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Abstract 

Background:  Viruses, including bacteriophages, are important components of envi-
ronmental and human associated microbial communities. Viruses can act as extracellu-
lar reservoirs of bacterial genes, can mediate microbiome dynamics, and can influence 
the virulence of clinical pathogens. Various targeted metagenomic analysis techniques 
detect viral sequences, but these methods often exclude large and genome integrated 
viruses. In this study, we evaluate and compare the ability of nine state-of-the-art 
bioinformatic tools, including Vibrant, VirSorter, VirSorter2, VirFinder, DeepVirFinder, 
MetaPhinder, Kraken 2, Phybrid, and a BLAST search using identified proteins from the 
Earth Virome Pipeline to identify viral contiguous sequences (contigs) across simu-
lated metagenomes with different read distributions, taxonomic compositions, and 
complexities.

Results:  Of the tools tested in this study, VirSorter achieved the best F1 score while 
Vibrant had the highest average F1 score at predicting integrated prophages. Though 
less balanced in its precision and recall, Kraken2 had the highest average precision by a 
substantial margin. We introduced the machine learning tool, Phybrid, which demon-
strated an improvement in average F1 score over tools such as MetaPhinder. The tool 
utilizes machine learning with both gene content and nucleotide features. The addi-
tion of nucleotide features improves the precision and recall compared to the gene 
content features alone.Viral identification by all tools was not impacted by underlying 
read distribution but did improve with contig length. Tool performance was inversely 
related to taxonomic complexity and varied by the phage host. For instance, Rhizobium 
and Enterococcus phages were identified consistently by the tools; whereas, Neisseria 
prophage sequences were commonly missed in this study.

Conclusion:  This study benchmarked the performance of nine state-of-the-art bioin-
formatic tools to identify viral contigs across different simulation conditions. This study 
explored the ability of the tools to identify integrated prophage elements traditionally 
excluded from targeted sequencing approaches. Our comprehensive analysis of viral 
identification tools to assess their performance in a variety of situations provides valu-
able insights to viral researchers looking to mine viral elements from publicly available 
metagenomic data.
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Background
Viruses are the most abundant biological entities on Earth [1]. However, the collective 
knowledge of environmental viral sequences, including bacteriophages, remains under-
represented relative to the amount of genetic information for eukaryotic viruses and 
bacteria. Bacteriophages are viruses that infect bacteria and are commonly referred 
to as phages. Phages are obligate parasites that play an important role in the genomic 
composition and evolution of their bacterial hosts. Phages directly contribute to bacte-
rial infections in humans by acting as a genetic reservoir for virulent genes in bacteria 
such as Escherichia coli, Salmonella enterica, Pseudomonas aeruginosa, Vibrio cholerae, 
Corynebacterium diphtheriae, and Streptococcus pyogenes [2, 3].

In addition, some phages utilize Ig-like domains to attach to mucosal layers in humans 
to lie in wait for bacterial prey. This bacteriophage adherence to mucus (BAM) model 
suggests that phages may act as a non-host derived innate immunity system to modu-
late the bacterial microbiome [4]. A longitudinal study of the human virome revealed 
composition conservation that mimicked the stability of healthy bacterial microbiomes 
[5, 6]. Dysbiosis in the virome has been observed in disease states such as inflammatory 
bowel disease (IBD), Crohn’s disease, and asthma [7–9].

The study of viruses has traditionally relied on the ability to cultivate viral particles 
from a cultured host; however, many bacteria cannot be cultured in a laboratory setting 
[10]. The limited number of culturable hosts, in combination with the additional com-
plexities of viral isolation limit the study of viruses. The advancements in next generation 
sequencing technologies created an opportunity to study viruses with culture independ-
ent methods. However, because viruses do not share a common universal marker gene, 
like the bacterial small subunit RNA, sequencing techniques such as metagenomics are 
a necessity [11]. Metagenomics is a non-targeted sequencing approach to elucidate the 
totality of genetic material within a sample, either DNA or RNA. However, in part due 
to small genomes, viruses are traditionally underrepresented in metagenomic stud-
ies from a read abundance perspective. It is common for viral reads to comprise less 
than 5% of metagenomic sequences [12]. A way to enrich viral reads in metagenomic 
studies is to filter or directly select viral like particles (VLPs). However, these tech-
niques tend to remove large viruses and viruses integrated into bacterial genomes called 
prophages, before sequencing. Therefore, the ability to identify viral elements directly 
from metagenomic sequencing studies is also important for understanding the composi-
tion of the virome. The advent of computational tools dedicated to the identification of 
viral sequences in metagenomics has improved our ability to identify known, novel, and 
integrated viruses.

MetaPhinder is an approach that uses BLASTn and average nucleotide identity thresh-
olds to classify viral contigs in metagenomics [13]. Methods that use sequence similar-
ity suffers worsening performance with smaller contig lengths. Domain recognition is 
utilized by more tools to counter the limitations of contig length on traditional sequence 
homology approaches, but these tools are often reliant on specialized viral domains like 
those from pVOGs (prokaryotic virus orthologous groups) [14]. Unlike prophage iden-
tification methods that use viral domain enrichment or presence/absence to calculate 
a score, a new method, called Vibrant, uses domain abundances in a neural network 
framework to classify contigs having more than 4 proteins [15]. VirSorter2 follows a 
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similar methodology, using domain percentages, gene content features, and key homol-
ogy genes in a tree-based machine learning framework to classify viral reads [16].

Homology of viral protein domains is limited to known viruses, which are thought 
to represent only a small slice of the vast viral dark matter [17]. Another homology 
approach sought to expand known viral hidden Markov models (HMMs) through a 
semi-supervised expansion of existing viral protein families. Paez-Espino et  al. (Earth 
Virome Pipeline) collected viral coding regions from NCBI servers and known viral 
metagenomic contigs; then clustered those peptides into protein families to create new 
viral HMMs [18]. This initial set was used as bait to identify potential viral contigs in 
thousands of metagenomic data sets. Predicted proteins from these captured viral con-
tigs were added to the original set of peptides and re-clustered to create thousands of 
new viral protein families and HMMs. Even with the expansion of viral families, both 
VirSorter and the BLASTp search using the Earth Virome protein set are at least par-
tially reliant on domain homology. A reference-free viral identification tool was devel-
oped using machine learning to address limitations of homology searching. VirFinder 
is a logistic regression classification using nucleotide sequence 8-mers as features [19]. 
The authors of VirFinder expanded the concept of using k-mers as features to identify 
viral contiguous sequences with DeepVirFinder, a convolutional neural network that 
takes raw sequences as inputs and learns features that are useful for viral contig pre-
diction [20]. VirFinder relies solely on sequence-based features, which is analogous to 
another k-mer approach, Kraken2. Kraken2 uses discriminatory 35-mers to uniquely 
identify sequences to the species and even subspecies level [21]. In order to use Kraken2 
in a viral identification context, we created the tool, VirKraken, that parses the Kraken2 
classification output to assign viral contigs in metagenomic reads. VirKraken is avail-
able on PyPI and at https://​github.​com/​Strong-​Lab/​VirKr​aken. VirKraken references the 
Kraken2 assigned taxonomy identification number against an edited NCBI Taxonomy 
database to assign kingdom and to filter sequences when requested [22].

Another approach to identify viral elements in metagenomics involves negation of 
known bacteria contigs. VirMine uses a homology search against a bacterial protein 
database; if hits of bacterial genes outnumber the number of unknown hits the contig is 
removed, thus leaving viral contigs [23]. All previously described tools identify viral ele-
ments from assembled sequences. MARVEL is a machine learning method that classifies 
binned contigs as viral clusters using a random forest approach with three features (gene 
density, strand shifts, and fraction of homology hits to a viral protein database) [24].

The authors of VirFinder put forth a call to create a hybrid tool that utilizes both k-mer 
features and gene content features to offset the weaknesses of both methods [19]. To 
answer that call, we developed a machine learning model called Phybrid that uses both 
gene content features such as gene density and strand shift frequency, in addition to 
sequence-based features to classify viral contigs using an additive boosting model. The 
addition of gene content features is hypothesized to offset the dip in performance of 
sequence-based machine learning models compared to homology methods on longer 
contigs [19].

Many approaches exist to identify viral elements in metagenomics. However, a sys-
temic evaluation among many of these tools has not been performed. This study is 
meant to provide information and guidance to researchers regarding when to use a 

https://github.com/Strong-Lab/VirKraken
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specific viral identification tool to further study viral elements or to remove them for 
downstream analyses. The characterization of more viral elements in the public domain 
could lead to the discovery of novel viruses [25] and provide insight into the functional 
potential residing in an extracellular genetic reservoir [2].

Methods
Phybrid, a hybrid gene content and nucleotide feature set for viral classification

To build Phybrid, 1849 complete phage and 2327 complete archaeal/bacterial genomes 
were compiled from RefSeq (Accessed on January 8th, 2020). Prophage elements in 
the archaeal and bacterial genomes were identified using VirSorter [22]. Category 4 
prophages were selected, and the predicted nucleotide sequences were added to the 
complete viral genomes. Custom scripts were used to identify and remove the predicted 
prophage sequences from the host genome. The total number of prophages predicted 
was 730 in 339 bacterial genomes (14.57% of genomes contained at least 1 prophage) 
culminating in an average prophage per genome ratio of 0.314.

After removing integrated prophages, the complete genomes were fragmented into 
k-mers of 4 sizes using an n-step kmerization method. The n-step method removes 
contig end-overlap and ensures that the maximum number of k-mers is the length of 
the base sequence over the length k. The complete genomes were fragmented into sizes 
of 1  KB, 3  KB, 5  KB, and 10  KB sequences. Due to the size of bacterial and archaeal 
genomes relative to phage genomes, the fragments from non-phage sampling were down 
sampled to evenly distribute the classes. The four different fragment lengths were used 
to train four separate models.

The n-step fragments were subjected to a sliding window kmerization of size 8 using 
a k-mer counting program written in C [26]. A sliding window kmerization calculates 
k-mer abundance with significant overlap and the maximum number of k-mers is the 
length of the base sequences minus 1. The program stores all 8-mer values (65,536 pos-
sible 8-mers) in a hash table. In real world metagenomic sampling, the directionality of 
a sequence fragment may be ambiguous. Therefore, similar to VirFinder [19], we devel-
oped custom scripts to sum complement, reverse, and reverse complement sequences 
thus reducing our feature space from 65,536 possible k-mers to 16,384 possible k-mers. 
The nucleotide feature space is further reduced to 888 k-mers using Gini importance or 
total decrease in node impurity above 0.001, which is a weighted probability of reaching 
a feature averaged over all trees in a random forest [27].

Gene content feature set creation

The use of gene content features are built into tools such as MARVEL and VirSorter [24, 
28]. MARVEL and VirSorter both utilize gene density as a marker of viral elements. In 
this study, four gene content features associated with viral genomes were included as 
part of the feature set in Phybrid; gene density, operon length, average peptide length, 
and percentage of overlapping peptides. Due to the physical restraints of some viral 
capsids, viral genomes are commonly tightly packed and translate shorter proteins than 
bacterial genomes [29]. Operon length in the context of this study is the length of a 
continuous set of genes on the same strand. Viruses tend have long stretches of genes 
located on the same strand [30]. In addition, viral genomes often have overlapped genes 
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for different life cycles [30]. Custom scripts were used to calculate the four protein char-
acteristics from the output of the Prodigal gene prediction software [31]. Figure 1 shows 
the observed distribution of protein features in the training data of the 10 KB model.

Model and hyperparameter selection

After combining the complementary nucleotide features and the gene content features, 
the total feature space of Phybrid was 892 features. During training, the performance 
of a random forest, multi-layer perceptron, and an additive boosting model were com-
pared using 5-fold cross validation [32]. At every fragment size, the additive boosting 
model performed the best. We selected XGBoost (version 0.81) and performed a Ran-
domSearchCV (version 0.20.1) analysis to determine hyperparameters [32, 33]. The pre-
trained models were added to the tool repository for use classifying metagenomic fasta 
sequences. Phybrid generates outputs as a header file containing the header sequences of 
viral elements and a fasta file containing the nucleotide sequences of the predicted viral 
elements.

Building simulated Illumina metagenomes

To build a simulated test set, all complete genomes were downloaded from NCBI RefSeq 
(accessed on 12/15/2020). The genomes deposited since May 1st, 2020, were selected 
to test the viral contig identification tools because many of the tools were trained or 
relied on databases last updated prior to this date. Bacterial hosts of phages were col-
lected using a dataset from Virus-Host DB [34] (Accessed on December 17, 2020). Phage 
were assigned bacteria genera values by their host organism. Using information from 
the Earth Microbiome Project (EMP) and from Qiita, the recently submitted genomes 
were further filtered by 53 genera commonly found in soils (37 genera) and in clinical 
samples (26 genera) with 8 genera in both niches [35, 36]. This resulted in 297 unique 
bacterial genomes being used for the simulations with 82 genomes found in both clinical 
sampling (160 genomes) and soil sampling (219 genomes). The reliance on recently sub-
mitted genomes to produce the testing set did not produce traditional bacterial distribu-
tions seen in clinical and soil microbiomes. For example, while the genera Bacteroides 
are commonly present in the clinical microbe samples, the amount in this study does not 
represent a substantial portion of the community as seen in other clinical microbiome 
studies [37]. The distribution of bacterial genera was used as a confounder for viral clas-
sification in this study. The goal of this study was to observe the performance of phage 
identification in the presence of genetically similar bacteria.

Phage genomes were also filtered by their host bacterial genera and randomly down 
sampled to match the number of bacterial genomes in the simulations. While phages 
are thought to outnumber bacteria ten to one in the environment [38], we matched the 
complexity of phage and bacteria in our simulations across taxonomic levels due to limi-
tations in the number of available phage genomes for the full datasets. In order to test 
the impact of taxonomic complexity on viral identification tool performance, we sub-
sampled phage and bacterial genomes into medium (50 bacterial genomes and 50 phage 
genomes) and low (10 bacterial genomes and 10 phage genomes) complexity subsets. 
Additional file 2: Table S1 (clinical) and Additional file 2: Table S2 (soil) detail the taxo-
nomic abundance of the top 6 genera and phage host genera in the testing set across 
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taxonomic complexity levels. While both lower complexities draw from the full distribu-
tion of genomes, there is no overlap in the selected genomes between the medium and 
low taxonomic levels. This was accomplished through setting a random seed in the sub-
sampling procedure and using set operations to confirm no overlap of genomes.

Simulated metagenomes were created using InSilicoSeq (version 1.2.0). InSilicoSeq 
and another popular metagenomic simulator, CAMISIM use a lognormal read distribu-
tion by default, however, four additional read distributions are provided as a part of the 
InSilicoSeq software suite: uniform, exponential, zero inflated lognormal, and halfnor-
mal [39, 40]. Due to the enormous diversity of naturally occurring communities, read 
distribution profiles are likely to fluctuate. To understand the impact of read distribution 
and taxonomic complexities on the performance of viral identification, we created 30 
MiSeq simulations with 12 million 2x300 reads. The 30 simulations were composed of 
two environmental conditions (clinical and soil microbes) with five read distributions 
across three taxonomic levels (full, medium, low). Bacterial reads represented 93.75% 
of the total composition in each simulation and phages represented 6.25%. Prior studies 
suggest phages commonly represent less than 5% of metagenomic sequencing reads [12] 
due to genomes that are orders of magnitude smaller than prokaryotic genomes. Our 
decision to exceed the 5% of viral reads in metagenomics was driven by the need to iden-
tify an expanded set of phages from taxonomically diverse testing sets. After assembly 
and filtration of contigs less than 1KB in length, phages comprise an average of 1.54% of 
total contig abundance.

After simulating, the reads were perfectly binned by sequence origin to limit the crea-
tion of chimeric contigs. Chimeric contigs are assembly errors when reads from different 
organisms are assembled together resulting in a shorter fragmented assembly or taxo-
nomic misclassification downstream. The decision to bin prior to assembly was to allow 
for genera labeled contigs in order to explore false positive and recall rates of bacteria 
and phage, respectively. The perfect bins were assembled using metaSpades (version 
3.11.1) and only contigs of length 1KB or greater were retained [41]. The relative abun-
dance of bacteria genera in the simulations are shown in Fig. 2.

Integrated prophage identification

Integrated prophage elements were identified in complete bacterial genomes using 
VirSorter prior to read simulations [28]. Integrated prophages were selected for down-
stream processing if assigned as category 4, the highest confidence category for 
prophages within VirSorter [28]. A nucleotide BLAST database was created with the 
identified prophage elements. After read simulation and assembly, bacterial contigs were 
identified as prophages using a BLASTn search against the prophage database with a 
bitscore greater than 1000 and a percent identity greater than 95%. Additional file 2: Fig-
ure S1 shows the genera distribution of the identified prophage elements separated by 
read distribution and sampling site.

Tools used in simulation study

The tools used in the study shown in Table 1 were tested on their performance to identify 
viral elements from assembled contigs in the simulations. The tools used in this study 
to identify viral contigs were Vibrant (Version 1.2.0), VirSorter, VirSorter2, VirFinder, 
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DeepVirFinder, MetaPhinder, Kraken 2, Phybrid, and a BLAST search using identified 
proteins from the Earth Virome Pipeline [15, 16, 19, 28].

Any VirSorter predictions that were classified to the lowest confidence category were 
removed via evidence by the tool developers [28]. VirFinder and DeepVirFinder assign a 
probability value and any contigs that had a value less than 0.01 were classified as viral. 
A diamond blast database was created with the viral proteins from the Earth Virome 
Pipeline [18, 42]. Proteins from the simulation contigs were predicted using Prodi-
gal and searched for viral homology using diamond BLASTp against proteins from the 
Earth Virome Pipeline with matches retained that had a bit score greater than 100 and 
an e-value less than 1e−05 [31]. Contigs with more than one hit were classified as viral. 
MetaPhinder, Phybrid, Phybrid Proteins, and Vibrant were run with default parameters 
[13, 15]. Double-stranded DNA phages and single stranded DNA viruses were selected 
with the groups parameter of VirSorter2 as described by the authors [16]. Kraken 2 was 
run with default parameters using the minikraken database from March 2020 [21]. The 
resulting Kraken 2 report was parsed for viral reads using VirKraken (Version 0.0.5).

Tool performance scoring

The structure of the simulation allowed for each contig to possess a true origin label. 
These labels were used to identify the performance of the tools to identify viral elements 
in the simulations. The performance was measured by precision, recall, and F1 score. 
Prophages were considered viral in this study and an additional analysis of tool per-
formance on prophage identification was performed. The performance measures were 
used in a simulation performance ranking system to determine the best performing tool 
across different scenarios. The performance of each tool was ranked within each con-
dition with 1 representing the best performing tool. The highest-ranking value (worst 
performing tool) changes as some tools were unable to properly calculate a score. This 
occurs when a tool did not predict any viral element in a simulation.

In addition to overall performance, tool performance is evaluated at four discretized 
contig lengths: 1 KB–2.5 KB, 2.5 KB–5 KB, 5 KB–10 KB, 10 KB+. The recall of the tools 
to identify viral elements by genera was used to determine any systematic biases for or 
against specific viral groups. Visualizations of scoring metrics were performed in Python 
using a combination of Matplotlib (version 2.2.3) and Seaborn (version 0.9.0) plotting 

Table 1  Tools used in viral identification benchmarking study

Tool Last updated Target Viral 
homology 
matching

Compositional 
protein features

Machine learning 
classification

Programming 
skills required

VirSorter 2015 Virus Yes Yes No No

VirSorter2 2020 Virus Yes Yes Yes No

VirFinder 2017 Virus No No Yes Yes

DeepVirFinder 2020 Virus No No Yes Yes

Vibrant 2020 Virus Yes No Yes Yes

MetaPhinder 2016 Phage Yes No No Yes

Earth Virome 2020 Virus Yes No No Yes

Phybrid 2020 Phage No Yes Yes Yes

Kraken2+VirKraken 2020 Virus Yes No No Yes
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software [43, 44]. Kruskal-Wallace nonparametric testing was performed to determine if 
the scoring values arose from the same distributions.

Results
Overall tool performance

The F1 performance across different read simulation conditions was not significantly 
different (H = 4.02, p = 0.404, Kruskal–Wallis). The F1 performance was significantly 
different by taxonomic complexity with better tool performance in lower complex-
ity simulations relative to both medium and full complexity simulations (H = 47.65, p 
= 4.50e−11, Kruskal–Wallis). The F1 performance, as well as precision and recall, of 
longer contigs specially the 10 KB+ bin was higher relative to other contig length bins 
(H = 275.7, p = 1.82e−59, Kruskal–Wallis). Table 2 contains the mean performance of 
the tools and the average ranking across the 30 simulations. The F1 performance of the 
tools in the simulation discretized by taxonomic complexity is shown in Fig. 3.

Kraken2 led both average precision and precision rank. In this study, the BLASTp 
search of proteins from the Earth Virome Pipeline performed best in both recall and 
recall rank. The tool with the highest average F1 score and best F1 rank was VirSorter. 
VirSorter was also the tool used to perform prophage identification. This may provide 
VirSorter with an advantage over other tools in prophage identification.

Prophage identification performance

The prophage performance of the low complexity simulations are removed due to the 
presence of only a single prophage contig in all 10 simulations. The F1 performance of 
the tools to identify prophage in 20 medium and high complexity simulations is shown 
in Table 3.

Tool performance by contig length

As the length of the contigs increased, the performance of the tools improved. Mean 
contig length of the simulations was affected by the taxonomic complexity in this study 
as shown in Additional file 2: Figure S2. Figure 4 demonstrates the F1 performance of 
each tool within defined contig length bins. If the F1 score of a tool was 0, the record was 
removed as some lower complexity simulations lacked shorter contiguous sequences.

Table 2  Average performance and simulation rankings of tools at identifying phage

Score of best performing tool is bolded in each column

Tool F1 rank Precision rank Recall rank Average F1 Average 
precision

Average recall

VirSorter 2.10 3.10 6.40 0.636 0.640 0.658

Kraken2 2.93 1.07 7.80 0.609 0.962 0.467

Vibrant 3.52 4.10 7.26 0.560 0.573 0.598

VirFinder 3.93 2.30 9.32 0.548 0.717 0.450

DeepVirFinder 5.04 5.38 7.90 0.432 0.392 0.496

VirSorter2 5.27 5.93 3.10 0.463 0.341 0.797

Phybrid 5.40 6.00 3.60 0.413 0.317 0.755

Phybrid Proteins 7.47 7.70 4.63 0.142 0.213 0.717

MetaPhinder 8.73 8.67 2.83 0.082 0.138 0.842

Earth Virome 9.73 9.73 1.78 0.023 0.044 0.872
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Viral recall by host genera

Recall scores of viral elements from the medium and full distributions were calcu-
lated across 30 host genera. Recall was only retained if greater than 0 to prevent the 
absence of a phage host genera by niche. Figure  5 shows the recall of viral contigs 
by host genera across all tools. The viral host genera with the best recall was Xan-
thomonas, however, phage with Xanthomonas as a host were not well represented 
in the data set. Phage known to infect Enterococcus achieved an average recall over 
0.83 across all tools. DeepVirFinder performed the best at identifying phage known to 
infect Enterococcus with an average recall rate of 0.97. Neisseria prophage sequences 
had the lowest average recall performance across all tools (0.23), with only 7 tools 
correctly predicting at least one Neisseria prophage contig. While multiple contigs 
were derived only a single Neisseria prophage was included in this study and that may 
be affecting tool performance. The BLASTp search using the proteins from the Earth 
Virome Pipeline performed the best at identifying this elusive prophage (0.68) and the 
next best tool was MetaPhinder with a recall rate of 0.24.

False positive genera

In addition to the recall rate of viral elements by host genera, the percent of genera 
associated with bacterial false positives was calculated for each tool in medium and 
full complexity simulations. Bacterial genera that represent more than one third of 
false positives of a tool in a simulation were retained. Eleven genera were represented 
with Streptomyces present in 9 of 10 tools. Additionally, Citrobacter and Pseudomonas 
were major false positive genera in more than 5 tools. Additional file  2: Figure S3 
shows the genera of false positives that represent more than 33% by tool.

Discussion
This study benchmarked and evaluated the ability of nine viral classification tools to 
identify viral and prophage elements within shotgun metagenomics. The study con-
sisted of 30 Illumina MiSeq simulations across two communities, five read abun-
dance distributions, and three taxonomic levels. The performance of the tools was 
consistent across read distributions (H = 4.02, p = 0.404, Kruskal–Wallis), whereas, 

Table 3  Average performance and simulation rankings of tools at identifying prophage

Score of best performing tool is bolded in each column

Tool F1 rank Precision rank Recall rank Prophage F1 Prophage 
precision

Prophage recall

Vibrant 1.15 1.95 7.45 0.169 0.146 0.231

VirSorter 2.11 1.66 8.76 0.147 0.144 0.164

VirSorter2 2.70 3.40 4.70 0.117 0.0685 0.453

Phybrid 3.95 4.45 7.13 0.0446 0.0269 0.252

Phybrid Proteins 5.20 5.50 6.05 0.0188 0.00978 0.342

Kraken2 6.70 1.85 9.90 0.0169 0.172 0.00896

MetaPhinder 6.65 6.85 2.90 0.0152 0.00776 0.588

Earth Virome 6.85 7.00 1.60 0.0117 0.00588 0.728
VirFinder 8.88 8.88 2.73 0.00725 0.00365 0.705

DeepVirFinder 8.79 9.03 2.79 0.00647 0.00325 0.637
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the average performance increased with a reduction in taxonomic complexity (H = 
47.65, p = 4.50e−11, Kruskal-Wallis). Lower taxonomic complexity was associated 
with longer contig lengths in the assemblies (Additional file 2: Figure S2) and longer 
contigs were associated with improved overall performance.

The differences between performance scores suggests the selection of a tool may 
depend upon the desired application. VirSorter scored the highest average F1 score and 
had the best F1 ranking across all the simulations. Kraken2 may be the ideal tool when 
minimizing the number of false positives. The BLASTp search using the Earth Virome 
proteins had the best recall; however, the application of this tool is not meant for tra-
ditional viral identification due to the large false positive rate. In this study, the applica-
tion of a BLASTp homology search using the Earth Virome protein set was performed 
rather than an extensive domain homology search due to run-time concerns. The Earth 
Virome protein set was derived from an iterative viral protein domain search and may 
include many unknown proteins that may not truly be derived from viral sources [18]. 
Even with this expanded protein set relative to known viral proteins from RefSeq, the 
broad homology search space still failed to capture all viral derived contigs demonstrat-
ing the difficulty of viral identification within metagenomes.

A limitation of this study is the absence of eukaryotic sequences from the simula-
tions. The presence of eukaryotic sequences may further reduce the precision of the 
tools to identify viruses. Ponsero and Hurwitz described the high false positive rate of 
k-mer based models on eukaryotic sequences in aquatic metagenomes [45]. This high 
false positive rate is likely a result of the absence of eukaryotic sequences in the training 
data of the tool [19]. Machine learning tools without eukaryotic sequences in the train-
ing set may produce additional false positives. Any machine learning tool with gaps of 
eukaroytic or novel viral sequences in the training data may produce errors in viral clas-
sification on real metagenomic data.

Prophage identification in metagenomics is a difficult problem as many integrated viral 
elements are degraded in bacterial hosts to drive evolution [46]. As such, remnants of 
prophage particles are scattered across bacterial genomes and viral genes can be mistak-
enly attributed as bacterial in origin. Many tools to identify prophages in whole genome 
experiments fail to generalize to metagenomics due to fragmentation that breaks down 
traditional viral enrichment measurements. The decision to select the highest confi-
dence prophage predictions using VirSorter from the complete genomes prior to simu-
lation may have provided VirSorter with an added performance boost. Vibrant had the 
highest average F1 score and best F1 ranking at identifying prophages across all 20 simu-
lations. Kraken 2 had the highest average precision and VirSorter had the best precision 
ranking. The Earth Virome proteins exceled at recall; however, the next best tools were 
VirFinder and DeepVirFinder. VirFinder and DeepVirFinder like many other tools that 
perform well with prophage recall have a high false positive rate.

The performance of all tools would increase with an additional step of removing 
known bacterial contigs. One approach is to search for genes unique to bacteria and 
archaea, the 16S rRNA. 16S rRNA profiles from RFAM can be applied to the RNA 
domain search tool, Infernal, to remove contigs with known bacterial genes [47, 48]. This 
approach may impact the recovery of prophage contigs if the integration site of the virus 
was near a 16S rRNA.
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Viral identification tools performed well at identifying phages known to infect genera 
such as Enterococcus (0.83), Mycobacterium (0.77), and Salmonella (0.81). The performance 
of the tools to identify phages that infect genera such as Neisseria (0.23), Brevibacterium 
(0.30), and Mesorhizobium (0.33) dropped substantially. Detecting the presence of Neisse-
ria phage and prophage may be important for a diagnostic of invasive meningococcal dis-
ease as prophage-like elements are commonly found throughout the Neisseria genera [49]. 
The results of the tools on individual genera are meant to demonstrate the variability of 
tool performance on different genera of phage. Phage genera in this study are defined by 
host range. Phage host range is poorly understood and there exists sampling bias towards 
phages affecting more well studied bacterial pathogens. The results of this study seemed to 
imply that sampling bias of phage genera in public databases may be affecting many overall 
tool performances. Mycobacterium phages and Enterococcus phage are the most abundant 
phages in public databases. The results of phage genera performance should not be over-
interpreted in this study as the number of unique phages known to affect a bacterial genera 
are not uniformly distributed as seen in Additional file 2: Tables S1 and S2.

The performance of Phybrid including the nucleotide features showed improvement over 
the gene content features alone. The precision of Phybrid dramatically improved with con-
tigs over 10KB, however, smaller bins were plagued with many false positives. Integrated 
prophages added to the viral class in the training data represented 28.3% of the total viral 
genomes. Prophages are commonly degraded in bacterial hosts to drive evolution [46], 
therefore degraded viral elements in bacterial contigs with similar nucleotide structures 
as the complete prophages may be misclassified. In addition, the use of k-mer profiles for 
smaller contig classification created sparse data sets, which may have led to overfitting.

The performance of the tools presented needs to be weighted with the computational 
cost to run each tool. This study was performed on a shared high performance computing 
cluster and individual tool performance and memory requirements were not captured on 
an isolated node. However, the mechanism of viral identification can be used infer the rela-
tive time and memory consumption of the tools. The fastest tool in this study was Kraken2, 
which uses discriminatory k-mers to compare against a pre-computed hash table. The 
amount of memory needed to build the full hash table may be a drawback against using 
Kraken2 on a personal machine. The tool, Vibrant, uses protein features derived from mul-
tiple HMM searches. As a result of a large domain space, this tool ran for a significantly 
longer amount of time (1 week for full complexity simulations) relative to the other tools on 
the shared compute cluster.

This study benchmarked and compared the performance of viral identification tools in 
metagenomics. The viral identification performance measures, in conjunction with the 
genera and prophage recall, highlights the advantages and challenges of using specific viral 
identification tools, and can be used as a guide to assist the selection of tools for subsequent 
research.

Conclusion
In summary, we tested the performance of nine viral identification tools on 30 simu-
lated metagenomes. The underlying read distribution has little impact on average tool 
performance. Increasing contig length and decreasing taxonomic complexity improved 
the average performance of the tools. Vibrant performed the best at the identification of 
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prophages in metagenomics. Overall, the tool that averaged the best F1 score was Vir-
Sorter, while Kraken2 lead all other tools in precision. The results of these simulations 
should provide researchers with a guide to selecting the appropriate tool for their own 
viral identification research.
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