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Abstract

Pituitary adenomas are one of the most common intracranial tumors. Despite their benign nature, dys-
regulation of hormone secretion causes systemic metabolic deterioration, resulting in high mortality and 
an impaired quality of life. Tumorigenic pathogenesis of pituitary adenomas is mainly investigated by 
performing genetic analyses of somatic mutations in the tumor or germline mutations in patients. Geneti-
cally modified mouse models, which develop pituitary adenomas, are also used. Genetic analysis in rare 
familial pituitary adenomas, including multiple endocrine neoplasia type 1 and type 4, Carney complex, 
familial isolated pituitary adenomas, and succinate dehydrogenases (SDHs)-mediated paraganglioma syn-
drome, revealed several causal germline mutations and sporadic somatic mutations in these genes. The 
analysis of genetically modified mouse models exhibiting pituitary adenomas has revealed the underlying 
mechanisms, where cell cycle regulatory molecules, tumor suppressors, and growth factor signaling are 
involved in pituitary tumorigenesis. Furthermore, accumulating evidence suggests that epigenetic changes, 
including deoxyribonucleic acid (DNA) methylation, histone modification, micro ribonucleic acids (RNAs), 
and long noncoding RNAs play a pivotal role. The elucidation of precise mechanisms of pituitary tumori-
genesis can contribute to the development of novel targeted therapy for pituitary adenomas. 
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Introduction

The pituitary gland is the central mediator for 
peripheral endocrine homeostasis regulation by 
secretion of tropic hormones, such as adrenocor-
ticotropic hormone (aCTH), thyroid stimulating 
hormone (TsH), growth hormone (GH), prolactin, 
follicle-stimulating hormone (FsH), and luteinizing 
hormone (LH).1) Pituitary adenomas are common, 
with 5–10% prevalence rates found at autopsy in 
postmortem studies,2,3) accounting for 15% of all 
intra-cranial tumors.4,5) Most common among these 
are prolactin (PRL)-producing pituitary adenomas 
(29%) or clinically nonfunctioning pituitary adenomas 
(NFPas), derived from all cell types of the adeno-
hypophysis, though mostly gonadotrophs, particu-
larly FsH-producing adenomas. The prevalence of 
GH-producing pituitary adenomas is 15% and that of 
aCTH-producing pituitary adenomas is 10%, while 
TsH-producing pituitary adenomas are rare.6–9) an 
epidemiological study of 9,519 Japanese patients 

with pituitary adenoma revealed that 46% were 
diagnosed with NFPas, 25% with PRL-producing 
adenomas, 22% with GH-producing adenomas, and 
6% with aCTH-producing adenomas.10) Despite 
the mostly benign nature of the tumor, hormonal 
dysregulation and local expansion cause either an 
excess or impaired secretion of pituitary hormones, 
causing disturbance in growth, reproductive function, 
and metabolism, resulting in various morbidities, 
impaired quality of life, and increased mortality.4) 

surgical resection is the first-line of treatment 
for pituitary adenomas, except for PRL-producing 
adenomas. Residual or recurrent tumors require 
re-operation, medical treatment, or radiation. an 
understanding of the physiological regulation 
and molecular mechanisms of pituitary hormone 
synthesis, secretion, and peripheral action has led 
to the development of targeted drugs such as dopa-
mine agonists, somatostatin analogs, GH receptor 
antagonists, steroidogenic inhibitors, and gluco-
corticoid receptor antagonists.11–17) in this regard, a 
better understanding of pituitary tumorigenesis is 
crucial for the development of novel targeted drugs Received May 20, 2014; accepted august 1, 2014
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for pituitary adenomas. in this review, we discuss 
human pituitary adenomas and animal models, as 
well as the involvement of genetic and epigenetic 
changes in pituitary tumorigenesis.

Pathogenesis of Pituitary Adenomas

Pituitary adenomas are considered to be of mono-
clonal origin, based on X-chromosome inactiva-
tion studies,18–20) suggesting that these tumor cells 
arise from a single cell. Therefore, it has been 
hypothesized that a mutation in the cell might 
cause pituitary adenomas as well as other tumors. 
indeed, mutations in the GNAS gene has been 
reported as a cause of GH-producing pituitary 
adenomas.21) Furthermore, the analysis of pituitary 
adenomas related to hereditary syndromes has 
revealed several causal germline mutations in pitui-
tary adenomas. For example, multiple endocrine 
neoplasia type 1 (MEN1), Carney complex (CNC), 
familial isolated pituitary adenomas (FiPas), and 
succinate dehydrogenases (sDHs)-related para-
ganglioma syndrome, shows germline mutations 
in MEN1, PRKAR1A, CDKN1B, and SDHs genes, 
respectively,22) and loss of heterozygosity (LoH) 

at the affected locus in the tumor is generally 
observed (Table 1).23) However, the frequency of 
familial pituitary adenomas is less than 5% in 
patients with pituitary adenomas, demonstrating 
that the cause of most tumors remains unknown.24) 
on the other hand, somatic GNAS1 mutations 
were found in 30–40% of GH-producing pituitary 
adenomas,25) indicating that mutations contribute 
to the development of pituitary tumors (Fig. 1). 

Recently, epigenetic deregulation, including 
deoxyribonucleic acid (DNa) methylation, histone 
modification, nucleosomes remodeling, and ribo-
nucleic acid (RNa) mediated targeting, have been 
shown to play a causative role in pituitary tumori-
genesis.26) DNa methylation is a stable modification 
that leads to chromatin remodeling, resulting in 
transcriptional silencing without gene mutation.27) 
it occurs at cytosine residues in CpG islands, 
frequently located within the promoter region of 
the gene.28) This mechanism is regulated by DNa 
methyltransferases (DNMTs), namely DNMT1, 
DNMT3a, and DNMT3B.29–32) in contrast to DNa 
methylation, histone modifications are reversible, and 
can lead to either activation or repression of gene 
transcription, brought about by specific acetylation 

Table 1 Genetic changes in human pituitary adenomas and modified mice models with pituitary adenomas

Germline mutations somatic mutations

Locus
Human Mice Human

(pituitary tumors)

Mice
(pituitary 

conditional)
syndrome

Mutations LoH Mutations LoH

MEN1 11q13 + + + (hetero) + + – MEN1
PRKAR1A 17q24.2 + ± – Na – + (GHRH-R) CNC
AIP 11q13.3 + + + (hetero) + – – FiPa
CDKN1B (p27kip1) 12p13 + ± + (homo) Na Downregulated + (PoMC) MEN4
SDHs * + + – Na + – PGLs
GNAS 20q13.3 – Na – Na + – Mas
Rb 13q14.2 – Na + (hetero) + Downregulated + (PoMC)
CDKN2C (P18ink4c) 1p32 – Na + (homo) Na – –
PTTG1 5q35.1 – Na – Na upregulated + (αGsu)
HMGA1 6p21 – Na + Na – –
HMGA2 12q15 – Na + Na upregulated –
Cyclin E 19q12 – Na – Na upregulated + (PoMC)
TGFα 2p13 – Na – Na – + (PRL)
FGFR4 5q35.2 – Na – Na Truncated variant + (PRL)
D2R 11q23 – Na + (homo) Na – –
PRLR 5p13.2 – Na + (homo) Na – –

*: sDHa 5p15, sDHB 1p36.1p35, sDHC 1q23.3, sDHD 11q23, CDkN1B: cyclin-dependent kinase inhibitor 1B, CDkN2C: cyclin-
dependent kinase inhibitor 2C, CNC: Carney complex, D2R: dopamine receptor type 2, FGFR: fibroblast growth factor receptor, 
FiPa: familial isolated pituitary adenoma, GHRH-R: growth hormone releasing hormone receptor, GNas: GNas complex locus, 
αGsu: glycoprotein hormone, alpha subunit, hetero: heterozygosity, HMGa: high mobility group a, homo: homozygosity, LoH: 
loss of heterozygosity, Mas: McCune-albright syndrome, MEN1: multiple endocrine neoplasia type 1, Na: not applicable, PGL: 
paraganglioma, PGLs: sDH-related PGL syndrome, PoMC: pro-opiomelanocortin, PRLR: prolactin receptor, PRkaR1a: protein 
kinase, caMP-dependent, regulatory, type 1, alpha, PTTG1: pituitary tumor transforming 1, Rb: retinoblastoma, sDH: succinate 
dehydrogenase complex, TGFα: transforming growth factor alfa. 
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gene expression.42) Deregulated miRNas have been 
reported to regulate genes associated with pituitary 
tumorigenesis.1,43,44) These findings demonstrate a 
crucial role of epigenetic deregulation in pituitary 
tumorigenesis.26,45) 

I. Genetic changes
Many genetic changes related to pituitary tumor 

development in humans and mice have been reported. 
These genes are summarized in Table 1.

1. Evidence in humans
Pituitary adenomas are mostly observed in sporadic 
conditions, but some also arise in familial tumor 
syndromes, and both show clonal expansion 
from a single cell. LoH in the tumor is gener-
ally observed in familial syndromes, and somatic 
mutation occurs in most sporadic tumors. 
Germline mutations: MEN1, located on chromosome 
11q13, encodes the protein menin.46) Heterozygous 
mutation in MEN1 is responsible for MEN1, an 
autosomal dominant syndrome, first identified in 
1997.47) Germline mutation of the gene represents 
tumor development in the parathyroid glands, ante-
rior pituitary, and endocrine pancreas.48) Nonsense 
or frameshift mutations lead to inactivation of 
the tumor suppressor function of menin.49) The 
penetrance of pituitary adenomas in patients with 
MEN1 varies from 15–50% in different series.50) 
Estimated prevalence of MEN1-associated pituitary 
adenomas is 2.7% in all pituitary adenomas.51) all 
cell types of anterior pituitary adenomas, except 
the true gonadotropinoma, have been reported in 
this group.52,53) Pituitary adenomas in patients with 
MEN1 represent larger size, more aggressive behavior, 
and reduced response to treatment as compared 
to non-MEN1.54) Plurihormonal expression is more 
frequently observed in MEN1-associated pituitary 
tumors.54,55) No specific histological difference in 
cellular and nuclear features or proliferative markers 
is observed between MEN1- and non-MEN1-associated 
pituitary tumors.55) 

PRKAR1A, located on chromosome 17q24.2, 
encodes type 1 regulatory subunit of protein kinase 
a.56,57) Heterozygous loss of function mutations in 
PRKAR1A have been identified in about two-thirds 
of patients with CNC,58) an autosomal dominant 
disorder first reported in 1985. CNC is clinically 
characterized by spotty skin pigmentation, myxomas, 
endocrine tumors, which include pituitary adenomas, 
and schwannomas.57,59–61) The incidence of pituitary 
abnormality in patients with CNC was reported in 
12% cases.58) CNC-associated pituitary adenomas 
can be multi-focal, and plurihormonal staining has 
identified dysregulation of several hormones, except 

Fig. 1 Enhanced cAMP signaling in pituitary adenomas. 
Activating somatic gain-of function mutations in GNAS1 
gene, which encodes a subunit of stimulatory G protein 
(Gsa), cause GH-producing pituitary adenoma. Loss of 
expression and/or function mutations in PRKAR1A gene 
results in Carney complex. PRKAR1A gene encodes 
type 1 regulatory subunit (R) of protein kinase A 
that inhibits the catalytic subunits (C) activated by 
an increase in intracellular cAMP levels. AC: Adenyl 
cyclase, CRE: cAMP response elements, cAMP: cyclic 
adenosine monophosphate, CREB: cAMP responsive 
element binding protein, CRHR: Corticotrophin releasing 
hormone receptor, D2R: dopamine receptor type 2, GH: 
growth hormone, GHRHR: growth hormone releasing 
hormone receptor, Gia: a subunit of inhibitory G protein, 
GnRHR: gonadotropin releasing hormone receptor, 
GPCR: G-protein coupled receptor, Gsa: a subunit of 
stimulatory G protein, p-CREB: phospho-CREB, PKA: 
protein kinase A, SSTR: somatostatin receptor.

or methylation lesions.33) although several animal 
models of pituitary tumors have helped to iden-
tify potentially causative genes, few mutations of 
these genes have been detected in human pituitary 
adenomas. For example, retinoblastoma (Rb)-associated 
protein gene,34) pituitary tumor transforming gene 
(PTTG),35) high mobility group a (HMGA),36,37) and 
cyclin E (CCNE1)38) reportedly play an important 
role in pituitary tumorigenesis in mice; however, 
there have been no mutations in these genes in 
humans, suggesting a possibility of misregulation 
of expression levels or post-transcriptional regula-
tion of these genes. DNMT3B is highly expressed 
in human pituitary adenomas, including GH-, 
PRL-, and aCTH-producing pituitary adenomas, 
as well as NFPas, compared to normal pituitary. 
knockdown of DNMT3B in atT20 mouse aCTH-
producing pituitary adenoma cell line enhanced 
Rb expression.39) The promoter region of the Rb 
gene is frequently hypermethylated in pituitary 
adenomas.40,41) MicroRNas (miRNas) are endogenous 
small noncoding RNas that bind to 3´-untranslated 
regions (3´-uTRs) of target mRNas, and thus regulate 
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for aCTH.62–64) GH-producing pituitary adenomas 
are most common,59,65) while abnormal PRL secre-
tion or PRL-producing pituitary adenomas were 
also involved in CNC.64,66,67) in somatomammotroph 
hyperplasia, which appears to predate adenomas, 
loss of heterozygosity (LoH) of PRKAR1A has not 
been observed consistently.63)

AIP, located on chromosome 11q13.3, encodes 
the aryl-hydrocarbon receptor interacting protein 
(aiP)68). Heterozygous inactivating mutations of 
AIP were observed in 15–20% of patients with 
FiPas.69,70) LoH of AIP was identified in the 
pituitary adenoma.71) The penetrance of pitui-
tary adenomas in patients with AIP mutations is 
40–50% in families with GH-producing adenomas 
or PRL-producing adenomas.69,70,72) AIP mutation-
positive patients have a characteristic clinical 
phenotype of young-onset and showing GH and/or 
PRL-producing pituitary adenomas.25,71) in addition, 
GH-producing pituitary adenomas associated with 
AIP mutations are generally large and resistant to 
somatostatin analogs.69) 

CDKN1B gene, located on chromosome 12p13, 
encodes cyclin dependent kinase inhibitor p27kip1, 
which negatively regulates the Cdk2/Cyclin E and 
Cdk2/Cyclin a protein complexes and prevents cell 
cycle progression73) (Fig. 2). Heterozygous loss of 
function CDKN1B mutations have been identified 
in patients with MEN4, an autosomal dominant 
disorder characterized by parathyroid and pituitary 
tumors.74) approximately 3% of patients with clinical 
MEN1 without MEN1 mutations have a mutation 
in this gene.75,76) CDKN1B mutation was recently 
identified in AIP mutation-negative patients with 
FiPa77) (Fig. 2).

SDHx genes encode the subunits of sDH or mito-
chondrial complex ii.78) a mutation in this gene is 
related to familial paraganglioma syndrome78) and 
several tumors including pituitary adenomas.79) LoH 
of SDHD has been reported in pituitary tumors,79) 
though the incidence of sDH mutation in pituitary 
adenomas may be rare.80) 
Somatic mutations: GNAS1, located on chromo-
some 20q13, encodes G protein α-subunit (Gsα), 
which couples numerous hormonal signaling to 
adenylyl cyclase. Ligands that bind Gsα-coupled 
receptors stimulates intracellular cyclic adenosine 
monophosphate (caMP) production81) (Fig. 1). 
activating mutations of the gene are identified 
as missense mutations, which lead to amino acid 
substitutions of either residue arg201 or Gln227, 
resulting in decreased intrinsic GTPase activity and 
increased caMP.21) somatic mutations of GNAS are 
identified in 30–40% of GH-producing pituitary 
adenomas.82) in Japan, it has been reported that 

Fig. 2 The aberrant regulation of cell cycle in pituitary 
tumorigenesis. Targeted deletion in Rb gene results 
in pituitary adenomas depending of a transcription 
factor E2F, which induces G1 to S phase entry of cell 
cycle in mice. Cyclin dependent kinases (Cdks), cyclin 
D and E phosphorylate and inactivate Rb protein. 
Cyclin D and E are inactivated by Cdk inhibitors 
(Cdkis) p16, p18, and p27. Skp2 negatively regulates 
p27 by protein degradation. An activation of growth 
factor including EGF receptor suppresses Cdks. An 
overexpression of architectural transcriptional factors 
HMGAs induces pituitary adenomas in E2F-dependent 
manner. MEN1 gene encodes menin. This is a tumor 
suppressor gene, which mediated by Cdk4. Pituitary 
tumor transforming gene (PTTG) regulates metaphase-
anaphase transition as a securin. An overexpression 
of PTTG induces pituitary adenomas in a downstream 
of Rb/E2F. E2F1: E2F transcription factor 1, HMGA: 
high mobility group A. 

53% of GH-producing adenomas exhibited somatic 
GNAS mutations.83) somatic GNAS1 mutations 
occurring during early prenatal development lead 
to McCune-albright syndrome (Mas), characterized 
by pigmented skin lesions, precocious puberty, 
fibrous dysplasia of bone, and endocrine hyperse-
cretion.84,85) in pathological analysis, proliferation 
markers were unaltered in mutated GNAS pitui-
tary tumors and non-mutated tumors, suggesting 
that GNAS1 mutant affect secretion rather than 
proliferation.86) in terms of other somatic muta-
tions, MEN1 mutation has been detected in < 5% 
of pituitary adenomas, indicating that it is rare in 
sporadic cases.87)

PIK3CA, located on chromosome 3q26.3 encodes 
the catalytic subunit Pik3Ca of class ia Pi3-kinase, 
which exists as a heterodimer of p110 catalytic- 
and p85 regulatory-subunits, upstream of the akT 
signaling pathway. activating somatic mutations 
in PIK3CA at exon 9 and 20 have been identified 
in pituitary adenomas, including aCTH-producing, 
PRL-producing, plurihormonal, and NFPas.88) inter-
estingly, this mutation was seen in 8.8% of invasive 



Pituitary Tumorigenesis 947

Neurol Med Chir (Tokyo) 54, December, 2014

pituitary tumors, while no mutations were detected 
in noninvasive tumors.88)

2. animal models
Consistent with human genetic mutation analyses, 
several mouse models that develop pituitary adenomas 
and hyperplasia have been generated. although these 
models show many phenotypes similar to human 
pituitary adenomas, several notable difference have 
also been observed. 

Men1± mice develop tumors in the endocrine 
pancreas and parathyroid within 9 months of age 
and pituitary tumors within 12 months.89,90) The 
tumors developed in Men1± mice show LoH and 
Cdk4 is a critical downstream of Men1-dependent 
tumor suppression, while Cdk2 is dispensable91) 
(Fig. 2). Menin, encoded by Men1, interacts with 
double-stranded DNa and plays a crucial role in 
regulating cell proliferation by blocking the cell 
cycle.92,93) Menin reportedly attenuates the effect 
of activin on PRL and GH suppression in a Pit-
1-dependent manner.46,94,95)

PRKAR1A± mice are tumor-prone and tend to 
develop tumors in caMP-responsive tissues and 
sarcomas.96,97) However, these mice do not show 
any pituitary tumors. Pituitary-specific knockout of 
PRKAR1A (Prkar1a-pitko) mice, generated using the 
rat GHRH receptor promoter to drive Cre expression 
and crossing them to PRKAR1Aloxp mice, developed 
pituitary tumors that were multiple and positive for 
GH-, PRL-, TsH-, and Pit-1-specific strains. serum 
GH levels revealed a 3-fold elevation as compared 
to controls.98) The Pka catalytic subunit has been 
shown to be downstream of the Pka pathway,99) 
and its constitutive active mutation in adrenocor-
tical cells results in unilateral cortisol-producing 
adrenal adenomas, suggesting a common pathway 
in the tumorigenesis56) (Fig. 1). 

Aip± mice are phenotypically normal and fertile.100) 
The hypomorphic aip mouse model, expressing 
10% normal aip, shows a patent ductus venosus. 
similar phenotypes have been shown in hypomor-
phic aryl hydrocarbon receptor nuclear translo-
cator (aRNT) mice,101) a well-known interactive 
partner of aiP,102) indicating the important role of 
aiP is mediated by its interaction with aRNT.103) 
No pituitary tumors develop in these animals. in 
contrast, heterozygous Aip mutations generated 
by insertion of a gene trap vector construct into 
an intronic region of genomic DNa between Aip 
exons 2 and 3 showed 100% of pituitary adenomas, 
particularly GH-secreting tumors.104) This differ-
ence may be due to different sub-strains used for 
inbreeding or the difference in the placement of 
the germline mutation to induce the inactivation 

of aip.104) ah receptor nuclear translocator 1 and 2 
(aRNT1 and aRNT2) have been shown as possible 
mediators of aiP function.104) in addition, aiP 
protein interacts with several proteins including 
ahR, heat shock protein 90, caMP, phosphodies-
terases (PDE4a5 and PDE2a), epidermal growth 
factor receptor (EGFR), ret proto-oncogene (RET), 
and peroxisome proliferator-activated receptor 
gamma (PPaRγ),25,71,102) suggesting a possible role 
in angiogenesis and cell proliferation.

p27 –/– mice, exhibiting increased body weight 
and multi-organ hyperplasia, develop intermediate 
lobe pituitary tumors expressing aCTH.105,106) Dele-
tion of p27 in the pituitary by PoMC-Cre generates 
intermediate lobe pituitary tumors.107) MENX-affected 
rats, which display diminished expression of p27 
due to a Cdkn1b mutation, develop multiple endo-
crine tumors including pituitary tumors.108) Recently, 
the deletion of S-phase kinase-associated protein 2 
(Skp2),109) the third ubiquitin ligase for p27, has been 
shown to block co-deletion of Rb and Trp53 and 
induced pituitary tumorigenesis probably mediated 
by p27 accumulation in the nucleus.110) This suggests 
that p27 plays a key role as a tumor suppressor in 
pituitary tumorigenesis (Fig. 2). 

Rb± mice are not predisposed to retinoblastoma, 
but to high frequency of pituitary adenomas in an 
E2F-dependent manner.111,112) Rb is a key cell cycle 
regulator and tumor suppressor, which serves to 
inhibit the transcription of multiple genes required 
for entry into the s-phase. inactivation of Rb func-
tion by several Cdks including cyclin D1/Cdk4 
induces tumorigenesis.113) Pituitary-specific deletion 
of Rb by using PoMC-Cre results in development 
of intermediate lobe pituitary tumors, which are 
completely prevented by Skp2 deletion, demonstrating 
the essential role of Skp2 in the downstream of Rb 
pathway114) (Fig. 2). 

Two families of Cdk inhibitors exist, namely the 
iNk4a/aRF (p15, p16, p18) and Cip/kip families 
(Fig. 2). The iNk4a/aRF family inhibits cyclin D1/
Cdk4, whereas the Cip/kip family inhibits cyclin 
E/Cdk2. Both families of Cdk inhibitors normally 
act as tumor suppressors by preventing entry into 
the s phase in an Rb-mediated manner.1,113,115) 
Genetic deletion of Cdk inhibitors in mice has 
generated pituitary tumor animal models, demon-
strating a pathogenic significance for cell cycle 
abnormality in pituitary tumorigenesis, at least 
in animal models. p18ink4c-deficient mice develop 
GH-producing pituitary adenomas with increasing 
body size and organomegaly. p27kip1-deficient mice 
demonstrate similar phenotypes.4,105,116) p18ink4c/
p27kip1 double-null mice exhibit more aggressive 
pituitary tumors than single knockout mice and 
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died within 3.5 months because of the tumors.116) 
P57kip2-null mice develop pituitary hyperplasia 
but no adenomas.117) overexpression of Cyclin E, 
which is downstream of p27, in pituitary using 
PoMC promoter leads to intermediate lobe pituitary 
hyperplasia and anterior lobe adenoma, including 
PRL with few GH cells or non-secreting cells.38) 
selective Cyclin E inhibition has been shown 
to attenuate aCTH-producing tumor growth and 
hormone secretion118) (Fig. 2).

PTTG encodes pituitary tumor transforming 
gene 1 (PTTG1), the mammalian protein securin, 
which is a transcriptional activator119,120) (Fig. 2). 
PTTG1-null mice exhibit pituitary hypoplasia and 
when crossbred with Rb± mice, which develop 
high-penetrance pituitary tumors, showed signifi-
cant delay in developing pituitary tumors.121) This 
suggests that PTTG1 is downstream of Rb/E2F in 
pituitary tumorigenesis.122) Pituitary-specific PTTG1 
overexpression in mice by using α-subunit of 
glycoprotein hormone (αGsu) promoter generates 
focal pituitary hyperplasia and pituitary tumors, 
inducing aneuploidy and chromosomal insta-
bility.35,123) PoMC-Pttg overexpression in zebrafish 
generates aCTH-producing pituitary tumors and 
treatment with the Cyclin E inhibitor Roscovitine 
attenuates tumor development.118)

HMGA encode HMGa proteins that are known 
as architectural transcriptional factors, namely 
HMGa1a, HMGa1b, and HMGa1c from HMGA1 
gene, and MHGa2 from HMGA2 gene.37) Both 
HMGA1 and HMGA2 transgenic mice develop 
mixed GH/PRL-secreting pituitary adenomas.36,37) 
absence of E2F1 suppresses these pituitary tumors 
in HMGA2 transgenic mice, suggesting that the 
cell cycle is deregulated by HMGa2 in pituitary 
tumorigenesis37) (Fig. 2). 

overexpression of transforming growth factor 
(TGF)-α, an EGFR ligand, using PRL promoter in 
mice, generates PRL-producing pituitary adenomas,124) 
suggesting the involvement of EGFR in pituitary 
tumorigenesis. additionally, inhibition of EGFR 
and its family of ErbB kinases has been shown 
to suppress hormone secretion and cell prolif-
eration125–127) (Fig. 2). Fibroblastoma growth factor 
receptor 4 (FGFR4) is a member of the FGFR 
family, which includes FGFR-1 through 4. FGFR4 
overexpression is associated with chemotherapy 
resistance and single nucleotide polymorphisms 
in the gene locus have been identified in breast 
cancer.128) FGFR4 kinase-containing, N-terminal 
truncated variant of FGFR4 has been identified as 
pituitary tumor-derived (ptd)-FGFR-4.129) overexpres-
sion of ptd-FGFR4 in mice generates PRL-producing 
pituitary adenomas.130)

Dopamine receptor type 2 (D2R), which encodes 
a predominant dopamine receptor subtype in the 
anterior pituitary, is the main suppressor of PRL 
secretion. knockout of D2R in mice results in devel-
opment of PRL-producing pituitary adenomas (Fig. 
1), especially in females with increasing VEGF-a 
expression, indicating the physiological importance 
of dopamine signaling.131) PRL-receptor-deficient 
mice develop PRL-producing pituitary hyperplasia 
and adenomas, larger than those developed in D2R 
knockout mice, suggesting a presence of negative 
feedback mechanisms.132)

II. Epigenetic changes
Despite aggressive, global, and genetic sequence 

analyses in human pituitary adenomas, pathogenesis 
in most tumors remains to be clarified. in this case, 
epigenetic changes including DNa methylation, 
histone modification, miRNas , and long noncoding 
(Lnc) RNas have been considered to be related 
to pathogenesis. The epigenetic changes may also 
explain some of the discrepancies between observa-
tions in humans and animal models.
DNA methylation: Methylation changes occurring 
within the CpG islands, present in approximately 
70% of all mammalian promoters, are the best 
studied epigenetic alterations in cancer. CpG island 
methylation plays a key role in regulating tran-
scription and is generally involved in malignant 
transformation.133)

Low expression levels of Rb in pituitary adenomas 
have been shown to be due to hypermethylation 
of the Rb gene promoter.134) Methylation of the 
Cdkn1b promoter was observed in rat GH3 and 
mouse GHRH-CL1 pituitary tumor cell lines, but 
not in primary human pituitary adenomas.135) P16 
expression is suppressed in pituitary adenomas, 
which is ascribed to p16 promoter methylation, 
especially in NFPas.136) The FGFR2 promoter 
is hypermethylated in 45% of human pituitary 
adenomas and its low expression in tumors is 
reciprocally correlated to melanoma-associated 
antigen a3 (MaGE-3) expression, which is hypo-
methylated in tumors, suggesting that it is epige-
netically regulated.137) DNa damage inducible gene 
45γ (GADD45γ) is a p53-regulated gene identified 
as a pituitary-derived growth inhibitor. Promoter 
CpG island of GADD45γ is hypermethylated in 
pituitary adenomas, especially NFPas.138) The 
smallest member of the Ras-association domain 
family (RassF) and a new Ras effector, RASSF3, 
is a tumor suppressor gene.139) in somatotroph 
adenomas, hypermethylation of RASSF3 promoter 
has been identified.140) NNAT encodes Neuronatin, 
a tumor suppressor, is downregulated in pituitary 
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tumors due to hypermethylation of its promoter.141)

GNAS1 is an imprinting gene that is regulated by 
DNa methylation. GNAS1 activating mutation in 
GH-producing pituitary adenomas or Mas is present 
on the active maternal allele. This is different from 
normal pituitary, in that Gsα expression has also 
been observed in the non-mutated paternal allele, 
demonstrating the impact of GNAS imprinting 
relaxation on pituitary tumorigenesis.142)

Histone modification: Tail acetylation or methyla-
tion of histone lysine residues can lead to either 
activation or repression of gene transcription. Many 
of the histone modifications are misregulated in 
cancer.133) 

DNa methyltransferase 3B (DNMT3b), which 
encodes a protein that produces 5-methylcytosine 
by adding a methyl group to a cytosine base, was 
shown to be overexpressed in pituitary adenomas. 
Down-regulation of DNMT3b in atT20 mouse 
corticotroph adenoma cells results in histone 3 
acetylation and diminished histone methylation 
in Rb, p21, and p27.39) IK6 is a dominant-negative 
isoform of the transcription factor ikaros, a family 
of zinc-finger DNa-binding proteins. IK6 has been 
identified in pituitary adenomas and has been shown 
to be epigenetically regulated through histone and 
DNa modifications.143,144) 
miRNAs: miRNas are small, single-stranded, 
noncoding RNa molecules, which consist of 
approximately 22 nucleotides. miRNas bind to 
sequences at 3′ untranslated regions of mRNas, 
resulting in post-transcriptional silencing.145) it has 
been reported that miRNa dysregulation plays a 

crucial role in the progression of cancer.146) The 
analysis of expression profiles and functional 
properties in pituitary adenomas has revealed 
that miRNas play a significant role in pituitary 
tumorigenesis24,44) (Table 2).

AIP was identified as a target for miR-107, which 
is overexpressed in pituitary adenomas.147) BMi1 
polycomb ring finger oncogene 1 is a target for 
miR-128, which is downregulated in GH-producing 
pituitary adenomas leading to phosphatase and tensin 
homolog (PTEN) suppression.148) E2F1 is the target 
for miR-326 and miR-603, while HMGA1/HMGA2 
is the target for miR-15, miR-16, miR-26a, miR-34b, 
miR-548-3p, miR-196a2, and let-7a, which are 
downregulated in pituitary adenomas.149,150) miR-326, 
miR-432, and miR-570 are also downregulated in 
pituitary adenomas that target HMGA2.149) PRKCD, 
a serine/threonine kinase involved in proliferation, 
apoptosis and cell cycle regulation, is a direct 
target for miR-26a, which is overexpressed in 
aCTH-producing pituitary adenomas.151) PTEN, a 
suppressor of the Pi3k/akT signaling pathway, is 
identified as a direct target for miR-26b, which is 
overexpressed in GH-secreting pituitary adenomas.148) 
arginyl-tRNa synthetase (RaRs), a part of the 
aminoacyl-tRNa synthetase complex, is a target 
for miR-16-1, whose expression levels are low 
in pituitary adenomas.152) SMAD3 is a target for 
miR-135a, miR-140-5p, miR-582-3p, miR-582-5p, 
and miR-938, which are overexpressed in NFPas, 
as compared to normal pituitaries.153) Vascular 
endothelial growth factor receptor 1 (VEGF-R1) is 
a target for miR-24-1, which is downregulated in 

Table 2 Altered expression of microRNAs related to pituitary adenomas and their target genes

Target genes of miRNas upregulated miRNas Downregulated miRNas

AIP miR-107
BMI1 miR-128
E2F1 miR-326, miR-603
HMGA1 and HMGA2 miR-15, miR-16, miR-26a, miR-34b, 

miR-548c-3p, miR-196a2, let-7a
HMGA2  miR-326, miR-432, miR-570
PRKCD miR-26a
PTEN miR-26b

RARS miR-16-1
SMAD3 miR-135a, miR-140-5p, miR-582-3p, miR582-5p, miR-938

VEGF-R1 miR24-1
Wee1 miR-128a, miR-155, miR-516-3p
ZAC1 miR-26a

aiP: aryl hydrocarbon receptor interacting protein, BMi1: BMi1 proto-oncogene, polycomb ring finger, E2F1: E2F transcription 
factor 1, HMGa: high mobility group a, PRkCD: protein kinase C delta, PTEN: phosphatase and tensin homolog, RaRs: 
arginyl-tRNa synthetase, sMaD3: smad family member 3, VEGF-R1: soluble vascular endothelial growth factor receptor 1, 
Wee1: WEE1 G2 check point kinase, ZaC1: zinc finger regulator of apoptosis and cell cycle arrest.
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pituitary adenomas.154) Wee1, an inhibitor for Cdk1, 
is identified as a target for miR-128a, miR-155, and 
miR-516-3p, which are overexpressed in pituitary 
adenomas.155) ZAC1, also called as PLaG1, which 
is a downstream component of a particular signal 
pathway involving aiP, is a target for miR-26a, 
which is overexpressed in pituitary adenomas.154)

Lnc RNAs: LncRNas are non-protein coding tran-
scripts, longer than 200 nucleotides. LncRNa are 
involved in the regulation of molecules related to 
the cell cycle, including CDk inhibitors, CDks, Rb, 
and p53, in addition to functioning as epigenetic 
regulators, transcription factor regulators, post-
transcription regulators, and protein scaffolds.156)

Maternally expressed gene 3 (MEG3), located on 
chromosome 14q32, belongs to the DLK1-MEG3 
imprinting locus, containing multiple mater-
nally and paternally imprinted genes.157,158) MEG3 
encodes lncRNa and is downregulated in pituitary 
adenomas, especially in NFPas.159) MEG3 stimulates 
p53-dependent transcription and acts as a tumor 
suppressor gene.160)

Future Directions and Conclusion

accumulating evidence suggests that not only 
genetic changes, but also epigenetic changes play 
an essential role in the development of pituitary 
adenomas. Both clinical data and the analysis of 
animal models are important; however, there are 
substantial differences between species. in this 
regard, it is important to establish a human tumor 
experimental model.

To develop novel therapeutic targeted drugs, it 
is essential to identify the pathway responsible for 
pituitary tumorigenesis. somatostatin analogs are 
important targeted drugs, that inhibit the pathways 
essential for GH secretion in GH-producing pitui-
tary adenoma.13) Recent findings suggest that ErbB 
receptors or skp2, which is an upstream effector of 
CDk inhibitors, could be useful as a novel strategy 
for targeted therapy.114,126,161) 

in conclusion, human genetic analysis and estab-
lishment of animal models have revealed the mecha-
nisms of pituitary tumorigenesis. Further clarification 
of underlying mechanisms can contribute to the 
development of novel targeted drugs for pituitary 
adenomas.
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