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Background: Acute dizziness is a common symptom among patients visiting

emergency medical centers. Extensive neurological examinations aimed at delineating

the cause of dizziness often require experience and specialized training. We tried to

diagnose central dizziness by machine learning using only basic clinical information.

Methods: Patients were enrolled who had visited an emergency medical center with

acute dizziness and underwent diffusion-weighted imaging. The enrolled patients were

dichotomized as either having central (with a corresponding central lesion) or non-central

dizziness. We obtained patient demographics, risk factors, vital signs, and presentation

(non-whirling type dizziness or vertigo). Various machine learning algorithms were

used to predict central dizziness. The area under the receiver operating characteristic

curve (AUROC) was measured to evaluate diagnostic accuracy. The SHapley Additive

exPlanations (SHAP) value was used to explain the importance of each factor.

Results: Of the 4,481 visits, 414 (9.2%) were determined as central dizziness. Central

dizziness patients were more often older and male and had more risk factors and higher

systolic blood pressure. They also presented more frequently with non-whirling type

dizziness (79 vs. 54.4%) than non-central dizziness. Catboost model showed the highest

AUROC (0.738) with a 94.4% sensitivity and 31.9% specificity in the test set (n = 1,317).

The SHAP value was highest for previous stroke presence (mean; 0.74), followed by male

(0.33), presentation as non-whirling type dizziness (0.30), and age (0.25).

Conclusions: Machine learning is feasible for classifying central dizziness using

demographics, risk factors, vital signs, and clinical dizziness presentation, which are

obtainable at the triage.

Keywords: dizziness, vertigo, machine learning, stroke, vertebrobasilar insufficiency

INTRODUCTION

Acute dizziness and vertigo are common symptoms presented by patients admitted to emergency
medical centers (EMCs) (1). Though dizziness is usually attributable to benign etiologies
originating from peripheral causes, 5% of acute dizziness may be caused by cerebrovascular issues
(2). Acute dizziness and vertigo are the most common presenting symptoms of vertebra-basilar
ischemia (3), which shows a stepwise deterioration of poor prognosis when the diagnosis is
inappropriately delayed (4).
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Unfortunately, because there is no standard test or
biomarker that can be used for the confirmatory diagnosis
of central dizziness, verification of the etiology remains
challenging. Many efforts have been made to distinguish
central dizziness from peripheral dizziness, especially those
utilizing extensive neurological examinations (5). However,
to some extent, misdiagnosis stems from an overreliance on
negative neurological examinations (2). Approximately 11% of
medial posterior-inferior cerebellar artery infarction patients
were shown to present with isolated vertigo, abnormal ocular
manifestations, and imbalance (6). However, interpretation of
the oculomotor findings often requires further examinations
with experienced and specialized neuro-ophthalmology staff.
While acute dizziness and vertigo are very commonly observed
clinical symptoms, which most physicians, not only specialists,
may encounter daily, misdiagnosis can lead to devastating
results (7).

Therefore, clinicians require a simple and widely applicable
method with high sensitivity that can significantly reduce
misdiagnosis of central dizziness. Machine learning (ML) has
previously been used and has shown an acceptable performance
in predicting the characteristics and prognosis of ischemic stroke
(8–11). Several studies have shown thatML can be used to analyze
nysagmogram or postulography videos to diagnose the causes of
dizziness, which still needs equipment to measure the nystagmus
or posture (12, 13). Here, we used ML techniques to diagnose
isolated acute dizziness patients visiting EMCs. As such, we used
only simple clinical information to delineate the central causes
of dizziness from peripheral causes. Additionally, we aimed to
examine the feature importance of theMLmodel and understand
its behavior.

MATERIALS AND METHODS

Participants
Patients visiting the EMC of the Asan Medical Center with acute
dizziness or vertigo were consecutively checked with diffusion-
weighted imaging (DWI) to exclude central dizziness. In the
present study, we have retrospectively recruited patients who
visited the EMC presenting with acute dizziness or vertigo
between January 2010 and December 2013 and received DWI
before being discharged from the EMC.

We excluded patients refusing DWI or with contraindications
for magnetic resonance imaging (MRI; i.e., pacemaker). In
addition, patients were excluded who presented with symptoms
indicative of nausea, even though the chief complaint was
dizziness or vertigo, and were diagnosed with gastrointestinal
disorders. Patients who presented with non-specific dizziness
and were diagnosed with general weakness due to poor medical
conditions, such as systemic infection or cancer, were also
excluded from the final analysis. The Institutional Review Board
of the Asan Medical Center approved this study. Informed
consent was waived because of the retrospective design.

Classification of the Cause of Dizziness
The cause of acute dizziness and vertigo was categorized
based on the final diagnosis upon discharge from the EMC.

The final diagnosis was based on extensive evaluation with
neuroimaging and comprehensive evaluation by neurologists,
otorhinolaryngologists, and emergency medicine physicians.
All patients included received DWI. Additional neuroimaging
procedures were performed for patients who were suspicious
of vertebrobasilar insufficiency after consultation to the
neurologists. Computed tomography angiography (CTA) or
magnetic resonance angiography (MRA) were performed based
on the clinician’s decision.

The cause of dizziness was initially categorized as one
of the following: (1) central, (2) peripheral, (3) psychogenic,
(4) cardio-circulatory, and (5) non-specific. A diagnosis of
central dizziness was dependent upon the identification of a
focal structural lesion from the corresponding area. Central
dizziness included patients with DWI lesions presenting acute
ischemic stroke or a significant stenosis (more than 50%) at
the vertebrobasilar system. Peripheral dizziness included patients
diagnosed as benign paroxysmal positional vertigo, Meniere’s
disease, vestibule-neuritis, and other vestibulopathies. Patients
diagnosed with depression, anxiety disorder, or hyperventilation
were categorized as psychogenic dizziness. Cardio-circulatory
dizziness included patients diagnosed as syncope or presyncope
due to cardiac problems, such as symptomatic arrhythmias,
causing insufficient cerebral circulation. Dizziness with an
unclear etiology but excluded from being categorized as central
causing dizziness by neuroimaging was determined to be non-
specific dizziness. All causes of dizziness, except central dizziness,
were regarded as non-central dizziness.

Development and Evaluation of Model
Predictors included demographics (e.g., age and sex), previous
medical history (e.g., history of hypertension, diabetes,
hyperlipidemia, stroke, or coronary artery disease), systolic
and diastolic blood pressure (BP), and heart rate. In the
current study, we built classification models using various ML
algorithms, including the radial basis function kernel support
vector machine (SVM), random forest (RF), Catboost, and
conventional logistic regression (LR).

The data was split by order of admission date (i.e., temporal
validation) into a training set and a test set. Within a
training set, multiple hyperparameters were tuned using a five-
fold cross-validation. The loss function was negative a log-
likelihood with class weights. Area under the curve of the
receiver operating characteristic curve (AUROC) was measured
to validate performance in a test set. Sensitivity and specificity
were also calculated on a test set using threshold at which
sensitivity on the training set was 99% or 99.9%, since notmissing
patients with central dizziness is a more critical factor not missing
those with non-central dizziness.

In addition, to understand the reasoning behind certain ML
model predictions, we used a Tree Explainer of SHapley Additive
exPlanations (SHAP) value (https://github.com/skjang54/Asan_
Central-Dizziness-and-Machine-Learning/) (14). The SHAP
value (log-odds unit) identifies the degree of impact a predictor
has on a prediction. A positive SHAP indicates that the feature
drives an increase in the probability of central dizziness (response
variable), and a negative SHAP implies that the feature decreases
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FIGURE 1 | Flow diagram. EMC, emergency medical center; GI, gastrointestinal; DWI, Diffusion-weighted imaging; MRI, Magnetic resonance imaging.

TABLE 1 | Baseline characteristics of the records of the enrolled patients with central and non-central dizziness.

Central dizziness† (n = 414) Non-central dizziness† (n = 4,067) p-value‡

Age (y) 66.1 ± 11.8 61.3 ± 11.5 <0.001

Sex (male) 245 (59.2) 1592 (39.1) <0.001

Hypertension 198 (47.8) 1531 (37.6) <0.001

Diabetes 100 (24.2) 531 (13.1) <0.001

Hyperlipidemia 133 (32.1) 1,368 (33.6) 0.571

Current smoking 41 (9.9) 265 (6.5) 0.012

History of previous coronary artery disease 77 (18.6) 495 (12.2) <0.001

History of previous stroke 100 (24.2) 313 (7.7) <0.001

Systolic blood pressure (mmHg) 148.3 ± 23.6 145.7 ± 22.0 0.032

Diastolic blood pressure (mmHg) 87.7 ± 15.8 88.1 ± 14.0 0.584

Heart rate (beat/min) 75.2 ± 15.1 74.6 ± 14.0 0.425

Presentation of dizziness <0.001

Non-whirling type dizziness 327 (79.0) 2,211 (54.4)

Vertigo 87 (21.0) 1,856 (45.6)

†
Values represented as frequency (percentage) or mean ± SD.

‡
P-values were calculated using t-test for continuous variables and χ

2-test for categorical variables.

the probability. This approach provides local explanations by
illustrating the attribution of a feature within a single patient.
Also, the mean of the absolute values of SHAP explains
the importance of each feature across the population (global
explanation). The SHAP values of Catboost and RF models were
computed by Tree Explainer, with SVM as the Kernel Explainer
and LR as the Linear Explainer (SHAP version 0.34.0).

RESULTS

Of the 11,366 patients who visited the EMC with dizziness
or vertigo, 4,426 patients were included in the final analysis
(Figure 1). All patients had DWI data and 989 patients had
additional angiographic evaluation (CTA, n = 81 and MRA, n
= 908). Of these final patients, 3,116 patients were included in

Frontiers in Neurology | www.frontiersin.org 3 July 2021 | Volume 12 | Article 691057

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Kim et al. Central Dizziness and Machine Learning

FIGURE 2 | The receiver operating characteristics curve of the model for

central dizziness. LR, logistic regression; SVM, support vector machine; RF,

random forest; CAT, Catboost; AUC, area under the receiver operating

characteristic curve.

the training set, and the remaining 1,310 patients were included
in the test set. Within the period of the training set, 46 patients
visited twice, and one patient visited three times. Only the first
visit was used for the test set. The ratio of central to non-
central causes of dizziness was not significantly different in the
training set than the test set (Supplementary Table 1). Among
4,481 records, 414 (9.2%) were diagnosed with central dizziness.
There was no missing data among clinical variables.

Characteristics of Patients With Central
Dizziness
As shown in Table 1, patients with central dizziness were older
(66.1± 11.8 vs. 61.3± 11.5 years old; p < 0.001) and more often
male than those with non-central dizziness (59.2 vs. 39.1%; p <

0.001). Patients with central dizziness showed a higher prevalence
of hypertension (47.8 vs. 37.6%; p < 0.001), diabetes (24.2 vs.
13.1%; p < 0.001), current smoking (9.9 vs. 6.5%; p = 0.012),
previous coronary artery disease (18.6 vs. 12.2%; p < 0.001), and
history of stroke (24.2 vs. 7.7%; p< 0.001). Systolic BP was higher
in patients with central dizziness than in those with non-central
dizziness (148.3 ± 23.6 vs. 145.7 ± 22.0 mmHg; p = 0.032). The
clinical presentation of non-whirling-type dizziness was observed
more often in patients with central dizziness than in those with
non-central dizziness (79.0 vs. 54.4%; p < 0.001).

Machine Learning Predicting Central
Dizziness
The ability of the ML algorithms to discriminate between
central and non-central dizziness is shown in Figure 2. In
the ROC analysis, the models achieved an AUROC of 0.730

TABLE 2 | Sensitivity and specificity of the classification models in the

independent test set.

Sensitivity Specificity

A. Threshold at which sensitivity is 99% in training set

Logistic regression 0.992 (0.976–1.000) 0.107 (0.088–0.125)

Support vector machine 0.984 (0.960–1.000) 0.157 (0.136–0.177)

Random forest 0.992 (0.976–1.000) 0.125 (0.108–0.144)

Catboost 0.976 (0.944–1.000) 0.167 (0.146–0.190)

B. Threshold at which sensitivity is 99.9% in training set

Logistic regression 0.992 (0.968–1.000) 0.068 (0.055–0.083)

Support vector machine 0.992 (0.976–1.000) 0.116 (0.099–0.134)

Random forest 0.992 (0.976–1.000) 0.060 (0.046–0.073)

Catboost 1.000 (1.000–1.000) 0.046 (0.034–0.060)

(0.690–0.771) in LR, 0.727 (0.687–0.767) in SVM, 0.726 (0.686–
0.768) in RF, and 0.738 (0.693–0.780) in Catboost, suggesting
moderate predictive accuracy with highest performance by
Catboost but without statistically significant difference among
models. (Catboost vs. LR: p = 0.443; Catboost vs. SVM:
p = 0.263; Catboost vs. RF: p = 0.099). Sensitivity and
specificity were also similar among the models, evaluated
in the independent test set (Table 2). At a classification
threshold of 99% sensitivity in the training set, the models
showed a sensitivity of 97.6–99.2% and a specificity of
10.5–18.6%. At a threshold of 99.9% sensitivity, the models
showed a sensitivity of 99.2–100% and a specificity of 4.6–
8.1%.

Factors Predicting Central Dizziness
Overall feature attributions of the Catboost model were
compared with those of the LR as shown in Figure 3. The
mean Catboost SHAP value was highest for the presence
of a previous stroke history (0.74 ± 0.12), followed by
male (0.33 ± 0.04), presentation as non-whirling-type
dizziness (0.30 ± 0.02), and age (0.25 ± 0.18). The
mean of the absolute values of SHAP was highest for the
presentation of dizziness (0.31 ± 0.02), followed by sex
(0.27 ± 0.06), age (0.25 ± 0.18), and history of previous
stroke (0.14 ± 0.20) in Catboost (Figure 3A). These four
features—presentation of non-whirling-type dizziness,
sex, and age—were also factors with relatively strong
impacts on other algorithms, including LR (Figure 3B and
Supplementary Figure 1).

The difference in the way to use features between LR and
Catboost can be seen in Figure 4. The plots represent how a
single feature affects the classifier according to their values. As
shown in Figure 4, lower than normal systolic BP contributed
to a greater negative prediction for central dizziness, whereas
higher BP, between 125 and 150 mmHg, showed a neutral SHAP
value. Systolic BP over 150 mmHg showed a positive SHAP
value, indicating the model considers patients having the range
of systolic BP at high risk for central dizziness (Figure 4A).
Additionally, diastolic BP under 75 or higher than 125 mmHg
increased the risk for central dizziness (Figure 4C; U-shape
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FIGURE 3 | Feature attributions of all features. Summary plot of SHAP values for all features: (A) Logistic regression (B) Catboost. Each point represents the feature

attribution on the log-odds scale for one patient in the training set. Continuous variables were colored by feature value. In the case of categorical variables, except for

representation of dizziness and sex, the red color denotes a positive (i.e., a patient has the feature), and the blue color denotes negative. F, female; M, male; V, vertigo;

D, dizziness.

curve). Similarly, heart rates lower than 60 and higher than 80
bpm showed positive SHAP values (Figure 4E). However, the LR
model considered that as the value of feature increases [systolic
BP (B), and heart rate (D)] or decreases [diastolic BP (F)], the
feature contributes to increasing the log-odds of central dizziness
linearly. The RF seemed to have a similar pattern as Catboost, and
the SVM appeared to have a smooth curve because of the radial
basis function kernel (Supplementary Figure 2).

DISCUSSION

In the current study, 9% of patients visiting the EMC showed
central dizziness. The ML algorithms designed to predict central
dizziness using simple clinical data obtained from triage showed
moderate predictive accuracy. The presentation type of dizziness
(non-whirling-type dizziness), age (older), sex (male), and
history of stroke (present) were shown to be important factors
for predicting central dizziness in the Catboost model.

Previous studies have differentiated central dizziness from
peripheral causes of vertigo by extensive neuro-ophthalmological
examination, including the head-thrust test, gaze-evoked
nystagmus, and skew deviation (15). These three tests were
proven to be even more sensitive than neuroimaging (15).
However, these tests are typically difficult to apply for non-
neuro-otology specialists. Alternatively, many scoring systems
have been applied to diagnose central dizziness. The modified
ABCD2 (age, BP, clinical presentation, and diabetes) score
showed an AUROC curve of 0.79 (16). Another scoring
system that used eight items, the TriAGE+ score, had an
AUROC of 0.82 (17). However, these scoring systems are
complicated and still require neurological tests, such as testing
for cerebellar dysfunction or focal weakness. Among patients
without weakness, the AUROC of the ABCD2 score was
lowered to 0.63 (17). Considering that ∼10% of patients with
cerebellar infarction present with isolated vertigo (6), it may be
inappropriate to differentiate central dizziness based on these
scoring systems. Our ML-based diagnosis of central vertigo
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FIGURE 4 | SHAP values for a single feature. SHAP values (impact of each feature on the model) of logistic regression and Catboost are represented on the left and

right side, respectively. Systolic blood pressure (A,B), diastolic blood pressure (C,D) and heart rate (E,F). BP, blood pressure.

based specifically on simple clinical information, in the absence
of neurological information, showed strong predictive power in
classifying central dizziness reaching accuracies close to previous
scoring systems.

ML has recently shown promising results in various medical
fields, some of which have been validated in real-world settings
(18). In ML, algorithms are designed to identify important
features and/or complicated relationships between these features
in an attempt to predict or classify response variables; this is
in contrast to rule-based algorithms that use features defined
manually. In the current study, Catboost had the highest AUROC
among the ML models (0.738) and had 16.7% of specificity
at 97.6% of sensitivity and 4.6% of specificity at 100% of
sensitivity. These results indicate that, if the model is used to
differentiate between central dichotomously in practice, 2.4% of
patients with central dizziness would be misdiagnosed, while

16.7% of those with non-central dizziness do not require further
neuroimaging services.

We further uncovered important predictors of central
dizziness and, moreover, how these variables impact the decision
making of the Catboost model using SHAP. Based on our results,
previous stroke history, sex (males), presentation of dizziness,
and age (older) were the most important factors for classifying
central dizziness (Supplementary Figure 1). However, according
to SHAP, other factors, such as heart rate and systolic and
diastolic BP, were still proven to be useful for classifying central
dizziness. However, these factors displayed some differences, with
higher systolic and diastolic BP showing positive SHAP values.
However, lower systolic BP was correlated with lower SHAP
values, whereas lower diastolic BP was associated with higher
SHAP values. Heart rate results were similar to that of diastolic
BP. Patients with low or high heart rates may have a change
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of subclinical arrhythmias that may increase the risk of central
dizziness. SHAP value patterns exhibit non-linear characteristics
using the Catboost model, which is similar to previously observed
effects of blood pressure or heart rate on stroke risk. Meanwhile, a
linear model, such as LR, showed linearly increased or decreased
SHAP values as the variables increase (Figure 4).

There are some noteworthy limitations to this study. First,
this was a single-center study and may have a limitation in
generalizability. Though we included a large number of patients,
consecutively to reduce the bias, external validation may be
needed to strengthen our results. Second, the clinical information
was based on a conservative format that evaluated dizziness
based on the presentation of dizziness and risk factors (19). A
more updated algorithm that delineates dizziness using timing
and triggers may show different results. However, using the
presentation of dizziness and risk factors is still a widely accepted
clinical approach for differentiating central dizziness. Finally,
since ML has an advantage in processing large data, combining
findings with video nystagmography or video oculography may
enhance the predictive power of the algorithms. However,
here we simply used clinical information for the ML input
in an attempt to diagnose central dizziness, a strategy that
may be more applicable for the non-neuro-otology specialists.
Furthermore, as we only used simple data obtainable from
the triage, there was no missing clinical data throughout
the study.

Our results show that ML models for predicting central
dizziness are feasible and require only simple clinical data
and the presentation of dizziness. This tool for diagnosing
central dizzinessmay be extremely helpful for non-neuro-otology
specialists in determining the priorities of urgent patients and
differentiating central dizziness from non-central dizziness in
clinical practice.
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