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Abstract

A wide range of microbes inhabit the oral cavity, and bacterial and fungal communities 
most often exist as structured communities or biofilms. The use of tobacco alters the 
structure of the oral microbiome, including that of potentially malignant lesions, and the 
altered oral microbiome influences key microenvironmental changes such as chronic 
inflammation, secretion of carcinogenic toxins, cellular and tissue remodelling and sup-
pression of apoptosis. Given this, it is clear that the bacterial and fungal biofilms in 
potentially malignant states are likely not passive entities, but could play a critical role 
in shaping potential malignant and carcinogenic conditions. This holds potential towards 
leveraging the oral microbiome for the management of tobacco-associated potentially 
malignant lesions and oral cancer. Here, we explore this line of investigation by review-
ing the effects of tobacco in shaping the oral microbiome, and analyse the available evi-
dence in the light of the microbiome of oral potentially malignant and cancerous lesions, 
and the role of dysbiosis in carcinogenesis. Finally, we discuss possible interventions and 
approaches using which the oral microbiome could be leveraged towards precision-based 
oral cancer therapeutics.
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Tobacco use and oral cancer

Tobacco-associated disease is a global public health threat [1]. There are ~1.3 billion 
users of tobacco worldwide [2], of which an overwhelming majority (~80%) live in low- 
and middle-income countries. While a large proportion of tobacco users worldwide are 
cigarette smokers (~1 billion), the use of smokeless tobacco forms (nearly 30% in South 
and South-East Asia [3]) is also a grave concern. In India alone, there are ~300 million 
consumers of smokeless tobacco forms, and it is the most prevalent form of tobacco use 
among women in the country (India Report from CHRE [4]). Tobacco use is associated 
with a range of adverse health consequences [5, 6], notably the development of oral 
cancer [7].
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Globally, tobacco use is responsible for 25% of all cancer-related deaths (2.4 million deaths from tobacco-use associated cancers) [8]. Ciga-
rette smoke contains approximately 7,000 chemicals, of which at least 70 are known carcinogens [9–11]. Smoking-associated oral malignant 
changes are typically seen in the labial or buccal mucosa, tongue, gingiva, palate, alveolar mucosa, lips and salivary glands [12–15]. On the 
other hand, smokeless tobacco forms are chewed, placed in close contact with the oral mucosa or applied over the teeth and gums. Smoke-
less tobacco is consumed as raw leaves (local names such as khaini, misri, gutka, zarda, toombak) or dissolvable forms (lozenges, sticks, strips) 
[3, 16], often containing additives such as areca nut, betel quid, catechu, slaked lime, ash, sodium bicarbonate, as well as flavouring agents 
such as menthol and plant oils. The process of tobacco curing, fermentation and ageing, results in the production of tobacco-specific nitro-
samines (TSNAs), which are the major group of carcinogens in smokeless tobacco [17–19].

Current management of tobacco-associated premalignant changes and oral cancer

Tobacco-associated oral cancer typically starts as premalignant lesions, which through a series of genetic and molecular changes, influenced 
by oral microenvironmental factors [20, 21], undergoes malignant transformation to oral cancer. The most common form of oral cancer 
squamous cell carcinoma [22], which most often develops from potentially malignant lesions such as oral submucous fibrosis, leukoplakia, 
erythroplakia, among others [23, 24].

Currently, the mainstay of management for oral premalignant lesions is observation with frequent clinical examinations, along with education 
towards cessation. This is not only a passive and suboptimal approach, but is also limited by access to healthcare and success of cessation 
efforts. On the other hand, active interventional approaches include surgical resection and ablation. These are limited by ‘field effects’ where 
potentially malignant changes, though not phenotypically visible, extend to larger areas beyond the lesion, as well as severe disfigurement 
and impairment of function. Finally, limited medical approaches such as retinoic acid, Vitamin E, and natural compounds are either limited by 
toxicity (retinoic acid) or lack of thorough clinical evaluations [20]. As evident, there is an impasse in the management of tobacco-associated 
potentially malignant lesions, and current management strategies fail to account for the complexity of the disease state.

Tobacco, the oral microbiome and oral cancer

Tobacco-associated potentially malignant lesions exist and develop in a dynamic oral microenvironment, that includes diverse, multi-species 
microbial communities [25–28], most often observed as biofilms. It is widely recognised that distinct microbial signatures influence key 
processes such as chronic inflammation and carcinogenesis [29, 30]. This offers the exciting possibility that the oral microbiome (or biofilms) 
can be a tool or target in the management of tobacco-associated potentially malignant lesions. Here, we explore this line of investigation 
by reviewing the increasingly recognized role of tobacco in shaping the oral microbiome, focusing on the bacterial and fungal communities 
(Table 1). We then look at the effects of bacterial and fungal dysbiosis on key processes in oral potentially malignant and cancerous lesions. 
Finally, we discuss possible interventions and approaches with which the oral microbiome can be leveraged towards precision-based oral 
cancer therapeutics.

How tobacco affects the oral microbiome

Tobacco is known to influence the inflammatory response of the oral cavity [31–42]. Overall, this contributes to a pro-inflammatory micro-
environment eventually leading to chronic inflammation, which is known to be associated with oral carcinogenesis [43–47]. However, it is 
evident that tobacco exposure (in various forms) not only results in carcinogenic changes in the oral mucosa [48–57], but also shapes the oral 
microbiome. Several studies have characterized the oral microbiome in tobacco users [36, 58–64], using samples such as tumour or lesion 
biopsies, oral biofilm swabs, oral cavity rinses or saliva, from a diverse range of tobacco users.
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Table 1. Tobacco-associated oral microbiome changes associated with the development and progression of premalignant lesions and oral cancer. 

Tobacco components associ-
ated with the condition Microbes associated with the condition Reference

Early inflammation 
to chronic inflam-
mation

Smokeless forms:
Betel (Areca) nut, Gutka, Iqmik

Smoking forms: Nicotine, ciga-
rette smoke

Reduction in commensal microflora while no loss in pathogenic forms.
Bacterial—Porphyromonas gingivalis, Streptococcus anginosus
Fungal—Candida albicans

[31, 35, 40, 55, 
79, 142–144]

Leukoplakia Smokeless form:
Betel (Areca) nut,
Toombak

Smoking form:
Cigarette smoke

Bacterial–Streptococcus anginosus, Oribacterium, Streptococcus infantis, Acti-
nomyces species, Abiotrophia species, Haemophilus species, Bacillus species
Fungal—Candida albicans, Candida glabrata, Candida tropicalis, Candida krusei

[69, 71, 87, 143, 
145–147]

Erythroplakia Smokeless form:
Betel (Areca) nut 

Smoking form: Cigarette smoke

Bacterial—Streptococcus anginosus, Oribacterium, Streptococcus infantis, 
Actinomyces species

Fungal—Candida albicans

[69, 87]

Oral submucous 
fibrosis 

Smokeless form:
Betel (Areca) nut 

Smoking form:
Cigarette smoke

Bacterial—Streptococcus anginosus, Oribacterium, Streptococcus infantis, 
Actinomyces species

Fungal—Candida albicans

[69, 85]

Oral cancer Smokeless form:
Betel (Areca) nut, Khaini, Maras 
powder, ketone and amine 
components

Smoking form: 
Cigarette smoke (nitrosamines)

Increase in (compared to normal mucosa):
Bacterial—Streptococcus anginosus, Porphyromonas gingivalis, Veillonella, 
Fusobacterium nucleatum, Prevotella intermedia, Actinomyces, Clostridium, 
Haemophilus parainfluenza, Enterococcus faecalis, Escherichia coli, Abiotrophia 
species, Streptococcus anginosus
Fungal—Candida albicans, Candida glabrata, Candida tropicalis, Candida incon-
spicua, Candida famata, Candida kefyr, Saccharomyces cerevisiae, Candida krusei

Reduction in (compared to normal mucosa):
Bacterial—Streptococcus species, Staphylococcus species, Neisseria species, 
Peptostreptococcus species, Propionibacterium species, Capnocytophaga species, 
Firmicutes species and Actinobacteria species

[71, 79, 80, 83, 
86, 87, 98, 100, 
147–151]

Alteration in bacterial species profiles

In one study, tobacco smokers and non-smokers were sampled for oral marginal and subgingival plaques [36]. During this study, all subjects 
received oral prophylaxis to remove any initial plaque and were asked to cover six teeth while brushing to avoid loss of the plaque. After 
24 hours, the plaque samples were collected and the procedure was repeated to obtain samples at different time points up to 7 days. This 
model allowed the study of undisturbed plaque from subjects for the given time periods. About 71% of the oral plaque community in non-
smokers remained stable over the 7-day period, whereas this number was only 46% in smokers, indicating greater fluctuations in smoker 
plaques. Over a period of 7 days, smokers acquired species like Lactobacillus, Fusobacterium, Centipeda periodontii, Pseudomonas, Treponema, 
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Leptotrichia, Synergistes, Propionibacterium and Cardiobacterium, which were absent in non-smokers [36]. In a similar study, tobacco smoking 
contributed to a pathogen-rich environment as seen by the presence of species such as F. nucleatum, F. naviforme, A. johnsonii, A. baumannii, 
A. haemolyticus, S. mutans, and low abundance of Streptococcus sanguinis, S. oralis, Actinomyces viscosus, A. israelii, A. dentalis, Neisseria subflava 
[63, 64].

In another study of smokers and non-smokers, with further subgroups of treated and non-treated for periodontitis, Fusobacterium was found 
to be higher in both untreated and treated smoker groups [65]. Additionally, the same study found Bacteroides forsythus, Peptostreptococcus 
micros and Campylobacter rectus, along with Fusobacterium nucleatum, to be the most prominent microbial signature for smokers. Though 
studies have noted an increase in Fusobacteria in smoker populations, some studies report an opposite trend [59, 66, 67]. Interestingly, under 
in vitro conditions, smokeless tobacco aqueous extracts and TSNAs demonstrated either a reduction of growth for Fusobacterium nucleatum 
or no change in profile. All smokeless extracts promoted the growth of Peptostreptococcus micros, Streptococcus anginosus, S. constellatus, S. 
sanguinis and Veillonella parvula [68]. For certain species, this also correlates to what is seen in vivo, where Streptococcus anginosus was signifi-
cantly higher in chewers having oral lesions [69], and has been identified in various head and neck cancers [70–72]. Notably, Streptococcus 
infantis was more abundant in current chewers compared to past users or those who never used the tobacco product [69], indicating that 
some differences in microbiome due to betel quid chewing could be reversible.

On the other hand, clinical saliva samples of tobacco smokers revealed reduced diversity of Gram-positive bacteria compared to non-
smokers, with only nine different species cultured from smokers compared to eighteen different species from non-smokers [61]. Certain 
Proteobacteria were also reduced in smokers [59, 60, 62].

Alteration in bacterial gene expression profiles

In addition to altered species profiles in tobacco users, tobacco smoke exposure elicits different gene expression profiles in multi-species 
pathogenic and commensal biofilms [35]. Commensal biofilms were grown by seeding Streptococcus oralis, Streptococcus sanguis, Streptococ-
cus mitis, Veillonella parvula, Neisseria mucosa, and Actinomyces naeslundii in a mixture of Brain -Heart Infusion broth (BHI) and artificial saliva 
(1:1). Pathogenic biofilms were grown by seeding commensals along with F. nucleatum, and incubating for 24 hours, followed by further seed-
ing of Porphyromonas gingivalis, Filifactor alocis, Dialister pneumosintes, Selenonomas sputigena, Selenominas noxia, Catonella morbi, Parvimonas 
micra and Tannerella forsythia. Smoke exposure upregulated fermentative pathways in both pathogenic and commensal biofilms. Fermentative 
pathways among several bacteria can lead to the formation of metabolites like butyrate [73], and the role of butyrate has been studied in 
various cancers [74, 75]. Commensal biofilms in tobacco smoke environments faced a loss of viability and elicited an early proinflammatory 
immune response (seen as an increase in various interleukins and macrophage inflammatory proteins) from immortalised human oral kera-
tinocytes (OKF6/TERT-2) [35]. Pathogenic biofilms, however, did not show any significant loss of viability during the same time period, but 
did elicit a late immune response. This could indicate that tobacco exposure leads to elimination of commensal biofilms, while selecting for 
pathogenic biofilms. This transition from a commensal dominant to a pathogen dominant biofilm with tobacco usage could serve as a marker 
for oral health decline and increased risks of lesion progression.

Effect on bacterial interspecies interactions

When Porphyromonas gingivalis grown in cigarette smoke extract-conditioned media (compared to non-conditioned media) was added on 
top of Streptococcus gordonii on saliva-coated coverslips in flow cells, a three-fold increase in the dual-species biofilm height and two-fold 
increase in total microcolony numbers were detected [76]. Peripheral blood mononuclear cells challenged with cigarette smoke extract-
exposed P. gingivalis biofilms (on pellicle coated discs) exhibited lower Interleukin (IL)-6 and Tumor Necrosis Factor (TNF)-α, compared to con-
trol biofilms. Cigarette smoke extract exposure was thus seen to promote dual-species biofilms of P. gingivalis and S. gordonii, and lowers the 
proinflammatory response elicited by P. gingivalis. Cigarette smoke extract-exposure increased P. gingivalis binding to immobilised Glyceralde-
hyde 3-phosphate dehydrogenase (GAPDH), a FimA ligand on S. gordonii. a FimA ligand on S. gordonii. Additionally, cigarette smoke extract-
exposure was shown to increase FimA protein levels, an important virulence factor that helps in adhesion and attachment, and also increases 
biofilm formation by P. gingivalis [77]. A recent study has shown that P. gingivalis invaded OKF6/TERT cells less in the presence of commensals 
such as S. gordonii [78]. An increase in dual-biofilm formation upon cigarette smoke extract-exposure suggests that tobacco could possibly 
alter the interactions between the two bacterial species allowing pathogens to use existing commensals to establish themselves in the oral 
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cavity. Various studies have isolated P. gingivalis from oral tumours [79, 80], and infection with P. gingivalis resulted in increased tongue lesion 
size in a 4-nitroquinoline 1-oxide (4NQO) based cancer mouse model [81]. Moreover, infection with P. gingivalis along with 4-quinoline oxide 
(QO), a carcinogen, led 65% of the mice to develop squamous cell carcinoma compared to 45% in mice treated with only 4NQO, indicating 
that P. gingivalis enhanced carcinogenesis. P. gingivalis also showed increased staining in gingival carcinomas as compared to S. gordonii [80], 
supporting the non-invasiveness of S. gordonii with respect to gingival epithelial cells in vitro [82].

Effect on fungal species profiles

Among fungal species, Candida albicans and non-albicans Candida species such as C. tropicalis, C. krusei, C. glabrata have been isolated from 
various oral lesions [83–87]. C. albicans was significantly higher in oral swabs of waterpipe smokers compared to non-smokers [66]. Saliva 
samples from tobacco users had higher levels of Candida albicans and C. tropicalis and C. krusei was unchanged compared to non-tobacco 
users [88]. This trend was also observed with smokeless tobacco users (gutka and betel-quid chewers), who had a higher Candida carriage, 
compared to non-chewers, with C. albicans being the most commonly present species [89].

Different concentrations of cigarette smoke condensate have been shown to result in increased adhesion on glass slides as well as increased 
metabolic activity in cultures of C. albicans [90]. C. albicans also formed more biofilms on collagen scaffolds, as seen by scanning electron 
microscopy as well as crystal violet staining. This increased adhesion and biofilm formation of Candida biofilms in presence of cigarette smoke 
condensate has also been noted for orthodontic materials like acrylic resin and bands [91]. Cigarette smoke condensate (CSC), in the pres-
ence of 10% serum at 37°C (hyphae-forming conditions), was observed to increase C. albicans in vitro hyphal formation and chitin production 
[92]. C. albicans pretreated with CSC were not only able to adhere more to human gingival fibroblasts, but also proliferated more within 48 
hours. A higher number of CSC-pretreated Candida cells transitioned to hyphal form upon contact with the fibroblasts under hyphal specific 
conditions compared to those not treated with CSC. Attachment to host cells and increased hyphal formation are important for the invasive-
ness of Candida [93], with Candida species isolated from oral mucosal lesions associated with tobacco use were found to be in their hyphal 
forms [85]. 

So far, the evidence strongly establishes that tobacco use alters the distribution, diversity and abundance of oral bacterial and fungal spe-
cies, relative to non-users. The fact that the studies vary in their findings, underscores that various factors such as tobacco type, usage 
pattern, duration and frequency, underlying predisposing factors, health conditions and diet, play an additional role [94]. Notwithstanding 
this, altered oral microbial communities resulting from tobacco use are very likely to shape the microbiome of tobacco-associated potentially 
malignant lesions. 

Microbes associated with oral potentially malignant lesions and cancer

Microbes, often as biofilms, have been found in close association with potentially malignant lesions and Oral Squamous Cell Carcinoma 
(OSCC) tumours in the oral cavity [86, 95–101]. Notably, the abundance, distribution, diversity have been observed to vary not only between 
tobacco-users and non-users, but also across tumour and non-tumour sites in OSCC patients [98, 102, 103]. Bacterial communities on 
the surface of oral carcinomas in tobacco-users have to be enriched for Fusobacterium, Actinomyces, Clostridium, Enterobacteriaceae and 
Streptococcus species, Klebsiella pneumoniae, Enterococcus faecalis, Veillonella, Prevotella, Porphyromonas and Clostridium [98, 102, 103]. In 
one study, three groups, comprising of OSCC tumour patients, high-risk individuals (smokers and alcohol users without signs of OSCC) and 
healthy individuals, were analysed for microbial species and abundance (either at tumour sites of OSCC subjects or normal mucosa in high-
risk and healthy subjects) [100]. Patients with OSCC tumours showed a higher presence of anaerobes, relative to the other two groups, with 
Fusobacterium and Prevotella seen to predominate. Another study identified a large cohort of bacteria within OSCC tissues, as visualised by 
fluorescent in situ hybridisation [96]. Bacteria were found to be present throughout the OSCC tissue. Bacterial identification via 16S rRNA 
sequencing revealed that Clavibacter michiganensis subsp. tessellarius, Fusobacterium naviforme and Ralstonia insidiosa were at least 30% more 
in OSCC samples. Streptococcus anginosus was also identified in a subset of patient in this study. Notably, Streptococcus anginosus has been 
found in close association with many head and neck carcinomas [70, 71]. Notably, S. anginosus isolated from OSCC samples was genotypically 
identical to S. anginosus isolated from dental plaques of the same patients, and was not detected in saliva samples, indicating that plaques 
could be locations where the bacteria accumulate in the oral cavity [71].
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Candida species have been isolated from patients having malignant oral squamous cell carcinoma, atypical lichen planus and chronic candi-
diasis, and Candida species from dorsum tongue of asymptomatic carriers with healthy mucosa were used as controls [83]. Candida albicans 
was the most commonly occurring species in all groups. Candida albicans strains of different biotypes isolated from leukoplakia and eryth-
roleukoplakia have demonstrated high nitrosation potential, quantified as the ability to form N-nitroso benzylmethylamine from N-benzyl-
methylamine and nitrite [104]. Higher nitrosation potential isolates correlated with advanced stages of lesions. Other Candida species, such 
as C. tropicalis and C. parapsilosis, isolated from these lesions ranked lower in their nitrosation potential. The ability to produce carcinogens 
like nitrosamines has been suggested to contribute to malignant transformation in the oral cavity [105–107]. Further, in vitro analysis 
revealed that isolates from the carcinoma and candidiasis groups were able to form significantly more biofilms as quantified by metabolic 
activity (XTT); notably, Candida albicans formed less biofilms compared to other strains. On the other hand, no difference was found in 
lipolytic activity, proteolytic activity and hydrophobicity. Though the virulence factors had differential levels in different clinical conditions, 
there was no association of virulence factors with individual strain types. This indicates that Candida pathogenesis is likely to be influenced by 
an interplay of multiple factors like virulence, abundance of species, as well as other underlying factors like the immune state of the patient 
and co-infecting species.

In a recent study, the diversity and distribution of microbial signatures was largely seen to reduce with cancer progression. When samples 
of normal, epithelial precursor lesions (dysplasia, hyperplasia or hyperkeratosis) and OSCC individuals were analysed for microbial composi-
tion, a multidimensional scaling plot revealed that the distribution was more condensed for OSCC patients than for the other two groups 
[103]. Harvesting of tissue samples from oral tumours and 16S rRNA sequencing based identification of microbial isolates revealed that the 
microbiome of superficial tissues of the tumour housed additional species which were absent in the deep tumour tissues [108]. This indicates 
a specialisation within the tumour itself, where not all species in the oral cavity would become associated with and survive in the tumour 
microenvironment.

Taken together, certain key microbial players are observed to be consistently detected in association with oral potentially malignant lesions 
and OSCC, including Fusobacterium, Candida, Porphyromonas, Streptococcus, Veillonella and Prevotella. While evidence is limited in this regard, 
it is likely that the microbial profile changes with lesion progression, pointing to the imminent role of the microbiome in shaping inflammatory 
and carcinogenic processes.

Oral dysbiosis and cancer: how could the altered oral microbiome play a role in carcinogenesis?

Microbial dysbiosis is well-known to be associated with carcinogenic processes [109–112], either via inflammatory changes, or the pro-
duction of toxins or metabolites. It is likely that these processes play out in potentially malignant and OSCC lesions, and could initiate and 
promote a series of inflammatory and potentially carcinogenic changes in the oral cavity. In general, multiple oral species, via secreted endo-
toxins and metabolic byproducts, induce production of pro-inflammatory cytokines (such as TNFɑ, IL-1, IL-6, IL-8), other immune signaling 
factors (such as Matrix Metallo-Proteinases (MMPs), Granulocye-Macrophage Colony-Stimulating Factor (GM-CSF)), degradation of tissues, 
inhibition of antibacterial activities of immune cells and invasion of host tissues [26, 113–116]. This results in a chronic inflammatory micro-
environment, known to affect key carcinogenic processes such as cell growth, proliferation and migration, apoptosis and differentiation to 
tumour-like phenotypes [105, 113, 117–119]. In the context of oral carcinogenesis, notable pathogens include Fusobacterium nucleatum, 
Porphyromonas gingivalis and Candida species.

Porphyromonas gingivalis and Fusobacterium nucleatum produce sulphur compounds that induce cell proliferation, migration, invasion and 
tumour angiogenesis. In vitro infection of an oral cancerous cell line (OQ01) with Fusobacterium nucleatum showed increased IL-8 production 
and invasiveness of the cell line [120]. In another in vitro study, human OSCC cells showed increased proliferation and invasiveness when 
co-incubated with P. gingivalis and F. nucleatum. Prolonged exposure resulted in a change in OSCC morphology from polygonal to elongated, 
a decrease in the levels of the epithelial marker Cytokeratin-13 and an increase of mesenchymal markers (N-cadherin and α-Smooth Muscle 
Acton (SMA)), indicating an Epithelial-to-Mesemchymal Transition (EMT) phenotype [121]. P. gingivalis has also been shown to inhibit apop-
tosis, and enhance cell proliferation and cellular invasion with F. nucleatum [122–129], and their role in promoting OSCC has been charac-
terised extensively [26, 99, 130]. In an in vivo 4NQO-induced carcinoma model, mice administered with 4NQO and co-infected with both 
P. gingivalis and F. nucleatum developed tongue tumours 2.5 times in size compared to mice only administered 4NQO and had an increased 
expression of the oncogene cyclin D1 [131].
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Candida species have been widely reported in association with oral potentially malignant lesions and in OSCC samples. Through hyphal 
formation, that enables active penetration or endocytosis, Candida species have been shown to invade epithelial cells [132–136]. Further 
contact-sensing and hyphal extension, combined with secretion of toxins and virulence factors induces damage to the oral epithelia [137–
139]. Candida species also produce nitrosamines and their nitrosation potential can lead to DNA damage, and eventually initiate carcinogenic 
changes [107, 140]. Candida species have been isolated from lesions of oral leukoplakia, where a higher nitrosation potential of the fungal 
strain was associated with an advanced potentially malignant stage [104]. Therefore, it is likely that increased Candida abundance, adhesion 
and invasion with tobacco usage, and the potential of Candida-induced nitrosative changes plays a role in the development of potentially 
malignant lesions and progression to cancer [139, 141].

Leveraging the oral microbiome as a tool or target in the management of tobacco-associated oral potentially 
malignant lesions and cancer

Taken together, the use of tobacco alters the oral microbiome, and the oral microbiome influences key pathways involved in inflammation 
and carcinogenesis (Figure 1). Given this, it is clear that the oral microbiome in potentially malignant states plays a critical role in shaping the 
oral carcinogenic microenvironment. Therefore, leveraging the oral microbiome towards the management of tobacco-associated potentially 
malignant lesions and oral cancer could hold potential. For this, there are several strategies and approaches that could be adopted. 

Figure 1. Role of tobacco and microbes in oral carcinogenesis: Tobacco use, its forms, products and additives (cigarette, snuff, gutka, betel quid, areca 
nut), and derivatives (like tobacco-specific nitrosamines) have direct carcinogenic effects on the oral mucosa. Tobacco use also alters the oral microbiome, 
resulting in distinct microbial signatures in normal mucosa, potentially malignant lesions and cancerous tissue. Together, this altered microbiome and 
tobacco use result in a proinflammatory microenvironment, contributing to potentially malignant lesions, and oral carcinogenesis.
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Profiling the oral microbiome in tobacco-associated potentially malignant lesions: Using a combination of standard microbiology approaches 
and molecular tools, the biogeography of the oral microbiome in a range of tobacco-associated clinical conditions, across variations in diet, 
lifestyle, associated risk factors, can be profiled. This will serve as a baseline for screening and interventional tools in local populations, and 
is particularly important given the variations in the microbial profile across study conditions.

Probing the microbiome of tobacco-associated potentially malignant lesions as a cancer screening tool: Based on previous studies, the progression 
of potentially malignant lesions to oral cancer is associated with an alteration in the microbiome, and levels of microbial metabolites. Detec-
tion of these ‘signature’ markers in potentially malignant lesions could be leveraged as screening approaches. This would serve as a valuable 
addition to macroscopic (visual) screening for cancerous changes, and be less invasive as compared with routine biopsies. Most importantly, 
identifying microbial changes early in cancer progression would provide the possibility of targeting the oral microbiome, an active interven-
tional approach to preventing progression to oral cancer.

Targeting the oral microbiome in the management of potentially malignant lesions and oral cancer: For this, a wide range of antimicrobial 
approaches, including conventional antibiotics and antifungal agents, can be employed. However, given the rise in antibiotic resistance, novel 
antimicrobial approaches such as peptides, natural extracts, polyphenols, nucleic-acid mimics and structural analogues can be evaluated for 
antimicrobial and antibiofilm effects. Additional approaches could include targeting the proinflammatory markers, including cytokines and 
growth factors, known to be dysregulated in potentially malignant lesions, and cancer progression states.

Conclusion

In conclusion, exploring interactions between tobacco use, the oral microbiome and carcinogenesis could not only lead to identification of 
potential biomarkers, but also lead to precision-treatment approaches that shape the oral microbiome towards a better therapeutic out-
comes for oral potentially malignant lesions and cancer. This will provide comprehensive insights into the ‘microbiome paradigm’ for the man-
agement of tobacco-associated oral carcinogenesis, and open unexplored lines of investigation into precision-based oral cancer therapeutics.
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