
Article

An omnibus test for the global null
hypothesis

Andreas Futschik,1,2,3 Thomas Taus3,4 and Sonja Zehetmayer5

Abstract

Global hypothesis tests are a useful tool in the context of clinical trials, genetic studies, or meta-analyses, when

researchers are not interested in testing individual hypotheses, but in testing whether none of the hypotheses is false.

There are several possibilities how to test the global null hypothesis when the individual null hypotheses are independent.

If it is assumed that many of the individual null hypotheses are false, combination tests have been recommended to

maximize power. If, however, it is assumed that only one or a few null hypotheses are false, global tests based on

individual test statistics are more powerful (e.g. Bonferroni or Simes test). However, usually there is no a priori

knowledge on the number of false individual null hypotheses. We therefore propose an omnibus test based on

cumulative sums of the transformed p-values. We show that this test yields an impressive overall performance.

The proposed method is implemented in an R-package called omnibus.
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1 Introduction

When testing multiple hypotheses, the global null hypothesis is often of specific interest. It states that none of the
individual null hypotheses is false. In some applications, rejecting the global null can be a goal in itself, whereas in
other situations such a test may occur as part of a more sophisticated multiple test procedure. Think for instance of
the closure test principle, where the global null needs to be rejected before looking at specific tests. Also, in an
ANOVA, the global null is usually tested before testing for pairwise differences.

In meta-analysis, rejecting the global null implies an effect at least under some circumstances. Another
application is experimental evolution, where several replicate populations of micro- or higher organisms are
maintained under controlled laboratory conditions and their response to selection pressures is studied. Further
applications, where such a test is of interest in its own merit, are testing for overall genomic differences in gene
expression and signal detection.1,2

Several approaches to test the global null hypothesis are known. If we assume alternative scenarios where all or
most null hypotheses do not hold, combination tests (e.g. Fisher’s combination test3 or Stouffer’s z test4), that sum
up two or more independent transformed p-values to a single test statistic, have been recommended to maximize
power. If, however, it is assumed that the null hypothesis holds in most cases, global tests based on individual test
statistics are more powerful (e.g. Bonferroni, Simes).5 If a larger number of hypotheses are tested, and the
alternative hypothesis holds sufficiently often, goodness of fit tests for a uniform distribution of p-values could
also be used. They test, however, for any type of deviation from uniformity and do not focus specifically on too
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small p-values. Under more specific models, such as the comparison of several normal means, more specialized
tests such as a Tukey’s multiple range test or an ANOVA are further options.

Higher criticism (HC) and checking for overall significance are alternative terms used instead of global testing.
Originating from biblical science, the term higher criticism was first used by Tukey6 in a statistical context. Making
the point that a certain number of falsely rejected null hypotheses can be expected when testing several null
hypotheses at level �, he then proposed a second level significance test to check for overall significance. Later,
Donoho and Jin7,8 provided an asymptotic analysis of this and related tests, when the number of hypotheses tends
to infinity. Their results show that there are situations where there is sufficient power to detect deviations from the
global null hypothesis, but no chance to reliably identify in which cases the alternative holds.

Our focus is on a general situation where independent p-values are available from several hypothesis tests that
are assumed to be uniformly distributed under the null hypothesis. As there is often no a priori knowledge on the
number of false individual null hypotheses, we propose a test that enjoys good power properties, both if few and
many null hypotheses are false. Our test is based on cumulative sums of the (possibly transformed) sorted p-values.

In comparison to other available methods, our simulations show that this test yields an excellent overall
behavior. It typically performs better than combination tests, if the alternative holds in only a few cases. If the
alternative holds in most cases, it performs better than the Bonferroni and Simes test. The performance relative to
methods that combine evidence across all p-values tends to be even better under those one-sided testing scenarios,
where parameters are in the interior of the null hypothesis for some of the tests. For these tests, the corresponding
p-values will be stochastically larger than uniformly distributed ones, reducing in particular the power of
combination tests.

We also present real data applications in the context of meta-analysis and experimental evolution.

2 Testing the global null hypothesis based on p-values

Consider a multiple testing procedure with m null hypotheses H0i, i ¼ 1, . . . ,m, of which m0 are true and m1 are
false. We assume that m, possibly different, hypothesis tests are carried out leading to stochastically independent p-
values p1, . . . , pm. Our focus is on testing the global null

H0 ¼ \
m

i¼1
H0i

i.e. that none of the null hypotheses is false. We assume that the p-values are either uniformly distributed

pi � U½0, 1�

under the global null hypothesis H0 or that the p-values are stochastically larger than uniformly distributed ones.
In other words, we assume that Pðpi � xÞ � x for 0 � x � 1:

Some tests for the global null hypothesis use a combined endpoint, summing up the evidence across all available
p-values to a single test statistic, e.g. Fisher’s combination function3 or Stouffer’s test.4 Alternatively, other
approaches focus on those individual test statistics that lead to extreme p-values, such as in the Bonferroni and
Simes tests. As combination tests aggregate evidence across all hypotheses, these tests are particularly powerful
when there are (small) effects in many considered null hypotheses. When there are only a few (large) effects, global
tests based on individual test statistics are more powerful. Other approaches are goodness of fit tests or HC.

2.1 Omnibus test

2.1.1 General outline

Starting with independent p-values p1, . . . , pm, we denote the sorted p-values by

pð1Þ � � � � � pðmÞ

and transform them with a monotonously decreasing function hð�Þ so that small p-values lead to large scores.
Possible choices for hð�Þ will be discussed below. Next, we obtain the L-statistics Si ¼

Pi
j¼1 hðpð j ÞÞ, i ¼ 1, . . . ,m.

Each of these partial sums could in principle be chosen as a test statistic for the global test and the best choice in
terms of power for a specific scenario will depend both on (m0, m1) and the respective effect sizes. Since these
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quantities are unknown, we propose to select the most unusual test statistic out of Si, 1 � i � m. If the scores Si

were approximately normally distributed, we could standardize them to figure out how unusual they are. Here,
however, the distribution of the Si with small index will be closer to an extreme value distribution. Therefore,
we transform the sums using the distribution function Gi of Si under the global null hypothesis, and take

T � ¼ max
1�i�m

GiðSiÞ

as our test statistic. Although the cumulative sums Si may be viewed as L-statistics, and conditions that ensure the
asymptotic normality of L-statistics m!1 are known,9 these conditions are not satisfied for some of the Si, and
furthermore the number of hypotheses is small to moderate. We therefore estimate the distribution of T � by
simulating uniformly distributed p-values under the global null. Note, however, that some of our considered
transformations lead to situations where exact null distributions are available for Si: This turns out to be the
case in particular when the transformed p-values hðpjÞ follow a uniform, exponential, or (skewed) normal
distribution.10,11

Later on, we will consider four transformations h(p) in more detail:

. hð pÞ ¼ 1� p (omnibus p)

. hð pÞ ¼ � log p (omnibus log p)

. hð pÞ ¼ z1�p (omnibus z)

. hð pÞ ¼ p�� with �¼ 0.5 (omnibus power)

Here, z1–p denotes the 1–p quantile of the standard normal distribution. In principle, any monotonously
decreasing function can be applied as transformation. The above four transformations were selected to give
different weight to extreme p-values. Note that for small enough p, we have that

1� p � z1�p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logð1=pÞ

p
� logð1=pÞ � p��

implying that a few very small p-values are most influential when using hð pÞ ¼ p��: Based on our simulation
results, we will discuss the choice of hð�Þ in more detail. Here, we only mention that hð pÞ ¼ � logð pÞ leads to a test
with a particularly good worst case performance.

2.2 Alternative test statistics

We briefly explain the most popular approaches that use p-values for testing the global null hypothesis.

2.2.1 Fisher’s combination test

Fisher3 proposed the combined test statistic given by T ¼ �
Pm

i¼1 2 log pi. Under the assumption of independent
uniformly distributed p-values, the null distribution is T � �22m.

2.2.2 Stouffer’s z test

Based on z-values Zi ¼ z1�pi , the combined test statistic is given by Z ¼
Pm

i¼1 Zi=
ffiffiffiffi
m
p

. Assuming again independent
uniformly distributed p-values under the global null, it can be easily seen that Z � Nð0, 1Þ.4

2.2.3 Bonferroni test

The Bonferroni test rejects the global null hypothesis, if the minimum p-value falls below �/m, i.e. minipi � �=m
(see, e.g. Dickhaus12). The Bonferroni test controls the family-wise error rate at level � in the strong sense. The test
makes no assumption on the dependence structure of endpoints. For independent test statistics, �/m may be
replaced by the slightly more liberal upper bound 1� ð1� �Þ1=m:

2.2.4 Simes test

An improvement of the Bonferroni test in terms of power was proposed by Simes.5 For the m hypotheses
H0i, i ¼ 1, . . . ,m, with p-values pi, the Simes test rejects the global null hypothesis if for some
k ¼ 1, . . . ,m, pðkÞ � �k=m. In the last decades, the Simes test has become very popular for testing individual
hypotheses controlling the False Discovery Rate.13
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2.2.5 Higher criticism

Based on an idea by Tukey,6 Donoho and Jin7,8 introduced the HC to test the global null hypothesis of no effect
for independent hypotheses. It is defined by

HC�m ¼ max
1�i��0m

ffiffiffiffi
m
p i=m� pðiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pðiÞð1� pðiÞÞ
p

( )

�0 is a tuning parameter often set to 1/2 and has been studied in particular for large-scale testing problems.

2.2.6 Goodness of fit tests

For our global test problem of independent p-values and under a point null hypothesis, the p-values pi,
i ¼ 1, . . . ,m, often follow a uniform distribution U(0, 1). Thus, any goodness of fit test for uniformity, such as
the Kolmogorov–Smirnov (KS), the Chi-square, and the Cramer–von Mises tests also provide tests for the global
null hypothesis. The KS test, for example, uses the maximum distance between the empirical distribution function
of the observed p-values and the uniform distribution function, Dn ¼ sup0�x�1jFnðxÞ � xj as test statistic.
A disadvantage of goodness of fit tests in our context is that they test not only for smaller than expected
p-values but against any deviation from uniformity. As also confirmed by our simulations, these tests therefore
provide lower power compared to more specialized tests in our situation (data not shown).

3 Results

We start our simulation study by comparing the power, i.e. 1–p(type II error), of our test when different
transformations hð�Þ are used. It will turn out that hð pÞ ¼ � log p leads to particularly good overall behavior
across different scenarios, and we thus focus on this transformation when comparing our approach with
alternative tests for the global null, such as the Bonferroni and the Simes procedure, as well as Fisher’s and
Stouffer’s combination tests. Although typically used for a large number of hypotheses, we will also consider HC
as a competing method (with the tuning parameter �0¼ 0.5). As the asymptotic approximations do not necessarily
hold for small numbers of hypotheses, we simulate critical values under the null model for this test.

We simulate different scenarios by varying both the total number m of hypotheses, and the number m1 of
instances where the alternative holds. We assume independence between the p-values, which was a condition in our
derivation of the omnibus test.

Although our test is based on p-values that may arise in a multitude of settings, we want to specify effect sizes
and alternative distributions in an intuitive way, and therefore compute our p-values from normally distributed
data with known variance �2¼ 1 and equal sample sizes n. More specifically, we consider the one-sample z-test for
one-sided hypotheses

H0i : �i ¼ 0 versus H1i : �i 4 0, i ¼ 1, . . . ,m

for the mean of the observations.
In the simulations, we first assume that all alternatives have the same mean effect �/� and for the true null

hypotheses �¼ 0. Later on, we also consider the following setups:

(i) Negative effect sizes that are in the interior of the null hypotheses: We assume that under the true null
hypothesis, the data have a negative effect size of –�/� and under the alternative hypothesis a positive
effect size of �/�.

(ii) Different effect sizes of alternative hypotheses: We assume randomly chosen exponentially distributed effect
sizes with a rate parameter of 3

ffiffiffiffi
m
p

1.
(iii) Different effect sizes of alternative hypotheses and different effect sizes in the interior of the null hypotheses:

We assume randomly chosen exponentially distributed effect sizes with a rate parameter of 3
ffiffiffiffi
m
p

1 or �3
ffiffiffiffi
m
p

1,
respectively.

All computations were performed using the statistical language R,14 the Fisher’s and the Stouffer’s combination
tests were calculated using the function combine.test in the survcomp package.15 Our proposed omnibus method
and the HC are implemented in the R-package omnibus available at https://github.com/ThomasTaus/omnibus.

For each scenario at least 10,000 simulation runs were performed.
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For all following simulation results, the methods control the type I error at 5% if the global null hypothesis is
true (simulation results can be found in the online supplemental material).

3.1 Influence of the chosen transformation on the omnibus method

Figure 1 shows power curves for the omnibus test using the four proposed transformations. We consider m¼ 10,
m1 2 f1, 3, 5, 10g, and �=� ¼ 0:3=

ffiffiffiffi
m
p

1. These variants show similar power values for a lot of scenarios. Nevertheless,
the performance of the power (‘‘power’’) and identity transforms (‘‘p’’) seems to be somewhat less satisfactory. In
particular, the power transform performs considerably worse when the alternative is true in several instances, while
giving only slightly better results in the case of only one true alternative. The z and log p transforms both show a
good overall behavior. The log p transform performs slightly better for smallm1 (i.e. a few larger effects), whereas the
omnibus z method turns out to be slightly better if m1 is large (i.e. several smaller effects). Similar results were
observed for m¼ 5 and m¼ 20 (see Figures 1 and 2 in the online supplemental material). We provide a between
methods comparison of the worst case power across all possible choices of m1 with constant cumulative effect sizes.
According to Table 1, the omnibus log p transform slightly outperforms the z transform. Thus, we will use the log p
transformation with our omnibus test subsequently.

3.2 Power comparison between different testing methods

Figure 2 shows power curves for omnibus log p, Bonferroni test, Simes test, Fisher’s combination test, Stouffer’s z
test, and HC for m¼ 10, m1 2 f1, 3, 5, 10g, and �=� ¼ 0:3=

ffiffiffiffi
m
p

1. It can be seen that the omnibus method is among
the top methods concerning power for all scenarios (black solid curves).
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Figure 1. Power values for omnibus log p, power, z, and p are given for increasing n, m¼ 10, m1 2 f1, 3, 5, 10g, �=� ¼ 0:3=
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The Bonferroni and Simes methods give the best power results in the case of only one false null hypothesis,
m1¼ 1; however, the difference to the omnibus log p variant of our test is only marginal. For increasing m1, the
power of the Bonferroni and Simes methods is inferior compared to all other methods. As expected, the Simes test
outperforms the Bonferroni procedure (or is equal), though, for the considered scenarios the improvement in
power is only small.
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Figure 2. Power values for increasing n, m¼ 10, m1 2 f1, 3, 5, 10g, �=� ¼ 0:3=
ffiffiffiffi
m
p

1 for omnibus log p, Bonferroni, Simes, Fisher’s

test, Stouffer’s test, and HC.

Table 1. Minimax power.

m¼ 10 m¼ 20 m¼ 1000

n¼ 100 n¼ 200 n¼ 100 n¼ 200 n¼ 100 n¼ 200

Omnibus log p 0.63 0.92 0.50 0.84 0.23 0.50

Omnibus z 0.62 0.92 0.49 0.83 0.23 0.49

Omnibus p 0.59 0.90 0.46 0.82 0.22 0.48

Bonferroni 0.41 0.68 0.28 0.47 0.11 0.18

Simes 0.44 0.73 0.30 0.52 0.12 0.19

Fisher 0.49 0.83 0.35 0.67 0.15 0.28

Stouffer 0.24 0.39 0.16 0.25 0.09 0.11

HC half 0.53 0.86 0.40 0.73 0.14 0.30

Note: Worst case power values for m1 from 1 to m (minimum over all simulation scenarios) for

n ¼ f100, 200g, m ¼ f10, 20, 1000g, �=� ¼ 0:3=
ffiffiffiffi
m
p

1.
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The Fisher’s combination test is slightly superior in scenarios with large m1 in comparison to the omnibus tests;
however, it has low power for small m1, e.g. for scenarios with m1¼ 1 the omnibus test has nearly 20 percentage
points higher power than the Fisher’s test. The Stouffer’s test only shows competitive power values for high
number of false null hypotheses for the considered scenarios. In contrast, the HC method for �0¼ 0.5 has
similar power values as Bonferroni and Simes for m1¼ 1, for increasing m1 the omnibus log p, Fisher’s, and
Stouffer’s tests are clearly more powerful. Note that similar results were observed for m¼ 5 and m¼ 20 (see
Figures 3 and 4 in the online supplemental material).

3.2.1 Worst case behavior

We assess also the overall behavior of the statistical tests we considered by looking at the minimax power
across scenarios that involve all possible numbers m1 of true alternative hypotheses. We define the
minimax power as the lowest power across all these scenarios. With m1 alternatives, the individual effect size

was chosen �=� ¼ �=
ffiffiffiffi
m
p

1. This leads to a constant cumulative effect size of
ffiffiffiffiffi
m1
p

�ffiffiffiffiffiffiffiffi
m1�2
p ¼ �=�2. This constant

cumulative effect size would also lead to equal power for any value of m1 under a simplified scenario
where a likelihood ratio test of the global null versus m1 false null hypotheses with known index under the
alternative is applied. In the theoretical case that both m1 and the position of the m1 hypotheses are known, an
optimal test could be obtained this way that leads to constant non-centrality parameters for all values of m1.
Table 1 uses � ¼ 0.3, leading to intermediate power values. As can be seen, the considered omnibus tests
outperform the other tests with respect to the worst case behavior, with the omnibus log p test performing
best in this sense.
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m1 ¼ m=10, m1 ¼ 1, or m1 ¼ 5, respectively.
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3.2.2 Behavior for small numbers m1 of true alternatives

To further compare the power of our omnibus log p test and Fisher’s combination test, we performed simulations
when m1 is small, either in absolute terms or compared to m. More specifically, we considered m1¼ 1, m1¼ 5, as well
asm1¼m/10. We assigned the same fixed effect sizes �=� 2 f0:25, 0:5g to each alternative hypothesis. Figure 3 shows
the power curves of the omnibus test (black curves) and the Fisher’s combination test (gray curves) for n 2 f20, 40g,
and increasing m. The omnibus test provides a higher power in most scenarios. Only in the situation of small effect
sizes (�¼ 0.25), the Fisher’s combination test behaves better under some circumstances. This occurs in particular
when m1¼ 5, and m fairly small, implying a fairly large proportion m1/m of alternatives. Note, however, that the
difference in power is small in these cases compared to the excess power of the omnibus test for larger effect sizes.

3.3 Distributed/negative effect sizes

In Figure 4 (first row), we show simulation results for distributed effect sizes with a mean effect � distributed
according to an exponential distribution with a rate parameter of 3

ffiffiffiffi
m
p

1 for m1 2 f1, 3, 10g, m¼ 10. Generally,
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Figure 4. Power values are given for increasing n, m¼ 10, m1 2 f1, 3, 10g for omnibus log p, Bonferroni test, Fisher’s combination

test, and HC. The first row shows results for distributed effect sizes of alternative hypotheses according to an exponential distribution

with rate parameter 3
ffiffiffiffi
m
p

1. The second row shows results for �=� ¼ �0:3=
ffiffiffiffi
m
p

1 under the null hypothesis and �=� ¼ 0:3=
ffiffiffiffi
m
p

1

under the alternative. The third row shows results for distributed effect sizes according to an exponential distribution under the

alternative as well as under the null hypothesis.
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the power values are much lower than for equal mean effect sizes. Still, the omnibus log p method has maximum
power in nearly all scenarios, only for m1 ¼ 10 the Fisher’s combination test is more powerful.

Figure 4 (second row) shows results for negative effect sizes under the null hypothesis, leading to p-values that
are stochastically larger than uniform. A comparison with Figure 2 reveals that this does not much influence the
power of the omnibus test (� ¼ 0:3

ffiffiffiffi
m
p

1 for m1 2 f1, 3, 10g, m¼ 10), but it reduces the power of the Fisher’s
combination test a lot for small m1. The same is true for the Stouffer’s test (not shown), as it also uses the sum
over all (transformed) p-values. The power difference between the omnibus test and the Fisher’s combination test
reaches more than 70 percentage points, e.g. m¼ 10, m1¼ 1, �¼ 0.3.

The power of the Bonferroni test and of HC changes even less compared to the omnibus test when parameters
are in the interior of the null hypothesis.

If both alternative and null hypotheses have effect sizes distributed according to an exponential distribution (with
a rate parameter of 3

ffiffiffiffi
m
p

1 for alternative hypotheses and �3
ffiffiffiffi
m
p

1 for null hypotheses), the relative behavior of the
methods (Figure 4, third row) is qualitatively similar to that implied in the second row. As observed in the first row,
however, the power clearly decreases for all methods with randomly distributed effect sizes.

3.4 p-Values from discrete data

The assumption of uniformly distributed p-values under the null hypothesis is not always satisfied. Besides the
possibility of parameter values in the interior of the null hypothesis, also discrete models lead to p-values that are
not uniformly distributed on the interval [0, 1]. As p-values obtained from a discrete distribution are not covered
by our underlying assumptions, we performed a simulation study to evaluate our test under such a situation.
In view of our genetic application, we considered a two-sample binomial model. For large enough sample sizes,
we would expect in general less effect of the discrete model. In our setup, however, type I error control was
achieved even for small sample sizes.

For the first group, the simulated data were B(n, p0) distributed; for the second group, again generated from
B(n, p0) under the null hypothesis and from B(n, p1) under the alternative. Here, n denotes the per-group sample
size. A v2 test with one degree of freedom was performed and the corresponding p-value was calculated. If both
groups showed only successes or only failures, the p-value was set to p¼ 1.

We first checked whether the type I error is still controlled under our discrete model. For this purpose, we
considered sample sizes n between 10 and 100, as well as probabilities p0 between 0.05 and 0.5 under the null
hypothesis. Although the v2 test is usually not recommended for small expected cell frequencies, we nevertheless
used the standard p-values produced by the R function chisq.test. Our simulations showed no violations of the type
I error probability of �¼ 0.05 with the omnibus test (see Figure 5). This may be since the v2 test tends to control
the type I error probability fairly accurately even for small n.16

Figure 5 provides the power obtained when using our omnibus test on several scenarios for m¼ 10 and
m1 2 f1, 3, 5, 10g. The left plot shows the power values as a function of n from 10 to 100 for omnibus log p for
p0¼ 0.4, and p1¼ 0.6. The plot in the middle shows the power values as a function of p0 with constant n¼ 50 and
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p1¼ p0þ 0.2 increasing in the same amount as p0. For the right plot, p0¼ 0.4, n¼ 50, and p1 is increasing from
0.4 to 0.9.

4 Examples

4.1 Meta-analysis

In meta-analysis, the evidence from several studies on a topic is combined. There are several examples in the
literature showing that the efficacy of a treatment can vary among studies. Reasons for such a variation can be,
among other factors, due to the differences in the underlying study populations or environmental factors. If effect
size estimates are available for all considered studies, a random effect meta-analysis is often carried out. Global
tests, such as the Fisher’s and the Stouffer’s tests, are a popular alternative option that do not require effect size
estimates.

As an illustration, we applied our omnibus test to a data set from a meta-analysis provided by the R-package
metafor.17 We chose the data set dat.fine1993 where results from 17 studies are presented which compare post-
operative radiation therapy with or without adjuvant chemotherapy in patients with malignant gliomas.18 For
each study, the data set specifies the number of patients in the experimental group (receiving radiotherapy plus
adjuvant chemotherapy) as well as the number of patients in the control group (receiving radiotherapy alone).
In addition, the number of survivors after 6, 12, 18, and 24 months follow-up within each group is given. One of
the 17 studies recorded survival only at 12 and 24 months. For illustration purposes, we performed a separate
meta-analysis for each time point and calculated v2 test (or Fisher’s exact test, where appropriate) for each study.
The resulting p-values were then applied to test the global null hypothesis using the following methods:
Bonferroni, Simes, Fisher, Stouffer, HC, and omnibus log p.

Table 2 shows the resulting p-values for the global tests. Note that the table does not display the results for
Stouffer’s method which in all cases results in a p-value close to 1 and will not be discussed further. As in the
simulation study, the omnibus method is among the top methods for all time points except for the 12-month data,
where the p-value of the Fisher’s combination test is approximately one-third smaller than the p-values of the
omnibus method. For the 6-month data, however, the advantage of the omnibus method as well as Bonferroni and
Simes methods (all p-values between 0.12 and 0.13) over the Fisher’s test (p-value: 0.51) is considerable.
The largest p-value across all scenarios turns out to be smallest for the omnibus test.

We next analyzed the data examples from the R-package metap.19 We used five of the eight different data
examples, ignoring three that involve only hypothetical data. For each of these data sets, a vector of p-values of
lengths ranging from 9 to 34 is provided in the package. For instance, the data taken from the meta-analysis by
Sutton et al.20 involve 34 randomized clinical trials where cholesterol lowering interventions were compared
between treatment and control groups. The actual treatments were mostly drugs and diets. For each study, a
test was performed to analyze if the effect sizes (log odds ratio) are smaller than 0 (one-sided test) and p-values
were calculated based on the normal distribution (Sutton et al.,20 Table 14.3). For details on the other data sets, we
refer to the original publications and for references see the documentation of the metap package. Note that for
some studies p-values were derived from independent subgroup analyses.

Table 3 compares different tests of the global null in terms of their p-values. Three of the methods (Simes,
Fisher, log p) lead to significant p-values at level �¼ 0.05 for four of the five data sets. The omnibus log p method,
however, is the only test that also provides four significant results at level �¼ 0.01.

Table 2. Meta-analysis (example I).

Omnibus

log p Bonferroni Simes Fisher HC

6 months 0.119 0.118 0.118 0.509 0.500

12 months 0.257 0.406 0.235 0.178 0.355

18 months 0.116 0.279 0.279 0.094 0.152

24 months 0.013 0.006 0.006 0.019 0.033

Note: Global tests have been applied to a meta-analysis comparing post-operative radiation therapy with or without

adjuvant chemotherapy in patients with malignant gliomas. p-Values of the methods are shown when testing the global

null hypothesis at different time points.
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4.2 Experimental evolution

With the development of large-scale inexpensive sequencing technologies, experiments became popular that aim to
elucidate biological adaptation at the molecular level of DNA and RNA. In such experiments, organisms are often
exposed to stress factors for several generations, and their genetic adaptation is studied. With microorganisms,
such stress factors can for instance result from antibiotics, with the adaptation being resistance. With higher
organisms, examples of stress factors are temperature or toxic substances. While evolution in nature usually
takes place only once under comparable circumstances, experimental evolution can be done with replicate
populations. Among other things, replication permits to investigate the reproducibility of adaptation, a key
topic in evolutionary genetics. The statistical challenge is to identify genomic positions (called loci) involved in
adaptation. There is a large number of candidate loci, for which adaptation has to be distinguished from random
temporal allele frequency changes due to genetic drift as well as sampling and sequencing noise.

Furthermore, recent research suggests that replicate populations often do not show a consistent behavior, with
signals of adaptation showing up partially at different loci. Two biological explanations for this finding are that
beneficial alleles may be lost due to drift, and that the same adaptation at a phenotypic level can often be achieved
in multiple ways at the genomic level.

When testing for significant allele frequency changes, a test like our omnibus test is therefore desirable, as it
enjoys good power also when signals of adaptation are not consistent across replicates. We illustrate the
application of our omnibus log p test to data from an experiment on Drosophila described in Griffin et al.21

This experiment involves five experimental populations that are initially analyzed separately. For a given
population, v2 homogeneity test has been computed for each of more than 2.5	 106 candidate single
nucleotide polymorphism (SNPs). As the standard p-values of the v2 test would only account for the
sequencing variation, but not genetic drift and sampling, we obtained p-values using simulations under a null
model that includes all sources of variation. Since the signals of selections were frequently not consistent across
replicates, we then combined the matching p-values across the five replicate populations using our omnibus log p
test. The combination of the p-values leads to 347,004 significant SNPs out of a total of 2.568	 106 considered
genomic positions at level �¼ 0.05. Out of these SNPs, 5431 remain significant, after applying a Bonferroni
correction. Controlling the false discovery rate (FDR) using the Benjamini–Hochberg procedure leads to a set
S of 92,868 significant genomic positions. Due to genetic linkage, most of them are expected to be correlated with
an influential SNP but not to be directly influential. Focusing on the FDR corrected p-values, 2241 of the SNPs in
S were not significant with the Fisher’s combination test. With the Bonferroni test (minimum of the five p-values
for an SNP), 28,276 SNPs within S were not found.

A graphical summary of the p-values obtained using our omnibus test can be found in the online supplemental
material.

5 Discussion

In this manuscript we introduced new non-parametric omnibus tests for testing the global null hypothesis. They
require independent p-values as input and assume them to be uniformly distributed (or stochastically larger than
uniform) under the null hypothesis. Our proposed approach enjoys very good power properties, no matter in how
many cases the alternative holds. In our comparison with alternative approaches, it is not always the best method,
but we did not find scenarios, where the omnibus test performs considerably worse than the best alternative

Table 3. Meta-analysis (example II).

Omnibus

log p Bonferroni Simes Fisher Stouffer HC

Sutton 0.24 0.13 0.13 0.79 1 0.57

Mourning 0.007 0.07 0.04 0.017 0.11 0.013

Naep <0.001 <0.001 <0.001 <0.001 <0.001 0.056

Teach 0.0007 0.019 0.019 0.0014 0.0077 0.24

Validity <0.001 <0.001 <0.0001 <0.001 <0.001 0.025

Note: p-Values are obtained from several global null hypothesis tests. The data have been taken from the examples

provided with the R-package metap.
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method for a given setup. One could furthermore construct better specialized tests in situations where knowledge is
available concerning likely deviations from the global null. The proposed omnibus test is useful when no such
information is available.

For our test, we compute successive cumulative sums of the suitably transformed sorted individual p-values.
The most unusual cumulative sum is then obtained by computing the p-value of each sum under the global null
hypothesis. The smallest p-value is then used as test statistic.

We consider different transformations of the initial p-values pi, in particular 1� pi, � logðpiÞ, z1�pi , and p�1=2i .
Our results show only small differences in power between the transformations. However, the log p transform seems
to lead to a particularly good trade-off in power across many scenarios.

As expected the Simes test outperforms the Bonferroni procedure (or is equal) in the simulation study, though,
for the considered scenarios the improvement in power is not remarkable.

All our simulations are based on one-sided tests, but the methods also work for the two-sided testing scenario
(see Figure 6 in the online supplemental material). For two-sided tests, however, it is also possible to reject the
global null hypothesis even when the individual hypotheses show clear effects in differing directions.
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