminate any overlap. At that point of the investigation we conclude that the here presented
dynamic network restructuring process is novel and not possible in static networks but that the problem
of overlap will have to be the topic of future work.

Structure, viz. cell-assembly-, formation must be adaptive but not volatile, which suggests that synap-
tic plasticity needs to be stabilized by processes that act on longer time scales – such as synaptic scaling.
Our analytical results show that the combination of plasticity and scaling is indeed especially well suited
to achieve coexistent assemblies and that it is difficult to achieve this by other synaptic plasticity rules
(see above and6,34). Other mechanisms as inhibition3,51 or short-term plasticity3,52 can also introduce local
competition or partially stabilize neuronal dynamics, however, whether this holds also at network level
and whether the resulting dynamics yields the formation of non-merging cell assemblies is still unknown.

www.nature.com/scientificreports/

8Scientific Reports | 5:12866 | DOI: 10.1038/srep12866

Specifically, it seems that plasticity +  scaling also leads to the right temporal behavior where arrival at the
fixed point happens with the expected physiological time scales (Supplementary Text 1).

In our study this had been used to create assemblies that can perform several non-linear computations
and we had shown that difficult motor tasks can be encoded this way. To this end we had used a frame-
work from robotics (DMPs) to encode trajectories by the time-series of learned DMP-kernel values.
This carries a certain analogy to the sequential activation muscle synergies53 but falls short of any more
detailed simulation of the brain’s motor system, which has not been intended by this work. We had used
the method of kinesthetic guidance of the robot to obtain our reference signals for learning. Humans,
on the other hand, mostly perform imitation learning instead. We had done this in a different context
in some of our older works54, but for the current study this has been avoided as it only adds quite some
complexity to the required generation of the reference signals, whereas it does not contribute to our core
questions. The last robotic experiment (Fig. 3E) shows that even interfering signals can be combined
into a conjoint movement, but that this combination remains suboptimal. This looks very similar to our
own motor learning where generalization of learned movements for the creation of a new one is usually
incomplete and erroneous. We employ sensory feedback (often vision) and more learning to arrive at
better results and the same was needed for our artificial network to perform correctly.

It is known that synaptic plasticity and scaling act in many cortical areas28,29,55 and, thus, the interac-
tion between cell assembly formation and their transient dynamics is not restricted to the here chosen
examples. This is supported by the fact that in the model, the underlying topology has only a minor
influence on the formation of cell assemblies and the emerging transient dynamics. Thus, we expect that
the here presented effects may hold for wide variety of brain areas independent of their detailed topology.
For instance, experiments and models provide evidence for the existence of transient dynamics14 within
cell assemblies56 in the prefrontal cortex, too.

An important additional aspect of such systems is that they will stay in a non-persistent activity
regime without which computations will deteriorate. Note that this constraint is equivalent to the condi-
tion that the spectral radius is smaller than one in echo-state networks10. The transient activity present in
our system is probably equivalent to the asynchronous irregular (AI) state in spiking networks36, which,
in the same way, provides rich and transient dynamics57. This state is dominated by inhibition and,
therefore, does not need any fine-tuning between inhibition and excitation47; a strong property which
is also shared by the here presented system. In particular, experimental data from delayed vibrotactile
discrimination tasks are best described by a combined model of cell assemblies and transient dynamics13.
Thus, cell assemblies with transient neural dynamics seems to be ubiquitous feature in neural systems
and the here presented results allow a better understanding of how such structures might be dynamically
shaped into computationally powerful assembly networks.

Methods
Neuron and network model.  The neuronal circuit we are using in each simulation consists of N
units randomly connected with probability pE for excitatory and pI for inhibitory connections. pE and
pI define the excitatory (CE) and inhibitory (CI) topology of the network. Each unit i of the network is
described by a leaky membrane potential ui and a firing rate Fi which depends nonlinearly on the unit’s
actual membrane potential, Fi[t] =  Φ (ui[t]). This formulation allows for a general interpretation of each
unit as either a rate-coded neuron or a population of neurons58. Thus, the here presented results are
independent of the spatial scale of the neural circuit.

Each network unit has a membrane potential ui changing with time constant τu and resistance R:

∑ ∑τ = − + ⋅





⋅ − ⋅ +






.

()

du t
dt

u t R W t F t W F t W F t
[]

[] [] [] [] []
4

u
i

i
j

N

ij
E

j
k

N

ik
I

k
ext

i
ext

Each unit receives a weighted (Wext) noisy external input F t[]i
ext drawn from a Gaussian distribution

with constant mean (μ =  0) and standard deviation (σ =  20) if not stated differently. The inhibitory inputs
from the network are weighted by Wik

I which are constant over time (=W Wik
I I if =C 1ik

I and =W 0ik
I

if =C 0ik
I). Excitatory connections ()Wij

E are plastic depending on the interaction of synaptic plasticity
and scaling while keeping the underlying topology CE (thus, / =dW dt 0ij

E and =W 0ij
E if =C 0ij

E). For
the firing rate Fi[t], without loss of generality, we use a sigmoidal transfer function

β
≡ Φ() =

+ ((−)) ()
F t u t

F
u t

[] []
1 exp [] 5i i

max

i

with maximal firing rate Fmax, steepness β, and inflection point ε.
We simulated the network by the Euler method with step size Δ t =  0.3 in Matlab. Please find all

parameters in Table 1.

www.nature.com/scientificreports/

9Scientific Reports | 5:12866 | DOI: 10.1038/srep12866

Synaptic plasticity and scaling.  The excitatory connections of the network are plastic using an
interaction of synaptic plasticity (here, long-term potentiation [LTP]28,29,33) and synaptic scaling6,30,34.
Thus, the synaptic efficacy Wij

E (also named Wij) between unit i and j is adapted in the following way:

()
τ τ

= ⋅ + (−) ⋅ .

()
� ������� ������� � ������������� �������������

dW t

dt
F t F t F F t W t

[] 1 [] [] 1 [] []

6

ij

H
i j

LTP

ss

T
i ij

Synaptic Scaling

2

The LTP-term consists of the multiplication of pre- and postsynaptic activities Fj and Fi with time
scale τH. Synaptic scaling is a homeostatic process59 that drives the synaptic efficacies by the difference
between actual Fi and the desired rate FT. As synaptic scaling is a slower process than plasticity (approx.
hours to days55 as compared to minutes28), it depends on the time constant <

τ τ
1 1

SS H
. The weight depend-

ency in the scaling-term (experimentally supported by30) guarantees that the synaptic weights are

bounded between zero and τ= ⋅
−

W max ratio
F

F F
max

max
T

2
6,34 with τ = τ

τratio
SS

H
 as the ratio of plasticity and

scaling time constants.

Stimulation protocols.  For the formation of a cell assembly a group of units or neurons has to
be stimulated together6. This stimulation induces, via the interaction of synaptic plasticity and scaling,
changes of the corresponding synaptic efficacies. During non-stimulation all units receive a random
input. First, we let the system relax according to this random input. Then, the external stimulation is
given to the network (Fig. 1 and Supplementary Text 1). Each learning trial has a duration of 5000 time
steps and consists of 2000 steps random input to all units and 3000 steps stimulation to ten units and
random input to the others.

The exact temporal structure of the input-stimulation is irrelevant6. It only needs to be “variable
enough” to drive the reservoir. Here, we use a simple sin-wave = (. ⋅) + ⋅F t t[] sin[0 1 1] 100stim

ext
applied at every learning trial to the same subset of units (randomly chosen). To form a second assembly,
another subset of units also receives a stimulation input. The learning trials are alternating (see Fig. 2).

Cell assembly analysis.  There are several ways possible to characterize a cell assembly1,21,22,60. In
this work, we focus on the definition that a cell assembly is determined by the strength of the synaptic
efficacies connecting groups of neurons1,6. Here, we define that, if the neurons or units are strongly
connected with each other, they form a cell assembly. Thus, to find cell assemblies in the network, we
define a threshold θ saying that synaptic efficacies larger than θ are ‘strong’ and others are ‘weak’ (w.l.o.g.,
θ =  0.5·Wmax). Importantly, the exact value of the threshold does not alter our results (Supplementary
Text 1).

To determine the size of a cell assembly, we take the (excitatory) network (Fig. 4A) and delete all
connections smaller than θ (Fig. 4B). The resulting network includes all potential cell assemblies for this
particular θ-threshold. As we are interested in the input-dependent cell assemblies, in the next step, we
determine those units receiving external stimulation (red in Fig. 4C). Starting from them, we follow the

Parameters

  Name Abbreviation Value

  unit number N 100

  excitatory connection probability pE 0.1

  inhibitory connection probability pI 0.2

  inhibitory efficiency WI 0.3·Wmax

  external efficiency Wext Wmax

  maximal firing rate Fmax 100

  steepness β 0.03

  reflection point ε 120

  resistance R 0.012

  membrane time constant τu 1

  LTP time constant τH 3·104

  time constant ratio τratio 60

  desired activity FT 1

Table 1.  This table contains all parameters and their values for the network if not stated elsewhere
differently.

www.nature.com/scientificreports/

1 0Scientific Reports | 5:12866 | DOI: 10.1038/srep12866

paths of strong connections (w >  θ) and count how many units in the network can be reached along these
paths including the stimulated ones (orange; in this example the size of the cell assembly is NCA =  4). All
other strong connections and their corresponding units (e.g., blue assembly in Fig. 4C) are counted as
different cell assemblies (as, for instance, in Fig. 2E,F).

For calculating the correlation between the cell assembly size NCA and the performance of the network
to solve a given task (represented by the error etask), we calculated the Pearson correlation coefficient r
defined as follows:

=
(,)

() () ()
r

N e
N e

cov
std std 7

CA task

CA task

with cov(·, ·) as the covariance matrix and std(·) as standard deviation.

Static networks.  To classify the efficiency of the adaptive assembly network (Fig. 2A), we compared
its performance to that of random networks with unchanging connections (“static networks”). For this,
we created 10 different topologies and for each 300 different static networks with same inhibitory (CI)
and excitatory (CE) topology. Only the excitatory synaptic efficacies are randomly distributed over the
fixed topology. For each network, efficacies were drawn from a Gaussian distribution with a different
mean μ ∈ , , ...,{5 10 50}static and standard deviation σ ∈ , , ...,{10 20 150}static to get a diverse set of
static networks. We truncated the distributions at W =  0 and W =  Wmax.

Read-out units.  In this work we analyze the performance of a network when solving nonlinear tasks
and how this changes with ongoing plasticity leading to cell assembly outgrowth. To achieve this, at
different moments of network development, plasticity is stopped and the network’s performance is tested.
After such a growth-stop, the network is driven by an external signal to the same units which have been
stimulated during learning. Without loss of generality, this signal is the same as the learning signal. To
assess the performance of the network each unit i is connected with strength Wi

out to a linear read-out
unit. As a result, the activity of the read-out unit is given by

∑= .
()

d t W F t[] []
8i

N

i
out

i

The resulting activity d[t] of the read-out unit is compared to the desired output signal d t[] of the
task. This determines the task-dependent error = −e t d t d t[] [] []task . The error is used to adapt the
connections between network and read-out unit in a supervised manner9,10,35. Here we use two different
adaptation methods shown in the following: first-order reduced and controlled error (FORCE35) and
ordinary least squares (OLS).

FORCE.  In the FORCE-algorithm35 the adaptation rate itself is adaptive according to the network
activity. Consider in the following f as the vector with all activities of the network units as elements
(= (, , ...,))F F Ff N1 2 and wout as vector of all output weights Wi

out. Then, the output weights are
adapted as in the following:

Figure 4.  Analyzing cell assemblies. (A) Schematic illustration of a part of a network with connections of
different efficacies (thickness of lines). (B) First we define a cell assembly as consisting of units connected by
weights above threshold θ. Hence we delete all other connections. (C) Then, by starting at the units which
receive external input (red), we count how many units can be reached in the thresholded network (orange).
These units form an input-dependent cell assembly. Other groups of units with strong connections are
classified as other assemblies (blue).

www.nature.com/scientificreports/

1 1Scientific Reports | 5:12866 | DOI: 10.1038/srep12866

= ⋅ , ()t t tK P f[] [] [] 9

=
+ ⋅

,
()

t
t t

c
f K

[] 1
1 [] [] 10T

= − Δ − ⋅ (⋅), ()t t t t t tP P K K c[] [] [] [] [] 11T

= − Δ + ⋅ ⋅ , ()t t t e t t tw w K c[] [] [] [] [] 12out out

with = ⋅ IP[0] 100 (I is the identity matrix). Here P is an NxN matrix proportional to the inverse of
the correlation matrix of the network firing rate vector f. This update is done until the error converges
(about 500 time steps). The absolute averages of the performance error etask[t] over the last 100 time steps
are shown in Fig. 1C.

OLS.  In the motor task the error is feed back to the network controlling the speed of synaptic adapta-
tion. This could result to dramatic changes in neural activities. As the FORCE-algorithm is very sensitive
to such activity changes, here, the output weights, connecting the network units with the read-out units,
are updated according to the ordinary least squares algorithm given in the following:

μ= − Δ + ⋅ , ()t t t e t tw w f[] [] [] [] 13olsout out

with update rate μols.

Motor task.  To solve the complex motor task of putting the block into the box (Fig. 3), we need to
learn and control six degrees of freedom (DoFs). We use the well-established framework of dynamic
movement primitives (DMPs;44) and define one DMP per DoF. Hence every DMP encodes the trajectory
of one joint and complete movements are created as a linear composition of 6 DMPs. Note, there are
many other possible ways to achieve the same and DMPs were chosen, because of their simplicity and
because they are structurally quite close to the concept of muscle synergies41,42. The DMP formalism is
provided below. For now, it suffices to know that a DMP receives its shape from a set of subsequently
active kernels with different amplitudes, which creates the shape of the trajectory. Thus, the amplitudes
of these kernels form a time series TD [], where T represents the location (moment of being active) of a
given kernel on the trajectory.

Our goal is to form cell assemblies that can create such time series and then perform the motor task
without error. To make this more difficult, we split the task into two subtasks, translation and rotation.
We learn them independently wanting to show that their combination will nonetheless lead to success.
Thus, the system forms two cell assemblies each encoding one of the subtasks (see Supplementary Text 1,
Fig. 2, translation: x, orange; rotation: φ, blue). In Fig. 3E, both subtasks consists of rotation and trans-
lation movements thereby sharing the same task space. However, six time series Dk (= , , ...,)k 1 2 6 are
extracted from the whole network by six read-out units.

Learning consists always of two processes: 1) assembly outgrowth by hebbian plasticity and synaptic
scaling and 2) supervised adaptation (reservoir adaptation) of the output weight vectors ,wk task

out from the
network to the read-out units in order to create the trajectory. Both processes are driven by error func-
tions. To obtain those we need a reference signal. Hence, first one example of rotating the block into the
slot (without translation) and one example of translating it (without rotation) was demonstrated by a
human moving the robot arm manually into the correct position (kinesthetic guidance). Then the result-
ing time-series ∼Dk where extracted and represent the “desired values” to be reached by the learning
(indicated by the tilde). Errors can then be calculated relative to these desired values.

We start by providing inputs to ten units each for a sub-task. They form the starting configuration
of each assembly. The system is stimulated by two independent signals Taskx and Taskφ, which allows
driving both assemblies independently from each other. Taskx and Taskφ take the form of two different
sin-waves (see Table 2), but it is only of relevance that these signals create a non-constant drive of the
system and their actual shapes do not matter.

First we take the configuration as is – hence without any assembly growth – and calculate its perfor-
mance by performing output weight adaption once. This is done by driving the assemblies with their task
signals and calculating the inner-errors Ek between desired and currently existing time-series
(Supplementary Text 1, Fig. 2): = −

∼
E T T TD D[] [] []k k k . Note these errors are time-resolved along T

and, therefore, allow for the learning of a time-series as is common in reservoir networks. Hence, these
errors are used to update the corresponding output weight vectors ,wk task

out for the six output units k of
both assemblies by the OLS algorithm. After this single update we tested the combined behavior of the
robot, the result of which is found in Fig. 3C left, which shows that the machine did not succeed.

www.nature.com/scientificreports/

1 2Scientific Reports | 5:12866 | DOI: 10.1038/srep12866

Next we let the assemblies grow. To control this we use the external error ε, which is the average
(time-collapsed) error between desired and actual trajectories. To obtain this, time-series Dk are used to
create the corresponding DMPs, which define the trajectories T. We calculate the temporal average
Euclidean distance between T[t] and T t[] as (for translation):  = , T t T t[] []x x x t. The final exter-
nal error  is given by the maximum of the translation and rotation errors =  max (x, φ).

This is a behavior-dependent feedback signal and can be used to control assembly growth by using it
as an additional factor in the learning rule Equation (6), which changes to:

 ()τ
τ

=





⋅ + (−) ⋅




.

()

dW t

dt
F t F t F F t W t

[]
[] [] 1 [] []

14w
ij

i j
SS

T
i ij

2

In general, this formulation is comparable to a third factor learning rule common, for example, in
reinforcement learning43. Assembly outgrowth stops as soon as behavior is successful, hence when ε
drops to zero.

After one outgrowth step we again perform output weight vector adaptation and measure the perfor-
mance and so on. Ten of such learning trials are combined to one learning block. Note, the sequentiality
of this procedure is owed to the use of computers. In a real network both processes (outgrowth and
output weight vector adaptation) can possibly happen in parallel, but this is not of relevance for the
purpose of this study.

What is of relevance though is that in general all learning is performed alternatingly between both
assemblies, triggered by the respective Taskx/φ signals. This was done to show the intrinsic capability of
such systems to balance assembly cooperation with competition.

Dynamic movement primitives.  To describe each 1-dimensional joint trajectory we use the well
established framework of dynamic movement primitives (DMP44) as they assure fast convergence and
generalization of movements45. Modified DMPs are based on a set of differential equations basically
describing two dynamical systems44,45 the transformation and the canonical system.

The transformation system is formalized as follows:

()α β= (−) − + , ()z G y z f 15dmp dmp

= , ()y z 16


τ

=







−
≤

,
,

()

G
g s

tif

0 otherwise 17

with αdmp and βdmp as time constants and z, y and y corresponding to acceleration, velocity and position,
respectively. Here, G defines a goal function with s as start and g as goal states (start/end-point). τ is the
total duration of the movement. Initially we set y[0] =  G[0] =  s.

The canonical system is described by a sigmoidal-decay function:

Name Abbreviation Value

task signal for x Taskx sin [0.3·τ +  1]·50 +  100

task signal for φ Taskφ cos [0.1·τ +  1]·60 +  100

DMP time constant αdmp 0.75

DMP time constant βdmp 0.1875

DMP time constant αξ 1

Number of DMP
kernels M 50

scaling factor αω 1

kernel width σdmp 0.05

error update rate μols 10−5

Table 2.  This table contains all parameters and their values for the motor learning task.

www.nature.com/scientificreports/

13Scientific Reports | 5:12866 | DOI: 10.1038/srep12866

()
()

()
ξ

α α τ

α τ
= −

(−)

+ (−) ()

ξ ξ

ξ



t

t

exp

1 exp 18
2

with time constant αξ defining the steepness of the function centered around τ. Initially we set ξ[0] =  1.
The nonlinear function f is given by

α
ψ ω ξ

ψ
=

∑

∑ ()
ω

τ T T

T T

f
19

M

M

with scaling factor αω and

()
ψ

σ
=







−
−






.

()

τ
T

Tc
exp

2
20

t

dmp

2

2

ψT are Gaussian kernels which are placed equidistantly along the trajectory in time and space with kernel
centers Tc and width σdmp. The shape of the movement is determined by the kernel weights ωT. They
are, on the one side, defined by human demonstration ()∼D and, on the other side, learned by the adaptive
network (D). Thus, the activity of the corresponding output unit Dxd/φd at time point T represents the
weight of kernel T.

References
1.	 Hebb, D. O. The Organization of Behaviour. Wiley, New York, (1949).
2.	 Anderson, J., Cooper, L. N., Nass, M., Freiberger, W. & Grenender, W. Some properties of a neural model for memory. In AAAS

Symposium, (1972).
3.	 Grossberg, S. Nonlinear neural networks: principles, mechanisms, and architectures. Neural Networks 1, 17–61 (1988).
4.	 Tetzlaff, C., Kolodziejski, C., Markelic, I. & Wörgötter, F. Time scales of memory, learning, and plasticity. Biol. Cybern. 106(11),

715–726 (2012).
5.	 Schmidt, R. A. A schema theory of discrete motor skill learning. Psychol. Rev. 82(4), 225–260 (1975).
6.	 Tetzlaff, C., Kolodziejski, C., Timme, M., Tsodyks, M. & Wörgötter, F. Synaptic scaling enables dynamically distinct short- and

long-term memory formation. PLoS Comput. Biol. 9(10), e1003307 (2013).
7.	 Pulvermüller, F., Garagnani, M. & Wennekers, T. Thinking in circuits: toward neurobiological explanation in cognitive

neuroscience. Biol. Cybern. 108, 573–593 (2014).
8.	 Ashby, W. R. An introduction to Cybernetics. Wiley, New York, (1956).
9.	 Maass, W., Natschläger, T. & Markram, H. Real-time computing without stable states: a new framework for neural computation

based on perturbations. Neural Comput. 14, 2531–2560 (2002).
10.	 Jaeger, H. & Haas, H. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science

304, 78–80 (2004).
11.	 Buonomano, D. V. & Maass, W. State-dependent computations: spatiotemporal processing in cortical networks. Nat. Rev.

Neurosci. 10, 113–125 (2009).
12.	 Maass, W. Computability in context: computation and logic in the real world, chapter Liquid state machines: motivation, theory,

and applications, 275–296. London: Imperial College (2010).
13.	 Barak, O., Sussillo, D., Romo, R., Tsodyks, M. & Abbott, L. F. From fixed point to chaos: three models of delayed discrimination.

Prog. Neurobiol. 103, 214–222 (2013).
14.	 Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Context-dependent computation by recurrent dynamics in prefrontal

cortex. Nature 503, 78–84 (2013).
15.	 Ju, H., Dranias, M. R., Banumurthy, G. & Van Dongen, A. M. Spatiotemporal memory is an intrinsic property of networks of

dissociated cortical neurons. J. Neurosci. 35(9), 4040–4051 (2015).
16.	 Martin, S. J., Grimwood, P. D. & Morris, R. G. M. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev.

Neurosci. 23, 649–711 (2000).
17.	 Kandel, E. R. The molecular biology of memory storage: a dialog between genes and synapses. Biosci. Rep. 21, 565–611 (2001).
18.	 Dudai, Y. The neurobiology of consolidation, or, how stable is the engram? Annu. Rev. Psychol. 55, 51–86 (2004).
19.	 Willshaw, D. J., Buneman, O. P. & Longuet-Higgins, H. C. Non-holographic associative memory. Nature 222, 960–962 (1969).
20.	 Hopfield, J. J. Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl.

Acad. Sci. USA 81, 3088–3092 (1984).
21.	 Palm, G., Knoblauch, A., Hauser, F. & Schüz, A. Cell assemblies in the cerebral cortex. Biol. Cybern. 108, 559–572 (2014).
22.	 Buzsaki, G. Neural syntax, cell assemblies, synapsembles, and readers. Neuron 68, 362–385 (2010).
23.	 Rolls, E. T. Attractor networks. WIREs Cognt. Sci. 1, 119–134 (2010).
24.	 Klampfl, S. & Maass, W. Emergence of dynamic memory traces in cortical microcircuit models through STDP. J. Neurosci.

33(28), 11515–11529 (2013).
25.	 Bienenstock, E. L., Cooper, L. N. & Munro, P. W. Theory for the development of neuron selectivity: orientation specificity and

binocular interaction in visual cortex. J. Neurosci. 2, 32–48 (1982).
26.	 Oja, E. A simplified neuron model as a principal component analyzer. J. Math. Biol. 15, 267–273 (1982).
27.	 Gerstner, W. & Kistler, W. M. Mathematical formulations of hebbian learning. Biol. Cybern. 87, 404–415 (2002).
28.	 Malenka, R. C. The long-term potential of LTP. Nat. Rev. Neurosci. 4, 923–926 (2003).
29.	 Feldman, D. E. Synaptic mechanisms for plasticity in neocortex. Annu. Rev. Neurosci. 32, 33–55 (2009).
30.	 Turrigiano, G. G., Leslie, K. R., Desai, N. S., Rutherford, L. C. & Nelson, S. B. Activity-dependent scaling of quantal amplitude

in neocortical neurons. Nature 391, 892–896 (1998).
31.	 Hengen, K. B., Lambo, M. E., Van Hooser, S. D., Katz, D. B. & Turrigiano, G. G. Firing rate homeostasis in visual cortex of freely

behaving rodents. Neuron 80, 335–342 (2013).

www.nature.com/scientificreports/

1 4Scientific Reports | 5:12866 | DOI: 10.1038/srep12866

32.	 Keck, T. et al. Synaptic scaling and homeostatic plasticity in the mouse visual cortex in vivo. Neuron 80, 327–334 (2013).
33.	 Bliss, T. & Lomo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following

stimulation of the perforant path. J. Physiol. 232, 331–356 (1973).
34.	 Tetzlaff, C., Kolodziejski, C., Timme, M. & Wörgötter, F. Synaptic scaling in combination with many generic plasticity mechanisms

stabilizes circuit connectivity. Front. Comput. Neurosci. 5, 47 (2011).
35.	 Sussillo, D. & Abbott, L. F. Generating coherent patterns of activity from chaotic neural networks. Neuron 63, 544–557 (2009).
36.	 Brunel, N. Dynamics of networks of randomly connected excitatory and inhibitory spiking neurons. J. Physiol. 94, 445–463

(2000).
37.	 Miller, K. D. Synaptic economics: competition and cooperation in synaptic plasticity. Neuron 17, 371–374 (1996).
38.	 Toyoizumi, T., Kaneko, M., Stryker, M. P. & Miller, K. D. Modeling the dynamic interaction of Hebbian and homeostatic

plasticity. Neuron 84, 497–510 (2014).
39.	 Lazar, A., Pipa, G. & Triesch, J. SORN: a self-organizing recurrent neural network. Front. Comp. Neurosci. 3, 23 (2009).
40.	 Toutounji, H. & Pipa, G. Spatiotemporal computations of an excitable and plastic brain: neuronal plasticity leads to noise-robust

and noise-constructive computations. PLoS Comput. Biol. 10(3), e1003512 (2014).
41.	 Saltiel, P., Wyler-Duda, K., D’Avella, A., Tresch, M. C. & Bizzi, E. Muscle synergies encoded within the spinal cord: evidence from

focal intraspinal NMDA iontophoresis in the frog. J. Neurophysiol. 85, 605–619 (2001).
42.	 Bizzi, E. & Cheung, V. C. K. The neural origin of muscle synergies. Front. Comp. Neurosci. 7, 51 (2013).
43.	 Wörgötter, F. & Porr, B. Temporal sequence learning, prediction and control - a review of different models and their relation to

biological mechanisms. Neural Comput. 17, 245–319 (2005).
44.	 Ijspeert, J. A., Nakanishi, J. & Schaal, S. Movement imitation with nonlinear dynamical systems in humanoid robots. In IEEE Int.

Conf. Robot., 1398–1403, (2002).
45.	 Kulvicius, T., Biehl, M., Aein, M. J., Tamosiunaite, M. & Wörgötter, F. Interaction learning for dynamic movement primitives

used in cooperative robotic tasks. Robot. Auton. Syst. 61, 1450–1459 (2013).
46.	 Khansari-Zadeh, S. M. & Billard, A. Learning stable non-linear dynamical systems with gaussian mixture models. IEEE T. Robot.

27, 943–957 (2011).
47.	 Hennequin, G., Vogels, T. P. & Gerstner, W. Optimal control of transient dynamics in balanced networks supports generation of

complex movements. Neuron 82, 1394–1406 (2014).
48.	 Kohonen, T. Correlation matrix memories. IEEE Trans. Comput. C 21, 353–359 (1972).
49.	 Grossberg, S. & Seitz, A. Laminar development of receptive fields, maps, and columns in visual cortex: the coordinating role of

subplate. Cereb. Cortex 13, 852–863 (2003).
50.	 Erdem, U. M. & Hasselmo, M. A goal-directed spatial navigation model using forward trajectory planning based on grid cells.

Eur. J. Neurosci. 35, 916–931 (2012).
51.	 Vogels, T. P., Sprekeler, H., Zenke, F., Clopath, C. & Gerstner, W. Inhibitory plasticity balances excitation and inhibition in

sensory pathways and memory networks. Science 334, 1569–1573 (2011).
52.	 Tsodyks, M. & Markram, H. The neural code between neocortical pyramidal neurons depends on neurotransmitter release

probability. Proc. Natl. Acad. Sci. USA 94, 719–723 (1997).
53.	 Rückert, E. & D’Avella, A. Learned parametrized dynamic movement primitives with shared synergies for controlling robotic and

musculoskeletal systems. Front. Comp. Neurosci. 7, 138 (2013).
54.	 Aksoy, E. E. et al. Learning the semantics of object-action relations by observation. Int. J. Robot. Res. 30, 1229–1249 (2011).
55.	 Turrigiano, G. G. Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. Annu. Rev.

Neurosci. 34, 89–103 (2011).
56.	 Wimmer, K., Nykamp, D. Q., Constantinidis, C. & Compte, A. Bump attractor dynamics in prefrontal cortex explains behavioral

precision in spatial working memory. Nat. Neurosci. 17(3), 431–439 (2014).
57.	 Jahnke, S., Memmersheim, R.-M. & Timme, M. How chaotic is the balanced state? Front. Comp. Neurosci. 3, 13 (2009).
58.	 Deco, G., Jirsa, V. K., Robinson, P. A., Breakspear, M. & Friston, K. The dynamic brain: from spiking neurons to neural masses

and cortical fields. PLoS Comput. Biol. 4, e10000092 (2008).
59.	 Turrigiano, G. G. & Nelson, S. B. Homeostatic plasticity in the developing nervous system. Nat. Rev. Neurosci. 5, 97–107, Feb

(2004).
60.	 Harris, K. D. Cell assemblies of the superficial cortex. Neuron 76, 263–265 (2012).

Acknowledgments
The research leading to these results has received funding from the European Communitys Seventh
Framework Programme FP7/2007–2013 (Programme and Theme: ICT-2011.2.1, Cognitive Systems and
Robotics) under grant agreement no. 600578 as well as from the Germany Ministry of Science Grant to
the Göttingen Bernstein Center for Computational Neuroscience, Project D1.

Author Contributions
C.T. and S.D. performed theoretical work, C.T. and T.K. robotic experiments and C.T. and F.W. wrote the
manuscript. All authors reviewed the manuscript and conceived the study.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Tetzlaff, C. et al. The Use of Hebbian Cell Assemblies for Nonlinear
Computation. Sci. Rep. 5, 12866; doi: 10.1038/srep12866 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The
images or other third party material in this article are included in the article’s Creative Com-

mons license, unless indicated otherwise in the credit line; if the material is not included under the
Creative Commons license, users will need to obtain permission from the license holder to reproduce
the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	The Use of Hebbian Cell Assemblies for Nonlinear Computation

	Results

	Discussion

	Methods

	Neuron and network model.
	Synaptic plasticity and scaling.
	Stimulation protocols.
	Cell assembly analysis.
	Static networks.
	Read-out units.
	FORCE.
	OLS.
	Motor task.
	Dynamic movement primitives.

	Acknowledgments

	Author Contributions
	﻿Figure 1﻿﻿.﻿﻿ ﻿ Cell assembly size and computational performance are correlated.
	﻿Figure 2﻿﻿.﻿﻿ ﻿ Comparison of the computational power of different networks relative to their synaptic structure.
	﻿Figure 3﻿﻿.﻿﻿ ﻿ Highly accurate control of position and orientation in a robotic pick&place action is achieved by learning in coexistent, non-interfering assemblies.
	﻿Figure 4﻿﻿.﻿﻿ ﻿ Analyzing cell assemblies.
	﻿Table 1﻿﻿. ﻿ This table contains all parameters and their values for the network if not stated elsewhere differently.
	﻿Table 2﻿﻿. ﻿ This table contains all parameters and their values for the motor learning task.

 application/pdf

 The Use of Hebbian Cell Assemblies for Nonlinear Computation

 srep , (2015). doi:10.1038/srep12866

 Christian Tetzlaff
 Sakyasingha Dasgupta
 Tomas Kulvicius
 Florentin Wörgötter

 doi:10.1038/srep12866

 Nature Publishing Group

 © 2015 Nature Publishing Group

 © 2015 Macmillan Publishers Limited
 10.1038/srep12866
 2045-2322

 Nature Publishing Group

 permissions@nature.com

 http://dx.doi.org/10.1038/srep12866

 doi:10.1038/srep12866

 srep , (2015). doi:10.1038/srep12866

 True

