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Microbial forensics represents a promising tool to strengthen traditional forensic
investigative methods and fill related knowledge gaps. Large-scale microbiome studies
indicate that microbial fingerprinting can assist forensics in areas such as trace evidence,
source tracking, geolocation, and circumstances of death. Nevertheless, the majority
of forensic microbiome studies focus on soil and internal organ samples, whereas the
microbiome of skin, mouth, and especially vaginal samples that are routinely collected
in sexual assault and femicide cases remain underexplored. This review discusses the
current and emerging insights into vaginal, skin, and salivary microbiome-modulating
factors during life (e.g., lifestyle and health status) and after death (e.g., environmental
influences and post-mortem interval) based on next-generation sequencing. We
specifically highlight the key aspects of female reproductive tract, skin, and mouth
microbiome samples relevant in forensics. To fill the current knowledge gaps, future
research should focus on the degree to which the post-mortem succession rate and
profiles of vaginal, skin, and saliva microbiota are sensitive to abiotic and biotic factors,
presence or absence of oxygen and other gases, and the nutrient richness of the
environment. Application of this microbiome-related knowledge could provide valuable
complementary data to strengthen forensic cases, for example, to shed light on the
circumstances surrounding death with (post-mortem) microbial fingerprinting. Overall,
this review synthesizes the present knowledge and aims to provide a framework to
adequately comprehend the hurdles and potential application of vaginal, skin, and
salivary post-mortem microbiomes in forensic investigations.

Keywords: post-mortem microbiome, trace evidence, microbial forensics, sexual assault, femicide, next-
generation sequencing, thanatomicrobiome, epinecrotic communities

INTRODUCTION

Violence against women is an urgent global problem, as more than one-third of women worldwide
has been victim of physical and/or sexual violence in their lifetime (Devries et al., 2013; World
Health Organization, 2013). Annually, 66,000 women and girls are victims of femicide, that
is, intentional murder of women and girls because they are female (Geneva Declaration, 2011;
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World Health Organization and Pan American Health
Organization, 2012). Remarkably, only 25% of reported rape
cases in Europe lead to a conviction, often due to the difficulty
of providing evidence (Lovett and Kelly, 2009). Moreover,
forensic experts are convinced that a large number of undetected
homicides are misclassified in annual death statistics as natural
deaths, suicides, or accidents (Karger et al., 2004; Ferguson
and McKinley, 2019). The major obstacle is the difficulty of
elucidating the circumstances surrounding death, including
cause and manner (Pechal et al., 2018; Kaszubinski et al., 2020b).
Traditional forensic techniques, such as human DNA profiling,
can provide critical evidence by linking biological traces to crime
scenes and individuals or through victim identification (Franzosa
et al., 2015). However, they occasionally fall short because of
human DNA degradation (Sijen, 2015; Ranjan and Surajit, 2018)
and need to be complemented with alternative techniques.

Recent advances in microbial profiling have uncovered that
each individual is home to complex microbial communities (Oh
et al., 2016; Gilbert and Stephens, 2018). These communities
inhabit all surfaces of the human body (for example,
orogastrointestinal tract, respiratory tract, urogenital tract,
skin) and collectively represent the human microbiota, with
their microbial DNA signatures forming the microbiome (Ursell
et al., 2012; Berg et al., 2020). Recent research suggests that the
microbiome could greatly aid forensic casework (Clarke et al.,
2017; Hampton-Marcell et al., 2017; Metcalf et al., 2017; Oliveira
and Amorim, 2018; Bishop, 2019). For example, the microbiome
can serve as a personal microbial fingerprint that not only can
associate individuals to objects (Lax et al., 2015) and geographical
locations that they came in contact with (Knight et al., 2016),
but also can provide identifiable characteristics (Franzosa et al.,
2015). Moreover, many microbial cells contain robust cell walls
that leave them better protected against degradation compared
to human cells (Sijen, 2015). Nevertheless, the focus of microbial
forensics to date has been predominantly on gut and soil samples
(Metcalf et al., 2013, Metcalf et al., 2016; Pechal et al., 2014; Javan
et al., 2016b; Burcham et al., 2019; DeBruyn et al., 2021), whereas
research on forensic implementation of the (post-mortem)
microbiome of the female reproductive tract, skin, and oral
cavity is lagging behind. Therefore, in this review, we provide a
critical assessment of current research on the vaginal, skin, and
oral/salivary microbiome in relation to their potential application
in forensics, especially sexual assault and femicide cases.

RELEVANCE OF VAGINAL, SKIN, AND
SALIVARY MICROBIOME DURING LIFE
FOR FORENSIC CASEWORK

Vaginal, skin, and saliva samples represent some of the most
commonly collected samples in forensic casework, including
sexual assault cases (World Health Organization, 2003; Mont and
White, 2007) and cases involving touch evidence (Burrill et al.,
2019; Oorschot et al., 2019). These mucocutaneous niches are
shaped by several microbiome-influencing factors (e.g., pH and
oxygen) (Rojo et al., 2017; Burcham et al., 2019). However, which
of these factors have the largest effect is still unknown.

Vaginal samples are routinely collected in sexual assault
cases (Quaak et al., 2018; Ghemrawi et al., 2021). While their
microbiome is generally neglected in forensics, the less diverse
composition of vaginal microbiota, its high microbial biomass,
and protected anatomical location translate into its unique
potential for microbial fingerprinting (Younes et al., 2018).
Depending on the women’s ethnicity, the vaginal microbiome
is generally dominated by Gram-positive Lactobacillus genera
covered by a thick cell wall (i.e., Lactobacillus crispatus,
Lactobacillus iners, Lactobacillus gasseri, and Lactobacillus
jensenii) or a diverse microbiota dominated by non-lactobacilli
such as Bifidobacterium, Gardnerella, Atopobium, and Prevotella
(Ravel et al., 2010). Also fungal taxa mostly represented by
Candida are detected, but generally in low abundances in healthy
women (Chew et al., 2016). Ongoing research suggests that the
vaginal microbiome composition can be correlated to individual
characteristics valuable in forensics, such as health status
(Ceccarani et al., 2019), ethnicity (Borgdorff et al., 2017; Gupta
et al., 2017), sexual habits (Noyes et al., 2018), contraceptive use
(Song et al., 2020), and pregnancy (Serrano et al., 2019), with
various effect sizes that are not yet well mapped (Figure 1).
For example, a longitudinal study found that sexual activity
within 24 h of sampling has a significant negative impact on
vaginal microbiome constancy as measured via the log Jensen–
Shannon divergence rate (i.e., vaginal community deviation from
constancy), independent of time in the menstrual cycle (Gajer
et al., 2012). The vaginal microbiome could thus represent trace
evidence in sexual assault cases indicating sexual intercourse in
the last 24 h, in addition to providing links with other identifiable
individual characteristics. However, whether this conclusion can
be drawn from single, non-longitudinal samples after sexual
intercourse needs to be investigated.

While vaginal samples are especially useful in sexual
assault cases, the skin is probably the most commonly used
source of forensic trace evidence, including skin under the
victim’s fingernails (Metcalf et al., 2017; Burrill et al., 2019).
However, the unique microbial trail left behind by skin
shedding (Bishop, 2019; Hampton-Marcell et al., 2020) is often
overlooked. The skin microbiome is dominated by Gram-positive
Staphylococcus, Corynebacterium, Cutibacterium, Streptococcus,
or Micrococcus, although Gram-negative Acinetobacter are also
frequently isolated (Grice and Segre, 2011). The skin microbiome
composition varies depending on the body location (Costello
et al., 2009; Grice and Segre, 2011), host characteristics (e.g.,
age, lifestyle, and cohabitation) (Ross et al., 2017), and skin
care (Bouslimani et al., 2019). Importantly, the skin microbiome
is at an interface between the outside world and the body
that undergoes most interactions with the environment. In fact,
detectable amounts of skin microbiota can be transferred to
objects such as a computer keyboard and mouse (Fierer et al.,
2010), shoes and phones (Lax et al., 2015), door handle, toilet
seat, etc. (Flores et al., 2011). Remarkably, this is not only
limited to touched surfaces, but also extends to inhabited spaces
through microbial clouds which are detectable within just a few
hours (Lax et al., 2014; Meadow et al., 2015). However, whether
built environment microbiota can be used as trace evidence
remains to be substantiated (Hampton-Marcell et al., 2020). An
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important knowledge gap is to what extent the skin microbiome
can be detected on touched objects after a certain amount
of time, potentially even after death. Establishing this link is
complicated, as it depends on environmental parameters (e.g.,
temperature, moisture, and UV radiation) (Fierer et al., 2010),
individual shedder status (i.e., amount of epithelium deposited
on a substrate) (Lowe et al., 2002; Kanokwongnuwut et al., 2018),
and surface characteristics of the object (Meadow et al., 2014).

Saliva, as the primary oral cavity sample, is another widely
used trace in forensic casework, especially for skin bite marks in
sexual assault and child abuse cases (Chávez-Briones et al., 2015;
Leake et al., 2016). The salivary microbiome is mostly dominated
by the Gram-negative Neisseria, Prevotella, or Veillonella but
also contains large proportions of Gram-positive Streptococcus
taxa (e.g., Streptococcus salivarius and Streptococcus oralis)
(Willis et al., 2018). Oral Gram-positive bacteria have recently
been described as robust markers for highly degraded saliva

samples, because of their higher resistance to degradation
treatment (e.g., heat denaturation, microbial decomposition,
and ultraviolet irradiation) compared to Gram-negative salivary
bacteria, salivary α-amylase, and human DNA (Ohta and
Sakurada, 2019). Individual characteristics that can influence
the salivary microbiome composition include smoking (Belstrøm
et al., 2014; Wu et al., 2016), dental hygiene (Mashima et al.,
2017; Burcham et al., 2020), general and oral health (Zhou et al.,
2016; Goodson et al., 2017), and socioeconomic status (Belstrøm
et al., 2014; Figure 1). Importantly, shared environment at
household level appears to more significantly determine the
salivary microbiome than individual genetics (Shaw et al., 2017).
Also intimate contact relevant in forensics, such as kissing (i.e.,
mixing of saliva), has been proposed to impact salivary microbial
composition. Specifically, a transfer of approximately 80 million
marker bacteria per intimate kiss of 10 s is observed, and partners
have a more similar microbial community compared to unrelated

FIGURE 1 | Considerations for implementation of microbiome analysis in forensics and overview of factors in life and death that can influence the microbiome
composition. The microbiome of the three body sites understudied in forensics (vagina, skin, and oral cavity) can be influenced by various individual factors during
life, and these influences can sometimes also be detected after death. Death forms a turning point for the microbiome: the post-mortem microbiome is much more
influenced by a range of environmental factors. Previously described microbiome-modulating factors in life and death are summarized, with some of the most
prominent examples given of specific taxa in the oral cavity/upper respiratory tract associated with smoking during life (Wu et al., 2016), drowning as cause of death
(Uchiyama et al., 2012; Benbow et al., 2015), and time that has passed since death (Adserias-Garriga et al., 2017b; Javan et al., 2017; García et al., 2020). More
examples for the other body sites can be found in the text, although, to the best of our knowledge, no data are available on the post-mortem microbiome of the
vagina. Implementation of microbiome analysis in forensics still requires extensive standardization of sampling and processing, as well as larger reference databases
with metadata and an adjusted regulatory and ethical framework. Created with BioRender.com.
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individuals (Kort et al., 2014). Further research into factors
influencing the vaginal, skin, and oral/salivary microbiomes
during life will allow their more targeted implementation in
forensic casework.

THE DETRIMENTAL EFFECTS OF DEATH
ON THE HUMAN MICROBIOME

While the human microbiome during life is widely studied, we
are just beginning to understand the post-mortem microbial
community dynamics and how it can be influenced by ante-
mortem microbial communities and modulating factors. During
different stages after death, many anatomical and immunological
barriers break, causing fluids, chemicals, and microorganisms
that normally would not interact, to come into contact with
each other (Gunn and Pitt, 2012). The post-mortem process
facilitates the proliferation and relocation of microorganisms
throughout the body and opens a gateway of cross-kingdom
ecological interactions (Goff, 2009; García et al., 2020).

The decomposition of a human body is a continuous
process caused by enzymatic reactions, (bio)chemical metabolic
pathways and the activity of vertebrates and invertebrates (Pechal
et al., 2018). This process is divided into a series of observable
stages: fresh, active decay (including bloating and leakage of
effusion), advanced decay, and dry remains/skeletonized (Goff,
2009; García et al., 2020). The course of these stages is partially
determined by the diverse microbial communities occupying
various internal and external body sites (Hauther et al., 2015;
Javan et al., 2016a). Most studies on the post-mortem microbiome
focus on estimating the minimum period of time since death
[i.e., post-mortem interval (PMI)] (Goff, 2009). These studies
aim to predict changes in the microbial composition of internal
organs (e.g., gut, brain, liver, spleen, heart, etc.), also referred
to as the post-mortem microbial clock (Metcalf et al., 2013;
Finley et al., 2015).

Interestingly, studies on internal organs of mice (Metcalf et al.,
2013; Burcham et al., 2019), swine (Carter et al., 2015), and
human bodies (Hyde et al., 2013; Can et al., 2014; Hauther
et al., 2015) have observed a shift in microbial communities from
predominant aerobic microorganisms such as Staphylococcus
and Enterobacteriaceae to more facultative anaerobic bacteria
such as Proteobacteria, Firmicutes, and Bacteroidetes to obligate
anaerobic organisms such as Clostridium, and finally spore-
forming microorganisms such as Clostridium and Bacillus
(Figure 1; Hyde et al., 2015; Javan et al., 2016b, 2019; García
et al., 2020). According to the “post-mortem Clostridium effect,”
Clostridium species can be considered important drivers of this
microbial shift due to their lipolytic enzymes (Janaway et al.,
2009), proteolytic functions, and rapid generation time (Javan
et al., 2017). However, whether the findings from studies focusing
on internal organs can be extended to mucocutaneous niches
entails a different narrative.

Surprisingly, to date, no post-mortem microbiome studies
have examined the vaginal microbiome succession after death
(Table 1). This can be explained by the limited population of
decomposing human bodies (mostly white males; >65 years

old) studied at anthropological research facilities (Pechal et al.,
2018). Nevertheless, Lutz et al. (2020) found that reproductive
organs (i.e., uterus and prostate) were the last internal organs
to decay. Particularly, for the nulligravid uterus (i.e., never been
pregnant), the post-mortem Clostridium effect was not observed
in contrast to the prostate and other internal organs. Of note,
during life, the uterine microbiome is distinct from the vagina
with a significantly lower microbial biomass and colonization
by Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria
(Garcia-grau et al., 2019), and it is not clear to what degree
bacterial transfer from the vagina to the uterus occurs after
death. This highlights the underexplored potential of the female
reproductive tract in post-mortem research.

While current research has focused on the potential of the skin
microbiome as trace evidence (Tozzo et al., 2020), to the best
of our knowledge, only Kodama et al. (2019) have investigated
whether actual objects from real death scenes (e.g., smoking
pipes, medical devices, and phones) could be linked to the
hand palm of the deceased through microbiome identification.
The skin microbiome on the palm of the deceased remained
stable up to 60 h after death, opening a window for individual
microbiome identification even after death. It is noteworthy that
this persistence of the skin microbiome into the early post-
mortem period opens the possibility of also applying the post-
mortem skin microbiome in PMI estimation. This is especially
advantageous in cases where an autopsy is not requested, and
a non-invasive microbiome sampling approach is best, because
the most useful body sites for PMI estimation are external
sites (e.g., skin).

Another body site easily accessible for microbiome and
other sampling is the oral cavity. While its application for
PMI estimation is yet to be studied in large populations, an
increase of Firmicutes and Actinobacteria as the PMI increased
was demonstrated (Hyde et al., 2013; Adserias-Garriga et al.,
2017b). Interestingly, mouth samples pre-bloating resembled
the oral microbiome during life, whereas the mouth samples
post-bloating contained gut bacteria such as Tenericutes that
possibly migrated from the large intestine (Adserias-Garriga
et al., 2017b). Overall, studies that include more body sites,
like Pechal et al. (2018) and others discussed in Table 1, could
improve estimations.

The rate and pattern of decomposition are a mosaic system
associated with biotic factors (e.g., individuality of the body,
intrinsic and extrinsic bacteria, other microbes, and arthropods)
and abiotic factors (e.g., weather, climate, humidity, and edaphic
conditions) (Hyde et al., 2013; Carter et al., 2015; Newsome
et al., 2021; Figure 1). It is yet to be elucidated how the
contact of skin and natural body openings (mouth and vagina)
with the outside environment (clothing, soil, aquatic ecosystems,
etc.) can differentially influence the post-mortem body site-
specific microbiome. For the latter, the application of epinecrotic
communities such as aquatic microbes on the post-mortem
submersion interval estimation could be highly relevant in
aquatic death investigations (Benbow et al., 2015; Cartozzo et al.,
2021; Randall et al., 2021). While the exact effect sizes are
rarely reported (Meurs, 2016), abiotic factors, such as insects
and soils beneath a decomposing body (Cobaugh et al., 2015;
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TABLE 1 | List of human post-mortem microbiome studies which include female reproductive tract, skin and/or oral cavity samples in the last 5 years.

Niches Study aim Sequencing Population and
sample size

Main outcome Main pitfall References

Brain, heart,
liver, spleen,
prostate, and
uterus

Estimating
minimum PMI and
cause of death

16S rRNA gene
amplicon
sequencing

158 samples Reproductive
organs (uterus and
prostate) were the
last internal organs
to decay during
human
decomposition

Larger population
size is needed to
further account for
variation due to
(a)biotic factors

Lutz et al., 2020

40 human bodies
(14 female, 26
male)

6 body sites

Skin: nose and
ear

Estimating
minimum PMI

16S rRNA gene
amplicon
sequencing

144 samples Machine learning
model predicted
the PMI with an
average error of
2 days

Model was based
on only four human
bodies that were
sampled
longitudinally

Johnson et al.,
201621 human bodies

2 body sites

Skin: left hip,
right hip, left
bicep, right
bicep, left
upper hip, right
upper hip, left
knee, groin,
head

Understanding
microbially
mediated
processes during
decomposition on
different soil
substrates

16S rRNA gene
amplicon
sequencing
18S rRNA gene
amplicon
sequencing
ITS amplicon
sequencing

2 human bodies
during winter

Soil type was not a
dominant factor
driving community
development in the
process of
decomposition

Limited population
size with no
information on sex

Metcalf et al., 2016

3 skin sites

143 days

2 human bodies
during spring

8 skin sites

82 days

Eyes, ears,
mouth, nose,
rectum, thigh
skin

Estimating
minimum PMI for
buried bodies

16S rRNA gene
amplicon
sequencing

2 male bodies Multidisciplinary
methodology
identified temporal
changes in
morphology,
skeletal muscle
protein
decomposition,
entomology, and
microbiome for
buried bodies

Model was based
on only two human
bodies of which
multiple samples
were taken

Pittner et al., 2020

10 timepoints

Skin: right
hand palm

Linking objects at
the death scene to
deceased
individuals

16S rRNA gene
amplicon
sequencing

11 male bodies Objects could be
traced to deceased
individual 75% of
the time

Ante-mortem
population was not
always a
demographic
representation of
the deceased study
population

Kodama et al.,
2019

5 female bodies

30 living individuals

79 skin samples

98 object samples

Eyes,
nose,ears,
mouth,
umbilicus
rectum

1. Predicting the
ante-mortem health
condition of the
deceased
2. Comparing three
machine learning
methods to predict
PMI, location of
death, and manner
of death
3. Predicting cause
and manner of
death

16S rRNA gene
amplicon
sequencing

47 male bodies
141 female bodies
6 body sites
1 timepoint

1. Microbial
biodiversity from
the mouth could
predict
ante-mortem host
health condition
(e.g., heart disease)
2. Analysis of
post-mortem
microbiota from
more than thee
anatomic areas had
limited additional
value
3. Beta-dispersion,
and case
demographic data
reflected forensic
death
determination

Only one timepoint
(majority of cases
with estimated PMI
of <72 h) which
does not account
for variability within
a body

1. Pechal et al.,
2018
2. Zhang et al.,
2019
3. Kaszubinski
et al., 2020a

(Continued)
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TABLE 1 | Continued

Niches Study aim Sequencing Population and
sample size

Main outcome Main pitfall References

Mouth: palate,
tongue, inner
cheek mucosa
and tooth
surfaces

Estimating
minimum PMI

16S rRNA gene
amplicon
sequencing

1 male body Post-mortem
microbial
succession in the
oral cavity changed
in a temporal way
according to
oxygen availability

Limited population
size with large
variability

Adserias-Garriga
et al., 2017b2 female bodies

8 timepoints

5 body sites

External
auditory
canal, eyes,
nares, mouth,
umbilicus, and
rectum

Studying the
impact of
coexisting
conditions such as
frozen affect the
human microbiome
at the time of
discovery

16S rRNA gene
amplicon
sequencing

1 male body
1 female body
3 timepoints

The microbial
diversity increased
throughout the
thawing process

Association with
time since death or
cause of death

Pechal et al., 2017

Blood, brain,
buccal cavity,
heart, liver, and
spleen

Estimating
minimum PMI

16S rRNA gene
amplicon
sequencing

66 samples Microbial
communities
demonstrated
time-, organ-, and
sex-dependent
changes

Niche sampling
was not equal for
all deceased
individuals

Javan et al., 2016b

27 human bodies
(12 female, 15
male)

6 body sites

Mouth,
external
left/right
cheeks
external
left/right bicep
region, torso,
and rectum

Studying outdoor
decomposition
under natural
conditions

16S rRNA gene
amplicon
sequencing and
454 pyro-
sequencing

1 male body Shifts in community
structure were
recorded and
associated with
major
decomposition and
related events

Limited population
size with large
variability

Hyde et al., 2015

1 female body

10 timepoints

The bold terms refer to the most relevant niches.

Metcalf et al., 2016; Adserias-Garriga et al., 2017a; Keenan et al.,
2019), seasonal variation, and distinct climates (Carter et al.,
2015), but also exposure and clothing (Goff, 2009), are
some of the driving determinants of the microbial succession
after death. Specifically, because of lack of thermoregulation,
ambient temperatures (Goff, 2009) greatly affect the shift in
nutrient availability and can thereby affect microbial community
dynamics. Thus, while most studies have been performed in
the United States (Metcalf et al., 2013; Pechal et al., 2018;
DeBruyn et al., 2021) with a few in Australia, Japan, and the
United Kingdom (García et al., 2020), post-mortem microbiome
research in a wider range of climates should be encouraged.

POTENTIAL HURDLES AND
CONSIDERATIONS

Juries in the court of law have come to rely on physical evidence
to corroborate a testimony (Shelton et al., 2007). However, before
microbiome research can be reliably introduced into investigative
and legislative casework, it has to be peer-reviewed, standardized,
and accepted by the scientific community (Kiely, 2005).

Microbiome sequencing methods can be divided into those
targeting specific parts of microbial DNA, such as the widely used

16S rRNA gene amplicon sequencing, or untargeted approaches,
such as metagenomic shotgun sequencing. In-depth shotgun
metagenomics is relatively new and currently more expensive
than 16s rRNA gene amplicon sequencing, but it offers the
advantage of sequencing the whole genetic content (microbial
and human) of a sample with a higher taxonomic and functional
resolution (Quince et al., 2017; Schmedes et al., 2017; Hillmann
et al., 2018; Walker and Datta, 2019). However, currently,
amplicon sequencing is most widely implemented and thus
relies on larger available datasets with metadata on microbiome-
modulating factors necessary for increasing method accuracy of
machine learning–based tools (Clarke et al., 2017; Belk et al.,
2018; Zhang et al., 2019), allowing for larger meta-analyses
(Adams et al., 2015; Wang et al., 2018). Although both methods
have specific limitations regarding taxonomic resolution, limit
of specificity, and artificial bias are important when analyzing
different types of samples. An integrative approach using both
techniques could be implemented to rapidly advance the field,
although this requires higher experimental costs (Metcalf et al.,
2017; Hillmann et al., 2018).

Importantly, results of microbiome studies vary due to
differences in sampling, storage, processing, and data analysis
(e.g., machine learning classification models) (Clarke et al.,
2017; Kaszubinski et al., 2020a). Thus, while the field expands,
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forensically oriented studies should contain standardized
protocols with validated techniques. These methods should
ensure reproducibility, sensitivity, and quantitative accuracy
while defining and delineating the limitations (e.g., expected
error rates, limit of detection, and limit of specificity) (Clarke
et al., 2017; Metcalf et al., 2017). Minimizing the distinct impact
of these variables on microbial profiling to reduce bias and
skewing of the detected microbial composition is crucial in
forensic evidence.

FUTURE PERSPECTIVES AND
CONCLUDING REMARKS

Microbial forensics holds much potential; however, to integrate
highly dimensional microbial data into routine investigative
casework, several aspects need to be clarified. A key question
is to what extent and for how long various individual factors
shaping the vaginal, skin, and oral/salivary microbiome during
life also play a role after death. These body sites are often
inhabited by Gram-positive bacteria that are potentially
more resistant to environmental and temporal degradation
compared to Gram-negative bacteria and human DNA. In
addition, vaginal, skin, and oral/saliva samples are routinely
collected as critical components of sexual assault and femicide
cases. Importantly, many sensitive individual characteristics
can be associated with microbiome composition; however,
the magnitude of these effects requires comprehensive
investigation. A better understanding of the complex human
body ecosystem during life and after death is necessary with
the establishment of anthropological research facilities over
different continents studying diverse populations and body

sites. Hereby, we can facilitate discoveries especially related
to female health and safety by comprehending how the post-
mortem disturbance in the body homeostasis and its microbial
communities make it more susceptible to the influences of
the surrounding environment. While studies and regulations
are complex specifically for the forensic field, the current
and potential future possibilities of microbial forensics in
phenotyping, identifying individuals, minimum PMI estimation,
and the source of origin of a sample are highly important to
consider and develop.
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