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Abstract: In this paper, we prove some inequalities between intrinsic and extrinsic curvature invari-
ants, namely the normalized δ-Casorati curvatures and the scalar curvature of statistical submanifolds
in Kenmotsu statistical manifolds of constant φ-sectional curvature that are endowed with semi-
symmetric metric connection. Furthermore, we investigate the equality cases of these inequalities.
We also describe an illustrative example.
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1. Introduction

The study of simple relationships between the main intrinsic and extrinsic invariants
of submanifolds is a fundamental problem in submanifold theory [1]. Recent research
shows a growing trend in approaching this fascinating problem through an approach that
proves some types of geometric inequalities (see, e.g., [2–10]).

The interest in such inequalities goes back in 1993, when B.-Y. Chen introduced
the intrinsic δ-invariants, now called Chen invariants, satisfying optimal inequalities for
submanifolds in real space forms [11]. Later, the notion of normalized δ-Casorati curvatures
(extrinsic invariants) was defined in [12,13], giving rise to new inequalities. Unlike the
Gauss and mean curvature, F. Casorati in 1890 proposed to measure the curvature of a
surface at a point according to common intuition of curvature [14]. Currently, this measure

is named the Casorati curvature, defined by C =
k2

1+k2
2

2 , where k1 and k2 are the principal
curvatures of the surface in E3. L. Verstraelen geometrically modeled the perception as
the Casorati curvature of sensation in the context of early human vision [15]. The Casorati
curvature is also assessed as a natural measure or a measure of the normal deviations from
planarity in some models of computer vision [16,17]. In mechanics and modern computer
science, the Casorati curvature has become known as bending energy [17].

The topic of δ-Casorati curvatures will appeal to more geometers focused on finding
new solutions of the above problem. In this respect, some recent developments are devoted
to inequalities on various submanifolds of a statistical manifold, notion defined by Amari [18]
in 1985 in the realm of information geometry [3–10]. In this setting, the Fisher information

Entropy 2022, 24, 800. https://doi.org/10.3390/e24060800 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24060800
https://doi.org/10.3390/e24060800
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-2939-2776
https://orcid.org/0000-0001-6922-756X
https://doi.org/10.3390/e24060800
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24060800?type=check_update&version=1


Entropy 2022, 24, 800 2 of 16

metric is one of the most important metrics that can be considered on statistical models [19].
Actually, it is known that modulo rescaling is the only Riemannian metric invariant under
sufficient statistics and it is seen as an infinitesimal form of the relative entropy [20]. In
particular, Fisher information metrics play a key role in the multiple linear regressions
by maximizing the likelihood [21]. Statistical manifolds are also applied in fields such as
physics, machine learning, statistics, etc. There is a natural relationship between statistical
manifolds and entropy. For example, P. Pessoa et al. studied the entropic dynamics on
the statistical manifolds of Gibbs distributions in [22]. Since each point of the space is a
probability distribution, a statistical manifold has a profound effect on the dynamics.

Initiated by K. Kenmotsu in 1972 [23] as a branch of contact geometry, Kenmotsu
geometry has generated a wide range of applications in physics (thermodynamics, classical
mechanics, geometrical optics, geometric quantization, classical mechanics) and control
theory [24]. The Kenmotsu statistical manifold, defined by H. Furuhata in [25], is obtained
locally as a warped product between a holomorphic statistical manifold and a real line.
In [8], the authors established some Casorati inequalities for Kenmotsu statistical manifolds
of constant φ-sectional curvature.

The concept of semi-symmetric metric connection on a Riemannian manifold was intro-
duced by H.A. Hayden in [26]. Later, interesting properties of a Riemannian manifold
with semi-symmetric metric connection were obtained by K. Yano in [27] and T. Imai
in [28]. In addition, T. Imai investigated hypersurfaces of a Riemannian manifold with
semi-symmetric metric connection [29]. Z. Nakao generalized Imai’s approach of hypersur-
faces by studying submanifolds of a Riemannian manifold with semi-symmetric metric
connection [30]. The geometric inequalities on submanifolds in various manifolds with
semi-symmetric metric connection have been extensively proven (see, e.g., [31–37]). How-
ever, only a few results are dedicated to the ambient of statistical manifolds endowed
with semi-symmetric metric connection. S. Kazan and A. Kazan obtained some geometric
properties of Sasakian statistical manifolds with a semi-symmetric metric connection [38].
Furthermore, M.B.K. Balgeshir and S. Salahvarzi studied new curvature properties and
equations of statistical manifolds with a semi-symmetric metric connection as well as their
submanifolds [39].

In this article, we establish some basic inequalities between the normalized δ-Casorati
curvatures (that are known to be extrinsic invariants) and the scalar curvature (a funda-
mental intrinsic invariant) of statistical submanifolds in Kenmotsu statistical manifolds
having a constant φ-sectional curvature, which are endowed with semi-symmetric metric
connection. Moreover, we investigated the equality cases of such inequalities. A nontrivial
example is also constructed in the last part of the article.

2. Preliminaries

Let (M̄, g) be a Riemannian manifold, with g a Riemannian metric on M̄ and ∇̄ an
affine connection on M̄. A triplet (M̄, g, ∇̄) is called a statistical manifold if the torsion
tensor field of ∇̄ vanishes and ∇̄g is symmetric [40]. With other words, the pair (∇̄, g) is a
statistical structure on M̄. Let ∇̄∗ be an affine connection of M̄ defined by

X ḡ(Y, Z) = ḡ(∇̄XY, Z) + ḡ(Y, ∇̄∗XZ),

for any X, Y, Z ∈ Γ(TM̄), where Γ(TM̄) is the set of smooth tangent vector fields on M̄.
Then ∇̄∗ is named the dual connection of ∇̄ with respect to g. Clearly, (∇̄∗)∗ = ∇̄.

Moreover, the Levi-Civita connection on M̄ is given by ∇̄0 = ∇̄+∇̄∗
2 [41]. If (M̄, g, ∇̄) is a

statistical manifold, then it is known that (M̄, g, ∇̄∗) is too.
Let M be a submanifold of a statistical manifold (M̄, g, ∇̄) with g the induced metric

on M, and ∇ the induced connection on M. Then (M, g,∇) is a statistical manifold as well.
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Denote by h and h∗ the imbedding curvature tensor of M in M̄ with respect to ∇̄ and ∇̄∗,
respectively. Then Gauss’s formulas [40] are expressed by:

∇̄XY = ∇XY + h(X, Y),

∇̄∗XY = ∇∗XY + h∗(X, Y),

for any X, Y ∈ Γ(TM).
Furthermore, denote by R, R̄, R∗ and R̄∗ the (0, 4)-curvature tensors for the connections

∇, ∇̄, ∇∗ and ∇̄∗, respectively. Thus, the Gauss equations for the connections ∇̄ and ∇̄∗,
respectively, hold as follows [41]:

g(R̄(X, Y)Z, W) = g(R(X, Y)Z, W) + g(h(X, Z), h∗(Y, W)) (1)

− g(h∗(X, W), h(Y, Z)),

and

g(R̄∗(X, Y)Z, W) = g(R∗(X, Y)Z, W) + g(h∗(X, Z), h(Y, W)) (2)

− g(h(X, W), h∗(Y, Z)),

for any X, Y, Z, W ∈ Γ(TM).
We can define now the statistical curvature tensor field [40] on M and M̄, denoted by S

and S̄, respectively:

S(X, Y)Z =
1
2
{R(X, Y)Z + R∗(X, Y)Z}, (3)

for any X, Y, Z, W ∈ Γ(TM), and

S̄(X, Y)Z =
1
2
{R̄(X, Y)Z + R̄∗(X, Y)Z}, (4)

for any X, Y, Z, W ∈ Γ(TM̄).
Set a tensor field K̄ ∈ Γ(TM̄(1,2)) by:

K̄XY = K̄(X, Y) = ∇̄XY− ∇̄0
XY. (5)

Furthermore, we have:

K̄(X, Y) = ∇̄0
XY− ∇̄∗XY =

1
2
(∇̄XY− ∇̄∗XY).

Then K̄ has the properties:

K̄(X, Y) = K̄(Y, X),

g(K̄(X, Y), Z) = g(Y, K̄(X, Z)).

Next, we consider (M̄, g, φ, ξ) a (2n + 1)-dimensional Kenmotsu manifold defined as
an almost contact metric manifold M̄ which satisfies for any X, Y ∈ Γ(TM̄) the relations:

(∇̄0
Xφ)(Y) = g(φX, Y)ξ − η̄(Y)φX,

∇̄0
Xξ = X− η̄(X)ξ,

where φ ∈ Γ(TM̄(1,1)), ξ ∈ Γ(TM̄), η̄ is a 1-form on M̄ with η̄(X) = g(X, ξ).
A Kenmotsu manifold M̄ with a statistical structure (∇̄, g) is called a Kenmotsu

statistical manifold [25] if the following formula holds for any X, Y ∈ Γ(TM̄):

K̄(X, φY) = −φK̄(X, Y),
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where K̄ is the tensor field defined in (5),
A Kenmotsu statistical manifold (M̄, ∇̄, g, φ, ξ) is said to be of constant φ-sectional

curvature c if and only if [25]:

S̄(X, Y)Z =
c− 3

4
{g(Y, Z)X− g(X, Z)Y)} (6)

+
c + 1

4
{g(φY, Z)φX− g(φX, Z)φY− 2g(φX, Y)φZ

− g(Y, ξ)g(Z, ξ)X + g(X, ξ)g(Z, ξ)Y

+ g(Y, ξ)g(Z, X)ξ − g(X, ξ)g(Z, Y)ξ},

for any X, Y, Z ∈ Γ(TM̄).
On the other hand, assume that ∇̃ is a linear connection on M̄. Then ∇̃ is called a

semi-symmetric connection if the torsion tensor T̃ of ∇̃ defined by

T̃(X, Y) = ∇̃XY− ∇̃YX− [X, Y]

satisfies for any X, Y ∈ Γ(TM̄) the relation:

T̃(X, Y) = η(Y)X− η(X)Y, (7)

where η is a 1-form. Moreover, the connection ∇̃ is called a semi-symmetric metric connection
on M̄ if we have ∇̃g = 0 (see [27]).

Next, we will denote by γ the (1, 2)-tensor field defined by

γ(X, Y) = (∇̄0
Xη)Y− (∇0

Xη)Y.

Let (M̄, g, ∇̄) be a statistical manifold endowed with a semi-symmetric metric connec-
tion ∇̃. Then ∇̃ satisfies for any X, Y ∈ Γ(TM̄) [39]:

∇̃XY = ∇̄XY + η(Y)X− g(X, Y)U − K̄XY, (8)

∇̃XY = ∇̄∗XY + η(Y)X− g(X, Y)U − K̄XY, (9)

where U is a vector field such that g(U, X) = η(X), K̄ is the difference tensor field defined
in (5).

Let M be an (m + 1)-dimensional submanifold of a statistical manifold M̄ endowed
with a semi-symmetric metric connection ∇̃. Denote ∇′ the induced connection and h′ the
second fundamental form on M with respect to ∇̃. Then the Gauss formula with respect to
∇̃ is:

∇̃XY = ∇′XY + h′(X, Y). (10)

In addition, the Gauss equation with respect to ∇̃ is [39]:

g(R̃(X, Y)Z, W) = g(R′(X, Y)Z, W) + g(h′(X, Z), h′(Y, W)) (11)

−g(h′(Y, Z), h′(X, W)),

where R̃ and R′ are the curvature tensor fields associated with the connections ∇̃ and ∇′,
respectively.

We notice that h′ coincides with the second fundamental form of the Levi-Civita
connection (see, e.g., [39]). Thus, h′ becomes:

h′(X, Y) =
1
2
(h(X, Y) + h∗(X, Y)). (12)
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According to Kazan et al. [38], the relations between the curvature tensor R̃ of ∇̃ and
the curvature tensors R̄ and R̄∗ of the connections ∇̄ and ∇̄∗ are as follows:

R̃(X, Y)Z = R̄(X, Y)Z + {η(X)U − η(U)X− ∇̄XU + K̄(X, U)}g(Y, Z) (13)

+{η(Y)U − η(U)Y− ∇̄YU + K̄(Y, U)}g(X, Z)

−g(η(X)U − ∇̄XU + K̄(X, U), Z)Y + g(η(Y)U − ∇̄YU + K̄(Y, U), Z)X−
(∇̄XK̄)(Y, Z) + (∇̄YK̄)(X, Z) + K̄(X, K̄(Y, Z))− K̄(Y, K̄(X, Z)),

and

R̃(X, Y)Z = R̄∗(X, Y)Z + {η(X)U − η(U)X− ∇̄∗XU − K̄(X, U)}g(Y, Z) (14)

−{η(Y)U − η(U)Y− ∇̄∗YU − K̄(Y, U)}g(X, Z)

−g(η(X)U − ∇̄∗XU − K̄(X, U), Z)Y + g(η(Y)U − ∇̄∗YU − K̄(Y, U), Z)X +

(∇̄∗XK̄)(Y, Z)− (∇̄YK̄)(X, Z) + K̄(X, K̄(Y, Z))− K̄(Y, K̄(X, Z)),

for any X, Y, Z ∈ Γ(TM̄).
On the other hand, since the induced connection ∇′ of the semi-symmetric metric

connection ∇̃ is also semi-symmetric metric connection [39], then the Gauss formula (10)
becomes:

g(R̃(X, Y)Z, W) = g(R(X, Y)Z, W) (15)

+{η(X)η(W)− η(U)g(X, W)− g(∇XU, W) + g(KXU, W)}g(Y, Z)

+{η(Y)η(W)− η(U)g(Y, W)− g(∇YU, W) + g(KYU, W)}g(X, Z)

−g(η(X)U −∇XU + K(X, U), Z)g(Y, W) + g(η(Y)U −∇YU + K(Y, U), Z)g(X, W)

−g((∇XK)(Y, Z), W) + g((∇YK)(X, Z), W) + g(KXK(Y, Z), W)− g(KYK(X, Z), W)

−1
4

g(h(X, W) + h∗(X, W), h(Y, Z) + h∗(Y, Z))

+
1
4

g(h(X, Z) + h∗(X, Z), h(Y, W) + h∗(Y, W)),

where KXY = 1
2 (∇−∇∗) and R is the curvature tensor of the induced statistical connection

∇ on the submanifold M.
Similarly, we can obtain the Gauss formula involving the curvature tensor R∗ of the

induced statistical connection ∇∗ on M as follows:

g(R̃(X, Y)Z, W) = g(R∗(X, Y)Z, W) (16)

+{η(X)η(W)− η(U)g(X, W)− g(∇∗XU, W) + g(KXU, W)}g(Y, Z)

+{η(Y)η(W)− η(U)g(Y, W)− g(∇∗YU, W) + g(KYU, W)}g(X, Z)

−g(η(X)U −∇∗XU + K(X, U), Z)g(Y, W) + g(η(Y)U −∇∗YU + K(Y, U), Z)g(X, W)

−g((∇∗XK)(Y, Z), W) + g((∇∗YK)(X, Z), W) + g(KXK(Y, Z), W)− g(KYK(X, Z), W)

−1
4

g(h(X, W) + h∗(X, W), h(Y, Z) + h∗(Y, Z))

+
1
4

g(h(X, Z) + h∗(X, Z), h(Y, W) + h∗(Y, W)).

If x ∈ M and π ⊂ Tx M is a non-degenerate 2-plane, then the sectional curvature σ is
defined as [40]:

σ(π) = σ(X ∧Y) =
g(S(X, Y)Y, X)

g(X, X)g(Y, Y)− g2(X, Y)
, (17)

where {X, Y} is a basis of π.
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The scalar curvature τ of (M,∇, g) at a point x ∈ M is defined by:

τ(x) = ∑
1≤i<j≤m+1

σ(ei ∧ ej) = ∑
1≤i<j≤m+1

g(S(ei, ej)ej, ei), (18)

where {e1, . . . , em+1} is an orthonormal basis at x. On the other hand, the normalized scalar
curvature ρ of (M,∇, g) at a point x ∈ M is given by

ρ(x) =
2τ(x)

m(m + 1)
. (19)

The mean curvature vector fields of M are defined by, respectively:

H =
1

m + 1

m+1

∑
i=1

h(ei, ei), H∗ =
1

m + 1

m+1

∑
i=1

h∗(ei, ei).

It follows that we have 2h0 = h + h∗ and 2H0 = H + H∗, where h0 and H0 are the
second fundamental form and the mean curvature field of M, respectively, with respect to
the Levi–Civita connection ∇0 on M.

Then, the squared mean curvatures of the submanifold M in M̄ are given by:

‖H‖2 =
1

(m + 1)2

2n+1

∑
α=m+2

(
m+1

∑
i=1

hα
ii

)2

, ‖H∗‖2 =
1

(m + 1)2

2n+1

∑
α=m+2

(
m+1

∑
i=1

h∗αii

)2

,

where hα
ij = g(h(ei, ej), eα) and h∗αij = g(h∗(ei, ej), eα), for i, j ∈ {1, . . . , m + 1}, α ∈ {m +

2, . . . , 2n + 1}.
The Casorati curvatures of the submanifold M in M̄ are defined by the squared norms

of h and h∗ over the dimension (m + 1), denoted by C and C∗, respectively, as follows:

C = 1
m + 1

‖h‖2 =
1

m + 1

2n+1

∑
α=m+2

m+1

∑
i,j=1

(
hα

ij

)2
,

C∗ = 1
m + 1

‖h∗‖2 =
1

m + 1

2n+1

∑
α=m+2

m+1

∑
i,j=1

(
h∗αij

)2
,

where hα
ij and h∗αij are defined above.

Let L be an s-dimensional subspace of Tx M, s ≥ 2 and let {e1, . . . , es} be an orthonor-
mal basis of L. Then the Casorati curvatures C(L) and C∗(L) of L are given by:

C(L) =
1
s

2n+1

∑
α=m+2

s

∑
i,j=1

(
hα

ij

)2
, C∗(L) =

1
s

2n+1

∑
α=m+2

s

∑
i,j=1

(
h∗αij

)2
.

The normalized δ-Casorati curvatures δC(m) and δ̂C(m) of the submanifold M are given by:

δC(m)|x =
1
2
C |x +

m + 2
2(m + 1)

inf{C(L)|L a hyperplane of Tx M}

and
δ̂C(m)|x = 2C |x −

2m + 1
2(m + 1)

sup{C(L)|L a hyperplane of Tx M}.

Furthermore, the dual normalized δ∗-Casorati curvatures δ∗C(m) and δ̂∗C(m) of the sub-
manifold M in M̄ are defined as follows:

δ∗C(m)|x =
1
2
C∗ |x +

m + 2
2(m + 1)

inf{C∗(L)|L a hyperplane of Tx M}
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and
δ̂∗C(m)|x = 2C∗ |x −

2m + 1
2(m + 1)

sup{C∗(L)|L a hyperplane of Tx M}.

The generalized normalized δ-Casorati curvatures δC(r; m) and δ̂C(r; m) of M in M̄ are
defined in [13] by:

δC(r; m)|x = r C |x +a(r) inf{C(L) | L a hyperplane of Tx M},

if 0 < r < m(m + 1), and

δ̂C(r; m)|x = r C |x +a(r) sup{C(L) | L a hyperplane of Tx M},

if r > m(m + 1), where a(r) is set as

a(r) =
m(r + m + 1)(m2 + m− r)

(m + 1)r
,

for any positive real number r, different from m(m + 1).
Moreover, the dual generalized normalized δ∗-Casorati curvatures δ∗C(r; m) and δ̂∗C(r; m)

of the submanifold M in M̄ are given by:

δ∗C(r; m)|x = r C∗ |x +a(r) inf{C∗(L) | L a hyperplane of Tx M},

if 0 < r < m(m + 1), and

δ̂∗C(r; m)|x = r C∗ |x +a(r) sup{C∗(L) | L a hyperplane of Tx M},

if r > m(m + 1), where a(r) is expressed above.
Next, we consider the following constrained extremum problem

min
x∈M

f (x), (20)

where M is a submanifold of a Riemannian manifold (M̄, g), and f : M̄→ R is a function
of differentiability class C2. In this setting, we recall the following result which we will
use later.

Theorem 1 ([42]). If the Riemannian submanifold M is complete and connected, (grad f )(x0) ∈
T⊥x0

M for a point x0 ∈ M, and the bilinear form V : Tx0 M× Tx0 M→ R defined by:

V(X, Y) = Hess( f )(X, Y) + g(ĥ(X, Y), grad f ), (21)

is positive definite in x0, then x0 is the optimal solution of the problem (20), where ĥ is the second
fundamental form of M.

Remark 1. If the bilinear form V defined by (21) is positive semi-definite on the submanifold M,
then the critical points of f |M are global optimal solutions of the problem (20). For more details
see ([43], Remark 3.2).

3. Main Inequalities

Theorem 2. Let (M̄, ∇̄, g, φ, ξ) be a (2n + 1)-dimensional Kenmotsu statistical manifold of con-
stant φ-sectional curvature c, endowed with a semi-symmetric metric connection ∇̃. Suppose M is
an (m + 1)-dimensional statistical submanifold of (M̄, ∇̄, g, φ, ξ) such that ξ is a tangent vector
field on M. Then the generalized normalized δ-Casorati curvatures fulfill the following inequalities:
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(i)

δ0
C(r; m) ≥ 2τ − c− 3

4
m(m + 1)− 3(c + 1)

4
‖P‖2 +

1
2

m(c + 1) + 2m trace(γ) (22)

for any r ∈ R with 0 < r < m(m + 1), where δ0
C(r, m) is defined by 2δ0

C(r, m) = δC(r; m) +
δ∗C(r; m), and

(ii)

δ̂0
C(r; m) ≥ 2τ − c− 3

4
m(m + 1)− 3(c + 1)

4
‖P‖2 +

1
2

m(c + 1) + 2m trace(γ) (23)

for any r ∈ R with r > m(m + 1), where δ̂0
C(r, m) is defined by 2δ̂0

C(r, m) = δ̂C(r; m) +

δ̂∗C(r; m).

Furthermore, the case of equality of any of the inequalities (22) and (23) holds at all points
p ∈ M if and only if:

h = −h∗.

Proof. From Equations (13) and (14), we obtain:

R̃(X, Y)Z = S̄(X, Y), Z + {η(X)U − η(U)X− ∇̄0
XU}g(Y, Z) (24)

−{η(Y)U − η(U)Y− ∇̄0
YU}g(X, Z)

−g(η(X)U − ∇̄0
XU, Z)Y + g(η(Y)U − ∇̄0

YU, Z)X

−1
2
[(∇̄XK̄)(Y, Z)− (∇̄∗XK̄)(Y, Z)] +

1
2
[(∇̄YK̄)(X, Z)− (∇̄∗YK̄)(X, Z)]

+K̄(X, K̄(Y, Z))− K̄(Y, K̄(X, Z)).

Moreover, using the definition (5), the formula (24) becomes:

R̃(X, Y)Z = S̄(X, Y), Z + {η(X)U − η(U)X− ∇̄0
XU}g(Y, Z) (25)

−{η(Y)U − η(U)Y− ∇̄0
YU}g(X, Z)

−g(η(X)U − ∇̄0
XU, Z)Y + g(η(Y)U − ∇̄0

YU, Z)X.

Next, the relation (25) implies:

g(R̃(X, Y)Z, W) = g(S̄(X, Y)Z, W)− λ(Y, Z)g(X, W) (26)

+λ(X, Z)g(Y, W)− λ(X, W)g(Y, Z) + λ(Y, W)g(X, Z),

for any X, Y, Z, W ∈ Γ(TM̄), where λ is expressed by:

λ(X, Y) = (∇̄0
Xη)Y− η(X)η(Y) +

1
2

η(U)g(X, Y).

On the other hand, from the formula (6), we obtain:

g(S̄(X, Y)Z, W) =
c− 3

4
{g(Y, Z)g(X, W)− g(X, Z)g(Y, W)} (27)

+
c + 1

4
{g(φY, Z)g(φX, W)− g(φX, Z)g(φY, W)

− 2g(φX, Y)g(φZ, W)− g(Y, ξ)g(Z, ξ)g(X, W) + g(X, ξ)g(Z, ξ)g(Y, W)

+ g(Y, ξ)g(Z, X)g(ξ, W)− g(X, ξ)g(Z, Y)g(ξ, W)},

for any X, Y, Z, W ∈ Γ(TM̄).
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For x ∈ M, let {e1, . . . , em+1 = ξ} and {em+2, . . . , e2n+1} be orthonormal bases of
Tx M and T⊥x M, respectively. Suppose X = W = ei and Y = Z = ej (i 6= j, with
i, j ∈ {1, . . . , m + 1}) in the relations (26) and (27), then we obtain:

g(R̃(ei, ej)ej, ei) =
c− 3

4
+

c + 1
4
{3g2(φei, ej)− g2(ej, ξ)− g2(ei, ξ)} (28)

−λ(ei, ei)− λ(ej, ej).

On the other hand, from the Gauss formulas (15) and (16) we obtain:

g(R̃(X, Y)Z, W) = g(S(X, Y)Z, W)− µ(Y, Z)g(X, W) (29)

+µ(X, Z)g(Y, W)− µ(X, W)g(Y, Z) + µ(Y, W)g(X, Z)

−1
4

g(h(X, W) + h∗(X, W), h(Y, Z) + h∗(Y, Z))

+
1
4

g(h(X, Z) + h∗(X, Z), h(Y, W) + h∗(Y, W)),

for any X, Y, Z, W ∈ Γ(TM), where µ has the following expression:

µ(X, Y) = (∇0
Xη)Y− η(X)η(Y) +

1
2

η(U)g(X, Y),

with ∇0 = ∇+∇∗
2 . Now, we can easily see that we have

λ(X, Y)− µ(X, Y) = (∇̄0
Xη)Y− (∇0

Xη)Y = γ(X, Y),

for any X, Y ∈ Γ(TM).
For X = W = ei and Y = Z = ej, from (29) we have:

g(R̃(ei, ej)ej, ei) = g(S((ei, ej)ej, ei)− µ(ei, ei)− µ(ej, ej) (30)

−1
4

g(h(ei, ei) + h∗(ei, ei), h(ej, ej) + h∗(ej, ej)

+
1
4

g(h(ei, ej) + h∗(ei, ej), h(ej, ei) + h∗(ej, ei)).

Next, from (28) and (30) it follows that:

c− 3
4

+
c + 1

4
{3g2(φei, ej)− g2(ei, ξ)− g2(ej, ξ)} (31)

−λ(ei, ei)− λ(ej, ej) + µ(ei, ei) + µ(ej, ej) =

g(S((ei, ej)ej, ei))−
1
4

g(h(ei, ei) + h∗(ei, ei), h(ej, ej) + h∗(ej, ej))

+
1
4

g(h(ei, ej) + h∗(ei, ej), h(ej, ei) + h∗(ej, ei)).

We remind that any vector field X ∈ Γ(TM) admits a unique decomposition into its
tangent and normal components PX and PY, respectively, as follows:

φX = PX + FX.

Next, by summation over 1 ≤ i, j ≤ m + 1, Equation (31) becomes:

c− 3
4

m(m + 1) +
c + 1

4
(3‖P‖2 − 2m)− 2m trace(γ) = (32)

2τ +
1
4
(m + 1)C0 − (m + 1)2‖H0‖2,
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where ‖P‖2 is the squared norm of P expressed by

‖P‖2 = ∑
1≤i,j≤m+1

g2(Pei, ej).

Let P be a quadratic polynomial in the components of the second fundamental form
given by:

P = rC0 + a(r)C0(L) +
c− 3

4
m(m− 1) + (33)

3(c + 1)
4

‖P‖2 − 1
2

m(c + 1)− 2m trace(γ)− 2τ.

We will prove that P ≥ 0.
Consider, without loss of generality, that L is spanned by e1, e2, . . . , em. Then, the

expression of P in (33) becomes:

P = (r + m + 1)C0 + a(r)C0(L)− (m + 1)2‖H0‖2.

Moreover, the above relation implies:

P =
2n+1

∑
α=m+2

m + r + 1
m + 1

m+1

∑
i,j=1

(h0α
ij )

2 +
a(r)
m

m

∑
i,j=1

(h0α
ij )

2 −
(

m+1

∑
i=1

h0α
ii

)2
. (34)

Furthermore, P given by (34) can be written as:

P =
2n+1

∑
α=m+2

{[2(m + r + 1)
m + 1

+
2a(r)

m

]
∑

1≤i<j≤m
(h0α

ij )
2 +

2(m + r + 1)
m + 1

m

∑
i=1

(h0α
i m+1)

2

+

(
m + r + 1

m + 1
+

a(r)
m
− 1
) m

∑
i=1

(h0α
ii )

2 − 2 ∑
1≤i<j≤m+1

h0α
ii h0α

jj +
r

m + 1
(h0α

m+1 m+1)
2
}

.

The latter equation implies:

P ≥
2n+1

∑
α=m+2

[
rm + a(r)(m + 1)

m(m + 1)

m

∑
i=1

(h0α
ii )

2 +
r

m + 1
(h0α

m+1 m+1)
2 − 2 ∑

1≤i<j≤m+1
h0α

ii h0α
jj

]
.

Now, suppose that fα is a quadratic form expressed by fα : Rm+1 → R, for
α ∈ {m + 2, . . . , 2n + 1}:

fα(h0α
11 , h0α

22 , . . . , h0α
m+1 m+1) =

mr + (m + 1)a(r)
m(m + 1)

m

∑
i=1

(h0α
ii )

2

+
r

m + 1
(h0α

m+1 m+1)
2 − 2 ∑

1≤i<j≤m+1
h0α

ii h0α
jj .

Our aim is to investigate the constrained extremum problem

min fα

under the constraint
Q : h0α

11 + h0α
22 + . . . + h0α

m+1 m+1 = kα, (35)
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where kα is a real constant. In this respect, we establish the following first order partial
derivatives system:

∂ fα

∂h0α
ii

=
2[mr + (m + 1)(a(r) + m)]

m(m + 1)
h0α

ii − 2
m+1

∑
k=1

h0α
kk = 0

∂ fα

∂h0α
m+1 m+1

=
2r

m + 1
h0α

m+1 m+1 − 2
m

∑
k=1

h0α
kk = 0,

for all i ∈ {1, . . . , m}, α ∈ {m + 2, . . . , 2n + 1}.
By using the constraint Q defined by (35), the above system provides the critical point:

h0α
ii =

m(m + 1)kα

(m + 1)a(r) + mr + m(m + 1)
,

h0α
m+1 m+1 =

(m + 1)kα

m + r + 1
,

for all i ∈ {1, . . . , m}, α ∈ {m + 2, . . . , 2n + 1}.
For x ∈ Q, we define the 2-form V : TxQ× TxQ→ R by:

V(X, Y) = Hess( fα)(X, Y) + 〈ĥ(X, Y), (grad fα)(x)〉,

where ĥ denotes the second fundamental form of Q in Rm+1 and 〈·,·〉 stands for the standard
inner product on Rm+1.

We achieve also the Hessian matrix of fα with the expression:

Hess( fα) =


β −2 . . . −2 −2
−2 β . . . −2 −2

...
...

. . .
...

...
−2 −2 . . . β −2
−2 −2 . . . −2 2r

m+1

,

where β is a real constant set as β = 2[mr+(m+1)a(r)]
m(m+1) .

Assume that X = (X1, . . . , Xm+1) is a tangent vector field to the hyperplane Q at x
such that ∑m+1

i=1 Xi = 0. Then we have:

V(X, X) = β
m

∑
i=1

X2
i +

2r
m + 1

X2
m+1 − 4 ∑

1Ci<j≤m+1
XiXj. (36)

By using ∑m+1
i=1 Xi = 0 in (36), it follows that:

V(X, X) = β
m

∑
i=1

X2
i +

2r
m + 1

X2
m+1 + 4

m+1

∑
i=1

X2
i ≥ 0. (37)

By virtue of the Remark 1, the critical point (h0α
11 , . . . , h0α

m+1 m+1) is the global minimum
point of the problem. In particular, we have fα(h0α

11 , . . . , h0α
m+1 m+1) = 0. As a result, we

obtain the inequality P ≥ 0, namely represented by the inequalities (22) and (23), related
to the infimum and supremum, respectively, over all tangent hyperplanes L of Tx M.

Finally, we pursue the equality cases of the inequalities (22) and (23). For this purpose,
we reveal the critical points of P , i.e., the solutions of following equations system:
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∂P
∂h0α

ii
= 2

[
m + r + 1

m + 1
+

a(r)
m
− 1
]

h0α
ii − 2

m+1

∑
k 6=i,k=1

h0α
kk = 0,

∂P
∂h0α

m+1 m+1
=

2r
m + 1

h0α
m+1 m+1 − 2

m

∑
k=1

h0α
kk = 0,

∂P
∂h0α

ij
= 4

[
m + r + 1

m + 1
+

a(r)
m

]
h0α

ij = 0, i 6= j,

∂P
∂h0α

i m+1
=

4(m + r + 1)
m + 1

h0α
i m+1 = 0.

Since M̄ is a Kenmotsu statistical manifold, then we obtain the solution hc = h0α
ij = 0,

for all i, j ∈ {1, . . . , m + 1} and α ∈ {m + 2, . . . , 2n + 1}. Moreover, due to P ≥ 0 and
P(hc) = 0, then P has a minimum point hc indicated above. In conclusion, the case
of equality of any of the inequalities (22) and (23) holds if and only if hα

ij = −h∗αij , for
i, j ∈ {1, . . . , m + 1}, α ∈ {m + 2, . . . , 2n + 1}.

As a consequence of Theorem 2, we can derive the following inequalities involving
the normalized δ-Casorati curvatures δ̂C(m) and δC(m), the dual normalized δ-Casorati cur-
vatures δ∗C(m) and δ̂∗C(m), as well as the normalized scalar curvature ρ of the submanifold.

Theorem 3. Let (M̄, ∇̄, g, φ, ξ) be a (2n + 1)-dimensional Kenmotsu statistical manifold of con-
stant φ-sectional curvature c, endowed with a semi-symmetric metric connection ∇̃. Suppose M is
an (m + 1)-dimensional statistical submanifold of (M̄, ∇̄, g, φ, ξ) such that ξ is a tangent vector
field on M. Then the normalized δ-Casorati curvatures fulfill the following inequalities:

(i)

δ0
C(m) ≥ ρ− 3(c + 1)

4m(m + 1)
‖P‖2 +

c + 1
2(m + 1)

− c− 3
4

+
2

m + 1
trace(γ), (38)

where δ0
C(m) is defined by 2δ0

C(m) = δC(m) + δ∗C(m), and
(ii)

δ̂0
C(m) ≥ ρ− 3(c + 1)

4m(m + 1)
‖P‖2 +

c + 1
2(m + 1)

− c− 3
4

+
2

m + 1
trace(γ), (39)

where δ̂0
C(m) is defined by 2δ̂0

C(m) = δ̂C(m) + δ̂∗C(m).

Furthermore, the case of equality in any of the inequalities (38) and (39) holds at all points
p ∈ M if and only if:

h = −h∗.

Proof. The inequality (38) follows replacing r = m(m+1)
2 in (22), by using (19) and remark-

ing that we have the relation

δ0
C(m(m + 1)/2; m) = m(m + 1)δ0

C(m).

Similarly, we obtain inequality (39) replacing r = 2m(m + 1) in (23), by taking account of
(19) and

δ̂0
C(2m(m + 1); m) = m(m + 1)δ̂0

C(m).

Remark 2. As proved in Theorems 2 and 3, the equality case of any of the inequalities (22), (23),
(38) and (39) is attained for those statistical submanifolds for which the imbedding curvature
tensors h and h∗ are related by h = −h∗. Note that, in view of (12), this condition implies the
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vanishing of the second fundamental form of the semi-symmetric metric connection. Hence, the
equality case of any of the inequalities (22), (23), (38) and (39) holds at all points only for statistical
submanifolds that are totally geodesic with respect to the semi-symmetric metric connection, or
equivalently with respect to the Levi-Civita connection. This is a consequence of a result recently
stated in [39] (see Corollary 4.4), where it was proved that for a statistical submanifold of a statistical
manifold equipped with a semi-symmetric metric connection ∇̃, the second fundamental form of the
Levi-Civita connection coincides with the second fundamental form of ∇̃.

4. Example

Let us consider the (2n + 1)-dimensional Kenmotsu statistical manifold (H2n+1,
∇̄ = ∇̄0 + K̄, g, φ, ξ) constructed in [25] (for details see Examples 3.3 and 3.10 in the
above referenced article). For the sake of simplicity, we will limit to the case of dimension
5, but the example we are going to build can be extended to any odd dimension. We
remind that

H5 = {(x1, x2, y1, y2, z) ∈ R5|z > 0}

and the structure tensors (g, φ, ξ) are defined by

g =
1
z2 {(dx1)

2 + (dx2)
2 + (dy1)

2 + (dy2)
2 + (dz)2},

φ
∂

∂x1
=

∂

∂y1
, φ

∂

∂x2
=

∂

∂y2
, φ

∂

∂y1
= − ∂

∂x1
, φ

∂

∂y2
= − ∂

∂x2
, φ

∂

∂z
= 0

and
ξ = −z

∂

∂z
.

Denote by ∇̄ and ∇̄∗ the dual connections on H5 such that ∇̄ = ∇̄0 + K̄. We obtain:

∇̄∂x1 ∂x1 = ∇̄∂x2 ∂x2 = ∇̄∂y1 ∂y1 = ∇̄∂y2 ∂y2 = 0,

∇̄∂x1 ∂x2 = ∇̄∂x2 ∂x1 = ∇̄∂y1 ∂y2 = ∇̄∂y2 ∂y1 = 0,

∇̄∂x1 ∂y1 = ∇̄∂y1 ∂x1 = ∇̄∂x2 ∂y1 = ∇̄∂y1 ∂x2 = 0,

∇̄∂x1 ∂y2 = ∇̄∂y2 ∂x1 = ∇̄∂x2 ∂y2 = ∇̄∂y2 ∂x2 = 0,

∇̄∂x1 ∂z = ∇̄∂z∂x1 = −2
z

∂x1, ∇̄∂x2 ∂z = ∇̄∂z∂x2 = −2
z

∂x2,

∇̄∂y1 ∂z = ∇̄∂z∂y1 = −2
z

∂y1, ∇̄∂y2 ∂z = ∇̄∂z∂y2 = −2
z

∂y2,

∇̄∂z∂z = −3
z

∂z.

Moreover, we obtain:

∇̄∗∂x1
∂x1 = ∇̄∗∂x2

∂x2 = ∇̄∗∂y1
∂y1 = ∇̄∗∂y2

∂y2 =
2
z

∂z,

∇̄∗∂x1
∂x2 = ∇̄∗∂x2

∂x1 = ∇̄∗∂y1
∂y2 = ∇̄∗∂y2

∂y1 = 0,

∇̄∗∂x1
∂y1 = ∇̄∗∂y1

∂x1 = ∇̄∗∂x2
∂y1 = ∇̄∗∂y1

∂x2 = 0,

∇̄∗∂x1 ∂y2 = ∇̄∗∂y2
∂x1 = ∇̄∗∂x2 ∂y2 = ∇̄∗∂y2

∂x2 = 0,

∇̄∗∂x1
∂z = ∇̄∗∂z∂x1 = ∇̄∗∂x2

∂z = ∇̄∗∂z∂x2 = 0,

∇̄∗∂y1
∂z = ∇̄∗∂z∂y1 = ∇̄∗∂y2 ∂z = ∇̄∗∂z∂y2 = 0,

∇̄∗∂z∂z =
1
z

∂z.
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For any X, Y ∈ Γ(TH5), we assume that the (1, 2)-tensor field K̄ is given by:

K̄(X, Y) = ν η̄(X) η̄(Y) ξ,

where ν ∈ C∞(H5) and η̄ is the 1-form on H5 dual to ξ, that is η̄(X) = g(X, ξ).
Thus, it is known that (H5, ∇̄ = ∇̄0 + K̄, g, φ, ξ) is a Kenmotsu statistical manifold

with constant φ-sectional curvature c = −1 (see ([25]).
Next, we prove that H5 admits a semi-symmetric metric connection. First, we assume

that ∇̃ is an affine connection defined as follows:

∇̃∂x1 ∂x1 = ∇̃∂x2 ∂x2 = ∇̃∂y1 ∂y1 = ∇̃∂y2 ∂y2 =
z− 1

z2 ∂z,

∇̃∂x1 ∂x2 = ∇̃∂x2 ∂x1 = ∇̃∂y1 ∂y2 = ∇̃∂y2 ∂y1 = 0,

∇̃∂x1 ∂y1 = ∇̃∂y1 ∂x1 = ∇̃∂x2 ∂y1 = ∇̃∂y1 ∂x2 = 0,

∇̃∂x1 ∂y2 = ∇̃∂y2 ∂x1 = ∇̃∂x2 ∂y2 = ∇̃∂y2 ∂x2 = 0,

∇̃∂x1 ∂z =
1− z

z2 ∂x1, ∇̃∂x2 ∂z =
1− z

z2 ∂x2,

∇̃∂z∂x1 = −1
z

∂x1, ∇̃z∂x2 = −1
z

∂x2,

∇̃∂y1 ∂z =
1− z

z2 ∂y1, ∇̃∂y2 ∂z =
1− z

z2 ∂y2,

∇̃∂z∂y1 = −1
z

∂y1, ∇̃z∂y2 = −1
z

∂y2,

∇̃∂z∂z = −1
z

∂z.

Then the torsion tensor T̃ of ∇̃ satisfies the relations:

T̃(∂xi, ∂xj) = T̃(∂yi, ∂yj) = T̃(∂xi, ∂yj) = 0,

T̃(∂xi, ∂z) =
1
z2 ∂xi, T̃(∂yi, ∂z) =

1
z2 ∂yi,

for all i, j ∈ {1, 2}.
It follows that ∇̃ is a semi-symmetric connection satisfying (7) with η = − 1

z η̄. Fur-
thermore, the relation ∇̃g = 0 holds, which implies that ∇̃ is a semi-symmetric metric
connection on the Kenmotsu statistical manifold (H5, ∇̄ = ∇̄0 + K̄, g, φ, ξ) of constant
φ-sectional curvature −1.

Let M be a 3-dimensional submanifold of the Kenmotsu statistical manifold H5 with
coordinates (u1, u2, u3) given by:

u : M→ H5,

u(u1, u2, u3) = (
1
2

u1,
1
2

u2,−1
2

u2,
1
2

u1, u3).

Consider the following bases in the tangent bundle TM and normal bundle T⊥M,
respectively:

{T1 =
1
2
(∂x1 + ∂y2), T2 =

1
2
(∂x2 − ∂y1), T3 = ∂z}

and
{N1 =

1
2
(∂x1 − ∂y2), N2 =

1
2
(∂x2 + ∂y1)}.

Then we obtain:

∇̃T1 T1 =
z− 1
2z2 T3, ∇̃T2 T2 = 0, ∇̃T3 T3 = −1

z
T3,
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∇̃T1 T2 = ∇̃T2 T1 = 0,

∇̃T1 T3 =
1− z

z2 T1, ∇̃T3 T1 = −1
z

T1,

∇̃T2 T3 =
1− z

z2 T2, ∇̃T3 T2 = −1
z

T2

and it follows immediately that the submanifold M is totally geodesic with respect to the
semi-symmetric metric connection ∇̃. Moreover, we conclude that the inequalities (22),
(23), (38) and (39) are all satisfied with equality sign.

5. Conclusions

The purpose of this paper is to establish new inequalities between intrinsic and
extrinsic curvature invariants, related to the normalized δ-Casorati curvatures and the
scalar curvature of statistical submanifolds in Kenmotsu statistical manifolds of constant
φ-sectional curvature, which are endowed with semi-symmetric metric connection. In
addition, we pursued the equality cases of these inequalities and provided a nontrivial
example to illustrate the results. Therefore, we believe that the topic of this survey may
be developed in new challenging approaches on various classes of submanifolds in some
statistical manifolds endowed with semi-symmetric metric connection.
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35. Poyraz, N.; Dogan, B.; Yaşar, E. Chen inequalities on lightlike hypersurface of a Lorentzian manifold with semi-symmetric metric

connection. Int. Electron. J. Geom. 2017, 10, 1–14. [CrossRef]
36. Zhang, P.; Zhang, L. Casorati Inequalities for Submanifolds in a Riemannian Manifold of Quasi-Constant Curvature with a

Semi-Symmetric Metric Connection. Symmetry 2016, 8, 19. [CrossRef]
37. Zhang, P.; Zhang, L.; Song, W. Chen’s inequalities for submanifolds of a Riemannian manifold of quasi-constant curvature with a

semi-symmetric metric connection. Taiwan J. Math. 2014, 18, 1841–1862. [CrossRef]
38. Kazan, S.; Kazan, A. Sasakian Statistical Manifolds with Semi-Symmetric Metric Connection. Univers. J. Math. Appl. 2018, 1,

226–232. [CrossRef]
39. Balgeshir, M.B.K.; Salahvarzi, S. Curvatures of semi-symmetric metric connections of statistical manifolds. Commun. Korean Math.

Soc. 2021, 36, 149–164.
40. Furuhata, H.; Hasegawa, I. Submanifold theory in holomorphic statistical manifolds. In Geometry of Cauchy-Riemann Submanifolds;

Dragomir, S., Shahid, M.H., Al-Solamy, F.R., Eds.; Springer Science+Business Media Singapore: Singapore, 2016; pp. 179–214.
41. Vos, P. Fundamental equations for statistical submanifolds with applications to the Barlett correction. Ann. Inst. Statist. Math.

1989, 41, 429–450. [CrossRef]
42. Oprea, T. Constrained Extremum Problems in Riemannian Geometry; University of Bucharest Publishing House: Bucharest,

Romania, 2006.
43. Vîlcu, G.-E. An optimal inequality for Lagrangian submanifolds in complex space forms involving Casorati curvature. J. Math.

Anal. Appl. 2018, 465, 1209–1222. [CrossRef]

http://dx.doi.org/10.1016/j.bulsci.2021.103018
http://dx.doi.org/10.1016/j.physa.2019.123827
http://dx.doi.org/10.1155/2016/8578156
http://dx.doi.org/10.3390/e23050494
http://dx.doi.org/10.2748/tmj/1178241594
http://dx.doi.org/10.1007/s00022-017-0403-1
http://dx.doi.org/10.1112/plms/s2-34.1.27
http://dx.doi.org/10.1090/S0002-9939-1976-0445416-9
http://dx.doi.org/10.3390/sym8110113
http://dx.doi.org/10.4134/BKMS.2015.52.5.1631
http://dx.doi.org/10.11650/twjm/1500405961
http://dx.doi.org/10.36890/iejg.584434
http://dx.doi.org/10.3390/sym8040019
http://dx.doi.org/10.11650/tjm.18.2014.4045
http://dx.doi.org/10.32323/ujma.439013
http://dx.doi.org/10.1007/BF00050660
http://dx.doi.org/10.1016/j.jmaa.2018.05.060

	Introduction
	Preliminaries
	Main Inequalities
	Example
	Conclusions
	References

