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Abstract
Purpose  Glioblastoma (GBM) is the most aggressive type of brain tumor and has poor survival outcomes, even after a com-
bination of surgery, radiotherapy, and chemotherapy. Temozolomide is the only agent that has been shown to be effective 
against GBM, suggesting that combination of temozolomide with other agents may be more effective. Niclosamide, an FDA 
approved anthelmintic agent, has shown anti-cancer effects against human colon, breast, prostate cancers as well as GBM. 
However, the efficacy of the combination of niclosamide with temozolomide against GBM tumorspheres (TSs) has not been 
determined. We hypothesized that the combined treatment could effectively suppress GBM TSs.
Methods  GBM TSs (TS15-88, GSC11) were treated with niclosamide and/or temozolomide. Combined effects of two drugs 
were evaluated by measuring viability, neurosphere formation, and 3D-invasion in collagen matrix. Transcriptional profiles 
of GBM TS were analyzed using RNA sequencing. In vivo anticancer efficacy of combined drugs was tested in a mouse 
orthotopic xenograft model.
Results  Combination treatment of niclosamide and temozolomide significantly inhibited the cell viability, stemness, and 
invasive properties of GBM TSs. This combined treatment significantly down-regulated the expression of epithelial mesen-
chymal transition-related markers, Zeb1, N-cadherin, and β-catenin. The combined treatment also significantly decreased 
tumor growth in orthotopic xenograft models.
Conclusion  The combination of niclosamide and temozolomide effectively decreased the stemness and invasive properties 
of GBM TSs, suggesting that this regimen may be therapeutically effective in treating patients with GBM.
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Introduction

Patients with glioblastoma (GBM), the most common type of 
primary brain tumor, have a poor prognosis, with a median 
overall survival of about 17.5 months in Korea (Kim et al. 
2017a). Standard treatments in patients with GBM include 
chemotherapy with the alkylating agent temozolomide, 
along with surgical resection and radiotherapy (Roh et al.  
2017, 2020; Stupp et al. 2005). Outcomes may be improved 
by combining temozolomide with other therapeutic agents, 
especially old or failed drugs (Chong and Sullivan 2007). 
Because the pharmacokinetics of existing drugs have been 
determined, and because many of these agents have been 
approved for human use, many clinical trials have evaluated 
new uses of old drugs (Chong and Sullivan 2007).

Niclosamide is an anthelmintic agent approved by the 
U.S. Food and Drug Administration (FDA) that has been 
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used to treat tapeworm infection for approximately 50 years 
(Garin et al. 1964). Recent drug screening has identified 
niclosamide as a potential anticancer agent (Li et al. 2014). 
This agent has been found to inhibit cancer-associated sign-
aling cascades, including Wnt (Sack et al. 2011), mTORC1 
(Balgi et al. 2009), STAT3 (Ren et al. 2010), NF-κB (Wie-
land et al. 2013) and Notch (Wang et al. 2009). In addition, 
the anti-cancer effects of niclosamide have been demon-
strated in human colon (Sack et al. 2011), breast (Londono-
Joshi et al. 2014), prostate (Lu et al. 2011), lung (Stewart 
et al. 2016) cancers as well as in GBM (Wieland et al. 
(2013); Cheng et al. 2017).

GBM tumorspheres (TSs) are cells refractory to treatment 
(Kang et al. 2015; Kong et al. 2013a, b), making them a 
good testing platform to evaluate the efficacy of drugs (Kim 
et al. 2017b; Choi et al. 2016; Park et al. 2018). Niclosa-
mide was found to have anticancer effects against GBM TSs 
in vitro (Wieland et al. 2013; Cheng et al. 2017) and in vivo 
(Wieland et al. 2013). However, the effects of the combina-
tion of niclosamide and temozolomide on GBM TSs in vivo 
have not yet been determined. In this study, we examined 
combined effects of niclosamide and temozolomide using 
patient-derived TSs and a mouse orthotopic xenograft 
model. Our findings suggest that this combined treatment 
could be a new treatment option for GBM.

Materials and methods

Cell culture and reagents

Two primary tumor cells derived from GBM patients, TS15-
88 and GSC11, were used to create TS models in this study. 
TS15-88 was established from fresh GBM tissue specimens, 
as approved by the institutional review board of Yonsei 
University College of Medicine (4-2014-0649). Patient-
derived GSC11 cells were provided by Dr. Frederick F. Lang 
(Department of Neurosurgery, The University of Texas, M. 
D. Anderson Cancer Center, Houston, Texas, USA). For TS 
culture, cells were cultured in TS complete media composed 
of DMEM/F-12 (Mediatech, Manassas, VA, USA), 1 × B27 
(Invitrogen, San Diego, CA, USA), 20 ng/ml of bFGF, and 
20 ng/ml of EGF (Sigma-Aldrich, St. Louis, MO, USA) 
(Kwak et al. 2013). All in vitro experiments were performed 
under TS culture conditions. For in vitro treatments, niclosa-
mide and TMZ were dissolved in DMSO and added to cell 
cultures to the desired concentration.

Characterization of GBM TSs

TS formation from human GBM specimens followed 
previous methods (Kong et al. 2013b), and their expres-
sion of stemness markers, CD133, nestin, musashi, and 

podoplanin (Abcam, Cambridge, UK), was tested by 
immunocytochemistry. Neuroglial differentiation in GBM 
TSs was evaluated by monitoring the expression of GFAP 
(Dako, Carpinteria, CA, USA), MBP, NeuN, and TUBB3 
(Chemicon, Temecula, CA, USA).

Cell viability assay

The effects of niclosamide, TMZ, and the combination of 
niclosamide and TMZ on cell survival were determined 
using MTS viability assays (Promega, Madison, WI, USA) 
(Mosmann 1983). GBM TS cells seeded in 96-well plates 
(1 × 104 cells/well) were incubated at 37 °C for 24 h and 
treated with niclosamide and/or temozolomide for 3 days. 
MTS reagent (20 μl/well) was added, the cells were incu-
bated at 37 °C for 2 h, and the absorbance of each well was 
measured at 595 nm. Each experiment was repeated three 
times in triplicate, with the results expressed as the per-
centage of viable cells relative to controls. Synergy score 
for combination treatment of niclosamide and TMZ was 
calculated using Bliss method. Combination indices (CIs) 
of combined treatment with niclosamide and temozolo-
mide were calculated by CompuSyn software.

Sphere formation assay

Dissociated 10 single GBM TSs were cultured in 96-well 
plates in medium containing DMEM/F-12 (Mediatech, 
Manassas, VA, USA), supplemented with 1 × B27 (Inv-
itrogen, San Diego, CA, USA), 20 ng/ml of bFGF, 20 ng/
ml of EGF (Sigma-Aldrich, St. Louis, MO, USA), and 
50 U/ml penicillin/50 mg/ml streptomycin. After 3 weeks 
of incubation under different conditions, the number of 
sphere-positive wells was counted, and the proportion of 
sphere-positive wells in the treatment group relative to 
that in controls was calculated and presented as a percent-
age. Images of sphere positive wells were captured and 
analyzed using ToupView software (ToupTek Photonics, 
Zhejiang, China).

Invasion assay

GSC-11 and TS15-88 cells grown as single spheroids 
were seeded and cultured in individual wells of a 96-well 
plate. Each well was filled with mixed matrix composed of 
Matrigel, collagen type I (Corning), and TS complete media. 
Single spheroids were seeded inside the matrix prior to gela-
tion. Then, TS complete media was added over the gelled 
matrix to prevent drying. The invaded area was quantified 
as occupied area at (72–0 h)/0 h.
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Western blot analyses

Cell lysates were separated by SDS-PAGE on 10% 
Tris–glycine gels. Proteins were transferred to nitrocellu-
lose membranes and probed with antibodies against Sox2 
(Merck Millipore, Billerica, MA, USA); Nestin (Novus 
Biologicals, Littleton, CO, USA); PDPN and β-catenin 
(Cell Signaling Technology, Beverly, MA, USA); N-cad-
herin (R&D Systems); Zeb1 (Sigma-Aldrich); STAT3 
(Cell Signaling Technology); MGMT (MT3.1); Phospho-
rylated STAT3 (Cell Signaling Technology); and GAPDH 
(Santa Cruz Biotechnology, Santa Cruz, CA, USA). Pro-
teins were detected using horseradish peroxidase-con-
jugated IgG (Santa Cruz Biotechnology) in conjunction 
with Western Lightning Plus-enhanced chemilumines-
cence reagent (PerkinElmer, Waltham, MA, USA). Images 
were captured using an ImageQuant LAS 4000 mini (GE 
Healthcare Life Sciences, Little Chalfont, UK).

RNA QC, library construction, and sequencing

The quality and quantity of total RNA were assessed by 
Agilent 2100 Bioanalyzer with a Eukaryotic Total RNA 
Pico chip (Agilent Technologies). Libraries were quanti-
fied using the Agilent TapeStation 4200 HSD1000 screen 
tapes (Agilent Technologies) and KAPA Library Quan-
tification Kit (KK4824, Kapa Biosystems). The individ-
ual samples were pooled and sequenced on the Illumina 
NovaSeq6000 with 150 bp paired-end by following the 
manufacturer’s protocols. Image analysis were performed 
using the NovaSeq6000 control Software version 1.3.1 
and the output data was demultiplexed with bcl2fastq v2.2 
generating fastqc files. Detailed description of experimen-
tal materials and methods is given in the supplementary 
experimental procedures.

Preprocessing of transcriptome data

The quality of the reads was checked using fastQC (v.0.10.1) 
and the sequencing adapters were removed using trimmo-
matic (v. 0.38). Low quality reads were filtered according 
to the following criteria; reads contain more than 10% of 
skipped bases (marked as ‘N’s), reads contain more than 
40% of bases whose quality scores are less than 20, and 
reads whose average quality scores of each read are less 
than 20. Filtered reads were mapped to the human reference 
genome (Ensembl release 72 (Flicek et al. 2013)) using the 
aligner Tophat (Trapnell et al. 2009). Gene expression level 
was measured with Cufflinks v2.1.1 (Trapnell et al. 2012) 
using the gene annotation database of Ensembl release 72. 
Non-coding region was removed with—mask option.

Functional annotation to DEGs

A total of 1391 DEGs (One-way ANOVA with Tukey’s 
post hoc test; P < 0.001) was identified between control 
and combination groups. Functional annotation to these 
DEGs was performed by over-representation analysis 
(ORA) using GO gene sets, and then visualized as an 
enrichment map using Cytoscape (Shannon et al. 2003) 
and ClueGO (Bindea et al. 2009) plug-in. Enriched GO 
terms were functionally categorized based on their kappa 
scores (> 0.4). Statistical significance was determined 
using two-sided hypergeometric test, and only nodes with 
Bonferroni-adjusted P value < 0.05 were displayed.

Mouse orthotopic xenograft model

Male athymic nude mice (4–8 weeks old; Central Lab. 
Animal Inc., Seoul, Korea) were used in this study. Mice 
were housed in micro-isolator cages under sterile con-
ditions and monitored for at least 1 week before study 
initiation to ensure proper health. Lighting, tempera-
ture, and humidity were controlled centrally. Mice were 
anesthetized with a solution of Zoletil (30 mg/kg; Vir-
bac Korea, Seoul, Korea) and xylazine (10 mg/kg; Bayer 
Korea, Seoul, Korea), which was administered intraperito-
neally. GBM TSs (GSC11) were pretreated by niclosamide 
(500 nM), TMZ (250 µM), and combination of niclosa-
mide and TMZ for 3 days with reference to the pretreat-
ment method from several studies (Liu et al. 2016; Natale 
et al. 2018; Wang et al. 2019; Xia et al. 2017). DMSO-
control (n = 5), niclosamide (n = 5), TMZ (n = 5), and 
combination of niclosamide and TMZ (n = 5)—pretreated 
GBM TSs were implanted into the right frontal lobe of 
nude mice using a guide-screw system (Lal et al. 2000). 
total of 5 × 105 cells was injected to a depth of 4.5 mm 
using a Hamilton syringe (Dongwoo Science Co., Seoul, 
Korea). Mice were euthanized according to the approved 
protocol if daily monitored body weight had decreased 
by more than 15% compared to the original body weight.

Bioluminescence imaging

Bioluminescence acquisition and analyses were performed 
using an IVIS imaging system and Living Image v4.2 soft-
ware (Caliper Life Sciences, Hopkinton, MA, USA). Mice 
were injected intraperitoneally with 100 μl d-luciferin 
(30 mg/ml; Promega) 15 min prior to signal acquisition 
(5 s), which took place under 2.5% isoflurane anesthesia. 
Grayscale photographic images and bioluminescence color 
images were superimposed.
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Statistical analysis

Levels of significance for comparisons among treatment 
groups were determined using one-way ANOVA with Tuk-
ey’s post hoc test for multiple comparisons. Bliss expecta-
tion was calculated as (A + B) – A × B, where A and B are 
the fractional growth inhibitions of drug A and B at a given 
dose. Survival analysis was performed using Kaplan–Meier 
curves with log-rank test. Results were considered statis-
tically significant at a P value < 0.05. GraphPad Prism 6 
(GraphPad Software Inc.) was used for quantitative analysis.

Results

Characterization of GBM TSs

Morphologically, GSC11 and TS15-88 cells cultured in TS 
complete media were spheroid shaped. Immunocytochemis-
try showed that both GSC11 and TS15-88 TSs were positive 
for the stem cell markers, CD133 and Nestin, whereas only 
GSC11 TSs were further positive for Podoplanin (PDPN) 
and Musashi. Neuroglial differentiation was successfully 
induced in all TSs, which was confirmed by positive GFAP, 
MBP, NeuN and TUBB3 stains (Supplementary Fig. 1).

Combined treatment with niclosamide and TMZ 
synergistically reduces cellular viability of GBM TSs

To determine an optimal working concentration of niclosa-
mide, its cytotoxicity against GBM TSs was tested. Treat-
ment of both GSC11 and TS15-88 TSs with niclosamide 
reduced cell viability in a concentration dependent manner 
(Fig. 1a). MTS assays testing the viability of GBM TS cells 
treated with niclosamide (500 nM), and/or temozolomide 
(250 μM) for 3 days showed that the combination treatment 
of niclosamide and TMZ more effectively inhibited the pro-
liferation of GBM TSs than either agent alone or untreated 
controls (Fig. 1b). The synergy scores are calculated across 
all the tested concentration combinations by bliss method, 
showing that combined treatment of niclosamide and TMZ 
synergistically inhibited both GBM TSs (GSC11 and TS15-
88) (Fig. 1c, d). The combination index of combined treat-
ment of niclosamide (500 nM) and TMZ (250 μM) is shown 
in supplementary Fig. 2, suggesting an existence of syner-
gism between the drugs.

Combined treatment with niclosamide and TMZ 
suppresses stemness of GBM TSs

Sphere-formation assays showed that temozolomide, niclosa-
mide, and their combination differed in their ability to inhibit 
the stemness of GBM TSs. GBM TS morphology was more 

affected by combination treatment than by either agent alone 
(Fig. 2a). Although temozolomide alone somewhat reduced 
the proportion of sphere-positive wells and niclosamide alone 
was ineffective, niclosamide enhanced the anti-stemness 
activity of temozolomide (Fig. 2b), reducing the sphere radii 
(Fig. 2c). Western blot analyses showed that the combina-
tion of niclosamide and temozolomide reduced the expres-
sion of stemness-related proteins, including nestin and Oct3/4 
(Fig. 2d).

Combined treatment with niclosamide and TMZ 
suppresses invasiveness of GBM TSs

For 3D invasion assays, we implanted GFP-GBM TSs in a 
collagen type 1 matrix and evaluated the anti-invasion effects 
of niclosamide and/or temozolomide after 72 h. Invasion mor-
phology was more influenced by combination treatment than 
by either temozolomide or niclosamide alone (Fig. 3a). Com-
pared with untreated GBM TSs, the combination of niclosa-
mide (500 nM) and temozolomide (250 μM) significantly 
inhibited invasion by the GBM TSs, GSC11 and TS15-88 cells 
(Fig. 3b). Western blot analyses showed that combined treat-
ment with niclosamide and temozolomide of both TSs reduced 
the expression of the EMT-related markers, N-cadherin, Snail, 
and Zeb1 (Fig. 3c). The combination treatment of niclosamide 
and temozolomide also suppressed expressions of MGMT and 
phosphorylated STAT3 (Fig. 3d).

Transcriptional profiles following niclosamide and/
or TMZ treatment

We next used RNA sequencing to examine the effect of 
niclosamide and TMZ on transcriptional profiles of GBM TS 
(GCS11). Hierarchical clustering of differentially expressed 
genes (DEGs) with expression levels of top 30% showed 
strong intragroup clustering and distinct expression pat-
terns compared with controls (Fig. 4a). A subset of genes, 
which encode proteins that regulate cell stemness and EMT 
such as NES (nestin), SNAI2 (TWIST), and ZEB1 were sig-
nificantly downregulated, validating western-blotting data 
treated with combination of niclosamide and TMZ (Fig. 4b). 
Among 1391 DEGs from control and combination groups, 
892 genes from combination group were upregulated. Func-
tional annotation of these DEGs using Gene Ontology (GO) 
database revealed that protein catabolism and autophagy-
related gene sets were exclusively enriched by combined 
therapy (Fig. 4c).

Therapeutic responses in a mouse orthotopic 
xenograft model

The in  vivo therapeutic effects of niclosamide and/or 
temozolomide on tumor growth were analyzed in a mouse 
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orthotopic xenograft model using GBM TSs (GSC11). 
Bioluminescence imaging showed that, compared with 
either agent alone, the combination of niclosamide and 
temozolomide significantly reduced the tumor burden 
compared to the control in this orthotopic xenograft 
model (Fig. 5a, b). In the Kaplan–Meier survival analy-
sis, different anti-cancer effects were shown accordingly 
to treatment groups (Fig. 5c). Combined treatment with 
niclosamide and TMZ confers significant survival benefits 
compared to the control.

Discussion

Despite recent progress in understanding the biology of 
GBM, many tested chemotherapy strategies have been 
found that they do not confer significant survival advan-
tages over treatment with temozolomide alone. Accord-
ingly, more effective therapeutic agents are required for 
clinical management of GBM. Because TSs derived from 
GBM are highly resistant to radiation and chemotherapy 
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(D’Alessandris et al. 2017), we screened drug regimens 
against GBM TSs (Kim et al. 2017b; Choi et al. 2016; 
Park et al. 2018).

Although niclosamide has anti-cancer effects against 
various types of cancer including GBM (Sack et al. 2011; 
Wieland et al. 2013; Londono-Joshi et al. 2014; Lu et al. 
2011; Stewart et al. 2016), the in vivo combination effects of 
niclosamide and TMZ against GBM TSs are still unknown. 
The present study evaluated the effects of treatment with 
niclosamide and temozolomide, alone and in combination, 
on the stemness and invasiveness of GBM TSs, demon-
strating that combination treatment effectively reduced the 
stemness and invasive properties (Lim et al. 2020) of GBM 
TSs. Furthermore, we confirmed for the first time that the 
combination treatment of niclosamide and TMZ significantly 
prolong overall survival compared to the control group in a 
mouse orthotopic xenograft model.

Firstly, we found that niclosamide significantly reduced 
proliferation of GBM TSs in a dose dependent manner. 
Chien et  al. (2018) reported that niclosamide inhibited 
invasiveness but could not alter cell viability in hepatocel-
lular carcinoma. However, several studies have revealed 
that niclosamide inhibits the proliferation of cancer cells in 
colon (Sack et al. 2011), breast (Londono-Joshi et al. 2014), 

prostate (Lu et al. 2011), and lung cancers (Stewart et al. 
2016), as well as GBM (Wieland et al. 2013). Moreover, 
niclosamide enhanced the anti-proliferative activities of 
oxaliplatin in human colorectal cancer (Osada et al. 2011) 
and of cisplatin in lung cancer (Zuo et al. 2018). Wieland 
et al. also reported that niclosamide acts as a natural inducer 
of NFKBIA and combined treatment of niclosamide and 
TMZ synergistically inhibited cellular viability in NFK-
BIA ± glioblastoma genotype (Wieland et al. 2013). Our 
results are consistent with those of previous studies, show-
ing the anti-proliferative activities of niclosamide as well as 
synergistic effects of combined treatments.

In the case of GBM, the cell of origin is in the subven-
tricular zone (Yoon et al. 2020; Lee et al. 2018), but the cells 
in which the tumor is present are a realistic therapeutic tar-
get. Cancer stem cells (CSCs) have been tested as targets of 
therapeutic agents because such cells are resistant to chemo-
therapy (Dean et al. 2005). In large tumors, however, can-
cer cells may acquire or lose stemness, resulting in tumors 
containing large numbers of CSCs (Kang et al. 2015). We 
therefore tested the effects of niclosamide and/or temozo-
lomide on heterogenous GBM TSs. Some studies reported 
that niclosamide reduces the stemness of CSCs in breast can-
cer (Wang et al. 2013) and chronic myelogenous leukemia 
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trols (asterisks over the bar)
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(Jin et al. 2017) by inhibiting the Wnt/β-catenin pathway. 
Similarly, it was confirmed that GBM cells pre-exposed to 
niclosamide had decreased stemness in neurosphere assays 
(Wieland et al. 2013). Consistent with previous results, we 
found that combined treatment with niclosamide and temo-
zolomide significantly reduced the stemness of GBM TSs, 
with western blotting showing that this combination reduced 
the expression of stemness markers.

The EMT has been implicated in cancer progression, and 
the canonical Wnt signaling cascade has been found to con-
trol transcription factor Snail, which triggers EMT in human 
cancer by suppressing the expression of epithelial cell genes 
(Barrallo-Gimeno and Nieto 2005). Niclosamide is known 

for a potent inhibitor of Wnt/β-catenin signaling in vari-
ous types of cancer (Sack et al. 2011; Wieland et al. 2013). 
Ahn et al. (2017) revealed that niclosamide directly targets 
Axin-GSK3 interactions, suppressing Wnt/Snail-mediated 
EMT in human colon cancer. Some studies reported that 
niclosamide significantly reduced invasiveness of breast 
(Ye et al. 2014) and lung (Stewart et al. 2016) cancer cells. 
However, the ability of the combination of niclosamide and 
temozolomide to inhibit invasiveness of GBM TSs had not 
yet been reported. We confirmed for the first time that the 
combination treatment of niclosamide and TMZ effectively 
reduced the invasiveness of GBM TSs, suppressing Snail 
mediated EMT.

Fig. 4   GSC11 cells were 
treated with niclosamide and 
TMZ alone or in combination 
for 72 h, and gene expression 
profile was obtained using 
RNA-sequencing. a For genes 
with average expression levels 
of top 30%, average linkage 
hierarchical clustering was 
performed with Euclidean dis-
tance as a distance metric, and 
expression levels were depicted 
as a heat map using GENE-E 
software. b Expression levels 
of stemness- and invasiveness-
associated genes were displayed 
as a heat map. c Among 1391 
DEGs between control and 
combination groups, 892 genes 
whose expression levels were 
upregulated in combination 
group were functionally anno-
tated, clustered, and visualized 
as an enrichment map. Each 
node represents a GO term, with 
the node size reflecting statisti-
cal significance for over-rep-
resentation. An edge between 
two nodes denotes kappa score 
relationship. Node colors reflect 
clustered modules; the most 
significant GO terms for each 
module have highlighted labels
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Temozolomide, known as alkylating agent, makes DNA 
methylation of guanine at O6 position, leading to double 
strand break and induction of cancer cell apoptosis (Trivedi 
et al. 2005). Because DNA repair enzyme O6-methylgua-
nine-DNA methyltransferase (MGMT) removes this meth-
ylation (Kokkinakis et al. 2001), the methylation extent of 
the MGMT promoter has been regarded as a prognostic fac-
tor for GBM (Hegi et al. 2005). Kohsaka et al. (2012) found 
that STAT3 inhibition downregulated MGMT expression 
and overcame temozolomide resistance in GBM cell lines. 
Because it is well known that niclosamide acts as a STAT3 
pathway inhibitor (Ren et al. 2010; Gyamfi et al. 2019), we 
conducted immunoblotting and found that the combination 
treatment of niclosamide and temozolomide suppresses the 
expression of phosphorylated STAT3 as well as MGMT. 
This result suggests that STAT3 inhibition could be a poten-
tial synergistic mechanism of the combination treatment.

Transcriptome analyses comparing expression profiles 
before and after combined treatment of niclosamide and 
TMZ revealed that a subset of genes related to stemness 
and EMT were significantly downregulated. Gene Set 

Enrichment Analysis (GSEA) also showed that autophagy 
related gene set was upregulated after combined treatment, 
suggesting that the combination treatment has anti-prolif-
eration effect as well as anti-stemness and anti-invasive-
ness effects.

Several orthotopic xenograft models have shown that 
niclosamide inhibits tumor growth and metastases in vari-
ous types of cancers (Osada et al. 2011; Li et al. 2013). 
One glioblastoma study also reported that niclosamide-
pretreated group had survival benefit compared with 
untreated group in a mouse orthotopic xenograft model 
(Wieland et al. 2013). However, the therapeutic potential 
of combination treatment of niclosamide and TMZ against 
GBM TSs in vivo is still unknown. Here, we found that 
the combination treatment of niclosamide and TMZ sig-
nificantly prolonged survival period in our experiments. 
These results could be explained by RNA sequencing and 
immunoblotting data that niclosamide treatment might 
have impact on the cancer signaling cascades which are 
associated with stemness, invasiveness, and proliferation.
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Fig. 5   Therapeutic responses in a mouse orthotopic xenograft model. 
a Tumor volume was measured by bioluminescence imaging. b Sig-
nal intensity was quantified as total photon flux from tissues on the 
5th week (*P < 0.05; one-way ANOVA with Tukey’s post hoc test). 

c Kaplan–Meier survival curve showed increased survival of mice 
treated with the combination of niclosamide and temozolomide com-
pared to the control (P = 0.0481)
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In summary, the combination of niclosamide and temozo-
lomide effectively reduced the viability, stemness and inva-
sion capacity of GBM TSs as well as prolonged survival 
period in a mouse orthotopic xenograft models, suggesting 
that this combination could be treatment option for GBM 
patients in clinical setting.
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